Approximation in Mechanism Design

By JASON D. HARTLINE*

A mechanism gives a mapping between the
actions of strategic agents and outcomes of the
system. Equilibrium theory describes what out-
comes will arise in the equilibrium of selfish
agent play. Mechanism design then considers
the optimization question of what mechanisms
have good outcomes in equilibrium.

Optimal mechanism design searches for the
best of these mechanisms. The space of all
mechanisms is rich and positive results for op-
timal mechanism design (a) identify a subclass
of mechanisms from which an optimal mecha-
nism can be drawn, (b) interpret the salient char-
acteristics of this subclass, and (c) predict the
mechanisms that arise in practice. This agenda
has a rich and elegant history in the economic
literature with many success stories.

But what can a theory of mechanism design
say (a) when the only subclass of mechanisms
that contains all optimal mechanisms is the full
class, (b) when analytical approaches fail to
identify salient characteristics of optimal mech-
anisms, or (c) when the mechanisms in practice
are not the ones predicted by optimal mecha-
nism design? To address these and other issues I
survey several results from the theory of approx-
imation in mechanism design.

A mechanism is a f-approximation in some
setting if its objective performance is within a
multiplicative factor of f of that of the opti-
mal mechanism for the same setting. For ex-
ample, a 2-approximation obtains 50% of the
optimal performance. A subclass of mecha-
nisms is a f-approximation if for every setting
there is a mechanism in the subclass that is a f-
approximation. Below I will motivate the per-
spective that a, for example, 2-approximation
can have important theoretical and practical con-
sequences.

As discussed, the class of all mechanisms is
incredibly rich and there are environments, see,
e.g., Vincent and Manelli (2007), where any un-
dominated mechanism is optimal for some set-
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ting. We face a tradeoff: if we consider only
optimal mechanisms we are stuck with the full
class from which we can make no observations
about what makes a mechanism good; on the
other hand, if we relax optimality, we may be
able to identify a small subclass of mechanisms
that is approximately optimal. This subclass is
important in theory as we can potentially ob-
serve salient characteristics of it. It is important
in practice because, while it is unlikely for a real
mechanism designer to be able to optimize over
all mechanisms, optimizing over a small class
of, hopefully, natural mechanisms may be pos-
sible. For instance, one conclusion I will make
is that reserve-price-based auctions and posted
pricings are approximately optimal in a wide
range of settings.

Approximation also provides a lens with
which to explore the salient features of a model
or mechanism. Suppose we wish to determine
whether a particular feature of a mechanism is
important. If there exists a subclass of mecha-
nisms without that feature that gives a good ap-
proximation, then the feature is perhaps not that
important. If, on the other hand, there is no such
subclass then the feature is quite important. For
instance, an analysis of this sort easily concludes
that monetary transfers are very important for
surplus maximization; where as a conclusion I
will discuss is that competition between agents
is not that important. Essentially, approxima-
tion provides a means to determine which aspect
of the model are details and which are not de-
tails (cf., Wilson, 1987). For instance, I will de-
scribe how mechanisms based on reserve prices
are often sufficient to approximate ones parame-
terized by the full distribution and how some en-
vironments permit a single (prior-independent)
mechanism to approximate the optimal mecha-
nism for every prior.

While it is no doubt a compelling success of
the theory of mechanism design that the mech-
anisms it predicts are so prevalent in practice,
the optimality of these mechanisms in ideal set-
tings does not provide a complete explanation.
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These mechanisms are employed by practition-
ers well beyond the settings for which they are
optimal. Approximation can explain why: the
mechanisms that are optimal in ideal settings
may continue to be approximately optimal much
more broadly. It is important for the theory to
describe how broadly these mechanisms are ap-
proximately optimal and how close to optimal
they are. Thus, the theory of approximation can
complement the theory of optimality and jus-
tify the wide prevalence of certain mechanisms.
For instance, the wide prevalence reserve-price-
based mechanisms and posted pricings is cor-
roborated by their approximate optimality.

