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ABSTRACT
We study auctions for a commodity in unlimited supply,
e.g., a digital good. In particular we consider three desirable
properties for auctions:

• Competitive: the auction achieves a constant fraction
of the optimal revenue even on worst case inputs.

• Truthful: any bidder’s best strategy is to bid the max-
imum value they are willing to pay.

• Envy-free: after the auction is run, no bidder would
be happier with the outcome of another bidder (for
unlimited supply auctions, this means that there is a
single sale price and goods are allocated to all bidders
willing to pay this price).

Our main result is to show that no constant-competitive
truthful auction is envy-free. We consider two relaxations
of these requirements, allowing the auction to be untruthful
with vanishingly small probability, and allowing the auction
to give non-envy-free outcomes with vanishingly small prob-
ability. Under both of these relaxations we get competitive
auctions.

1. INTRODUCTION
Consider an auction for multiple identical items where

each consumer desires exactly one item. A natural outcome
of such an auction is the one defined by a sale price such
that all consumers with bids above this price win and pay
the price and all consumers with bids below the price lose.
We call such outcomes envy-free because, for bids equal to
consumer utilities, no consumer would prefer another con-
sumer’s outcome. Envy-free auctions,1 auctions that always
produce envy-free outcomes, are natural and desirable for
consumer acceptance. While some auctions, such as the clas-
sical k-item Vickrey auction [12] and some optimal Bayesian

1We note that for the special case of auctions for a sin-
gle commodity, the envy-free property is also referred to as
uniform-price, single-priced, and non-discriminatory.
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auctions [3, 9] are envy-free, other auctions, in particular
profit-maximizing competitive auctions [7], are not. In this
paper we study compatibility of the envy-free property with
the desirable auction properties of truthfulness and worst
case profit maximization.

We consider the design of profit-maximizing auctions for
digital goods such as downloadable audio files and pay-per-
view television.2 Since the marginal cost of duplicating a
digital good is negligible and digital goods are freely dispos-
able, we can assume that the auctioneer has an unlimited
supply of items for sale. In this paper we are mostly inter-
ested in the good being sold is a mass-market commodity
and that it is desirable to sell many copies of it. Although
some of our results apply in a more general setting, thinking
about the mass-market case gives the right context for our
results. We assume that the bidders in the auction each have
a private utility value, the maximum value they are willing
to pay for the good. The auction takes as input bids from
each of the consumers and determines which bidders receive
a copy of the good and at what price. We assume that each
consumer bids so as to maximize their own personal welfare,
i.e., the difference between their utility value and the price
they must pay for the good. We follow a standard approach
from the field of mechanism design and study single round,
sealed bid auctions that are truthful,3 i.e., each bidder’s per-
sonal welfare is maximized when they bid their true utility
value.

When truthful mechanisms for a problem do not exist,
it is natural to look at relaxations of the requirement that
the mechanism be completely truthful. We adopt the no-
tion from [1] that an auction is truthful with probability 1− ε
if the probability that any bidder can benefit