I will illustrate the potential for the theory of
approximation in three representative environ-
ments: single-item auctions, multi-item pricing,
and prior-independent digital-good auctions. 1
will focus on the revenue objective. For each
environment I will describe the optimal mech-
anism, compare and contrast it to a simple ap-
proximately optimal mechanism, and discuss
generalizations.

I. Example: A Stopping Game

Consider the following scenario. A gambler
faces a series of n games on each of n days.
Game i has prize distributed independently ac-
cording to F;. The order of the games and dis-
tribution of the game prizes is fully known in
advance to the gambler. On day i the gambler
realizes the value v; ~ F; of game i and must
decide whether to keep this prize and stop or to
return the prize and continue playing. In other
words, the gambler is only allowed to keep one
prize and must decide which prize to keep im-
mediately on realizing the prize and before any
other prizes are realized.

The gambler’s optimal strategy can be calcu-
lated by backwards induction. On day n the
gambler should stop with whatever prize is real-
ized. This results in some expected value. On
day n — 1 the gambler should set a threshold
t,—1 equal to the expected prize for the last day
and stop with any prize bigger than this thresh-
old. On day n — 2 the gambler should stop with
any prize greater than the expected payoff of the
strategy thus-far calculated. Proceeding in this
manner the gambler can calculate a threshold #
for each day where the optimal strategy is to stop
with prize i if and only if v; > ;.
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Of course, this optimal strategy suffers from
many drawbacks. It is complicated: it takes n
numbers to describe it. It is not robust to small
changes in the game, e.g., changing of the order
of the games or making small changes to distri-
bution F; strictly above #;. It does not allow for
intuitive understanding of the properties of good
strategies. Finally, it does not generalize well to
give solutions to other similar kinds of scenar-
ios.

Approximation gives a crisper picture. A
threshold strategy is given by a single threshold ¢
and requires the gambler to accept the first prize
i with v; > ¢. Threshold strategies are clearly
suboptimal as even on day n if prize v, < t the
gambler will not stop and will, therefore, receive
no prize. I refer to the prize selection procedure
when multiple prizes are above the threshold as
the tie-breaking rule. The tie-breaking rule im-
plicit in the specification of the gambler’s game
is by “smallest i.”

Theorem 1 (Samuel-Cahn, 1984) There exists
a threshold strategy such that the expected prize
of the gambler is at least half the expected
value of the maximum prize; moreover, one such
threshold strategy is the one where the probabil-
ity that the gambler receives no prize is exactly
1/2; moreover, the bound is invariant with re-
spect to the tie-breaking rule.

Theorem 1 is a prophet inequality: it suggest
that even though the gambler does not know the
realizations of the prizes in advance, he can still
do half as well as a prophet who does. Unlike
our the optimal (backwards induction) strategy
this prophet inequality provides substantive con-
clusions. Most obviously, it is a very simple
strategy. The result is clearly driven by trad-
ing off the probability of not stopping and re-
ceiving no prize with the probability of stopping
early with a suboptimal prize. The suggested
threshold strategy is also robust to the order of
the games and the precise distribution functions.
Notice that the order of the games makes no
difference in the determination of the threshold,
and if the distribution above or below the thresh-
old changes, nothing on the bound or suggested
strategy is affected. The invariance of the per-
formance bound to tie-breaking rule suggests the
bound can be applied to other related scenarios.
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PROOF OF THEOREM 1:

Define g; = F;(t) = Pr[v; <t] and y =
[1; ¢i to be the probability that the gambler re-
jects all prizes. The proof follows in three steps.
In terms of # and y, I get an upper bound on
the expected prophet’s payoff. Likewise, I get a
lower bound on expected gambler’s payoff. Fi-
nally, assuming that the F;s are continuous,! I
plug in y = 1/2 to obtain the result.

The prophet’s expected payoff is

P = E[max; v;] =t + E[max; (v; — 1)]
t+ E[max,- (v; — t)+]

(+> B[ - 1*]

where (v; — )T denotes max(v; — t, 0).

I will split the gambler’s payoff into two parts,
the contribution from the first ¢ units of the prize
and the contribution from the remaining v; — ¢
units of the prize. The first partis G; = (1—y)t.
To get a lower bound on the second part I con-
sider only the contribution from the no-tie case.
For any i, let £; be the event that all other prizes
j are below the threshold ¢ (but v; is uncon-
strained). The bound is:

G2>Z
/SR

The second line follows because y = []; gi <
I1 il = Pr[&;] and because the conditioned
variable (v; —#)™ is independent from the condi-
tioning event &;. Therefore, the gambler’s pay-
off is at least:

G>(1- )t+)(z
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Plugging in y = 1/2 gives the result. |
II. Single-item Auctions

I will start the discussion of approximation
in mechanism design with environments where
each agent’s private preference is single dimen-
sional, i.e., the agent has a single private value
for an abstract service. The most fundamental

IThe theorem is true, modulo a more sophisticated choice of
x . for discontinuous distributions; I omit the discussion neces-
sary to derive this more general result.
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example of such environment is that of a single-
item auction.

I briefly review the theory of optimal single-
item auctions as developed by Myerson (1981).
Each agent i is a risk-neutral quasi-linear utility
maximizers with value v; for service drawn in-
dependently from distribution F; (density func-
tion f;). Given the distribution, the virtual value
of agent i is with value v; is ¢;(v;) = v; —
%2 The virtual surplus of a mechanism is
the virtual value of its winner(s). The most im-
portant theorem in optimal auction theory relates
virtual surplus to revenue.

Theorem 2 (Myerson, 1981) In  Bayes-Nash
equilibrium, the expected virtual surplus and
expected revenue of an auction are equal.

Bayes-Nash equilibrium (BNE) requires that
an agent’s likelihood of service is monotone in
her value. If the virtual valuation functions are
monotone (i.e., the distributions are regular), the
point-wise maximization of virtual surplus satis-
fies this BNE monotonicity requirement. There-
fore, the revenue-optimal auction is the one that
serves the agent with the highest positive virtual
value. Moreover, when agent values are identi-
cally distributed, the virtual valuation functions
are identical, and this optimal auction is equiv-
alently the Vickrey auction with a reserve price
equal to ¢~ 1(0) (a.k.a., the monopoly price).

The simplicity of the optimal auction when
values are i.i.d. and regular should be noted
and contrasted to the complexity of the optimal
mechanism when values are non-i.i.d. or irreg-
ular. The Vickrey auction with reserve price
is simple and practical; furthermore, its vari-
ants are widely used in practice. When values
are non-i.i.d. the optimal auction is not reserve-
priced-based, instead it is parameterized by dis-
tinct virtual value function for each agent.

This complex mechanism does not arise in
practice, even in auction environments with ex-
plicit asymmetries. For example, in the eBay
auction buyers are distinguished by publicly-
observable “reputation”, the optimal auction is
likely to be a complex, asymmetric mechanism,
and nonetheless the eBay auction is essentially
the Vickrey auction with an (anonymous) re-
serve price. Fortunately, this auction is approxi-
mately optimal.
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Theorem 3 (Hartline and Roughgarden, 2009)

For regular distributions, the Vickrey auction
with an anonymous reserve is a 4-approximation
to the optimal single-item auction. >

With non-identical distributions it may be nat-
ural to use non-anonymous reserve prices. With
non-anonymous reserves the approximation fac-
tor can be improved and the result generalized
to allow for irregular distributions. A uniform
virtual pricing isp = (p1, .. ., pn) that satisfies
¢i(pi) = ¢j(p;) for all i and j. The follow-
ing theorem is an immediate consequence of the
prophet inequality (Theorem 1) in virtual-value
space with tie-breaking by “largest v;”.

Theorem 4 (Chawla et al., 2010a) The Vick-
rey auction with uniform virtual reserve prices
such that the item remains unsold with proba-
bility 1/2 is a 2-approximation to the optimal
single-item auction.

In contrast to the optimal auction for non-
identically distributed agent values, Vickrey
with non-anonymous reserve prices is param-
eterized by a single number for each agent.
These reserve prices are easy to solve for and
have an intuitive meaning. The revenue guar-
antee of these reserve prices is so robust that
the “Vickrey” part of the mechanism is unnec-
essary. Posting these reserve prices as take-it-
or-leave-it while-supplies-last offers is also a 2-
approximation (by the prophet inequality with
tie-breaking by “smallest p;”’). Therefore, com-
petition plays only a limited role in driving rev-
enue, the performance guarantee is robust to col-
lusion.

The extent to which these results hold beyond
single-item auctions is of interest. I will re-
fer to a mechanism for selling multiple identical
units to unit-demand buyers as a multi-unit auc-
tion. A natural extension of the uniform-virtual-
reserve auction generalizes to multi-unit settings
where it continues to be a 2-approximation. The
anonymous reserve result does not; an anony-
mous reserve cannot guarantee better than a
logarithmic (in the number of units) factor of
the optimal multi-unit auction revenue (Chawla
et al., 2007).

2This bound is not known to be tight, the true approximation
factor lies in [2,4]. Of course, when distributions are similar
then the performance can be much better than the (worst-case
over distributions) approximation guarantee.
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III. Multi-dimensional Environments

I now turn to environments where the agents’
preferences are multi-dimensional. E.g., a home
buyer may have a distinct value for different
houses on the market; an Internet user may have
distinct values for various qualities of service;
an advertiser on an Internet search engine may
value traffic for search phrase “mortgage” higher
than that for “loan”, etc.

For the objective of revenue, there are no gen-
eral descriptions of optimal mechanisms for en-
vironments with multi-dimensional agents. In
fact, Vincent and Manelli (2007) show that any
undominated mechanism is optimal for some
distribution over agent preferences. Essen-
tially, mechanisms for multi-dimensional en-
vironments are complex and optimizing over
them does not yield concise or intuitive de-
scriptions, nor does it yield practical mecha-
nisms. In contrast I will give simple descrip-
tions of approximately optimal mechanisms
for multi-dimensional preferences; furthermore,
these mechanisms are based on prices that are
easy to calculate.

I will focus on the example of pricing m items
to a single unit-demand consumer with value
v; for item i drawn independently from dis-
tribution F;. A revenue-optimal pricing p =
(p1, ..., pm) is such that when the agent buys
the item that generates the highest positive util-
ity, i.e., the j that maximizes v; — p;, the ex-
pected revenue of the seller is maximized.

Since there is no concise understanding of op-
timal pricings and their revenue, I will com-
pare the performance of a candidate pricing to
an upper bound on the optimal revenue. Com-
pare, as a thought experiment, our single-agent
multi-item pricing problem to the multi-agent
single-item auction problem of Section II. In
particular, keeping the distribution of the ith
agent (resp. item) in the auction (resp. pric-
ing) problem the same, which scenario generates
more revenue? Intuitively, and this is borne out
in the theory, the multi-agent auction problem
revenue-dominates the multi-item pricing prob-
lem (Chawla et al., 2007). Furthermore, the
analysis of Section II gives the optimal auction.

The prophet inequality (Theorem 1) with tie
breaking by “smallest p;” yields the following.



VOL. VOL NO. ISSUE

Theorem 5 (Chawla et al., 2010a) An item
pricing with constant ironed virtual price is a
2-approximation to the optimal item pricing.

There are a few important conclusions. First,
multi-dimensional unit-demand preferences are
similar to single-dimensional preferences. Sec-
ond, the multi-dimensional approximation prob-
lem can be reduced to a single-dimensional “op-
timize virtual price” search space. Finally, this
theorem can be generalized to multiple agents
(see Chawla et al., 2010a) and therefore one can
conclude that widely prevalent posted pricing
mechanisms are indeed approximately optimal.

Note that in the result above the agent’s val-
ues for distinct items are required to be inde-
pendent. Without this independence the multi-
agent single-item auction does not give a rea-
sonable upper bound on the optimal single-agent
multi-item pricing. Additionally, while I have
discussed only item pricings, optimal multi-
dimensional mechanisms may require random-
ization, e.g., in the form of “lottery pricings”
(Thanassoulis, 2004). Chawla et al. (2010b)
show that this benefit of lottery pricing over item
pricing is at most a constant factor (for indepen-
dent distributions).

IV. Prior-independent Environments

In this section I consider approximation in en-
vironments where designer does not know the
prior distribution. I will give an abbreviated mo-
tivation. I will briefly discuss non-parametric
implementation. Finally, I will describe results
showing that (a) only one sample from the dis-
tribution is necessary to design good mecha-
nisms and (b) that a prior-independent mecha-
nism could perform a small distributional analy-
sis on-the-fly as it is being run.

Where does the designer’s knowledge of the
prior come from? Perhaps market analysis:
then in a thin market, e.g., for space stations,
how accurate can this knowledge be? Perhaps
from historical transactions: then might agents
in the past game the system understanding that
their actions will affect future prices (cf., Coase,
1972)?

In many environments optimizing the mech-
anism for each specific scenario is impossible.
For example, eBay is the broker in many buyer-
seller exchanges in many rather distinct mar-
kets. Instead of optimizing the exchanges for
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each market, eBay has essentially one exchange
mechanism. This mechanism must perform well
in all markets.

The literature of non-parametric Bayes-Nash
virtual implementation shows that an ignorant
designer can implement essentially the same
outcome as an informed designer. Such a mech-
anism relies on agents making cross reports
about the other agents values using their own
beliefs (e.g. Maskin and Sjostrém, 2002); e.g.,
agents may be asked to report their entire distri-
butional knowledge. Besides being non-robust
(Bergemann and Morris, 2005) and impractical,
in a sense, this solution begs the question. In-
stead, I will focus on mechanisms that approx-
imate the informed designer’s optimal mecha-
nisms in dominant strategies.

Our example problem here will be a digital-
good environment. There are n identical units of
an item and n agents with identically distributed
values. I would like a prior-independent mech-
anism with expected revenue that approximates
the revenue of the optimal auction. Of course the
optimal mechanism here is to post the monopoly
price ¢~1(0) for the distribution (Section II);
this mechanism is not prior independent.

The Bulow-Klemperer (1996) Theorem states
that for i.i.d. regular distributions, the Vick-
rey auction on n + 1 agents revenue-dominates
the revenue-optimal single-item auction on n
agents. Dhangwatnotai et al. (2010) observe
that this “recruit another agent” suggestion is
essentially a prior-independent strategy. Un-
fortunately, for this approach to have any bite
in digital-good environments we would need to
double the size of the market (and refuse to serve
half of the agents). Dhangwatnotai et al. further
observe that an implication of the n = 1 case
of the Bulow-Klemperer Theorem is that with
a single agent: a random reserve from the dis-
tribution obtains at least half the revenue of the
optimal reserve. Consequently, a single sample
from the distribution is enough to get an approx-
imately optimal auction.

Lemma 1 (Dhangwatnotai et al., 2010)

When agents values are i.i.d. from a regular
distribution F, with a single sample r ~ F,
the digital good auction that posts price r is
a 2-approximation to the optimal digital-good
auction.
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To design approximately optimal mechanisms
without any prior information; as observed by
Goldberg et al. (2001), Segal (2003), and Baliga
and Vohra (2003); it is possible to use the re-
ports of some agents for market analysis on oth-
ers. For example, by the Bulow-Klemperer The-
orem, the mechanism that pairs the agents and
runs a Vickrey auction on each pair is a digital-
good 2-approximation. The Goldberg et al.
(2001) random sampling auction is only better,
i.e., it is a 2-approximation, for regular distribu-
tions when n = 2 and its approximation factor
approaches one in the limit (e.g. Segal, 2003).

Definition 1 The random sampling auction ran-
domly partitions the agents into two equal-sized
sets and independently offers the agents in each
set the monopoly price for the other set.

These approaches extend to limited supply,
position auctions (see, e.g., Varian, 2006), and
beyond. I conclude that a single sample from
the distribution is enough to get a good approxi-
mation in benign (i.e., regular distributions) en-
vironments, and that this sample can be obtained
on-the-fly as the mechanism is run.

Returning to the viewpoint that approximation
is a lens by which details can be distinguished
from salient features, the conclusion of this sec-
tion is that the prior is a detail and good, robust
mechanisms can be designed without it.
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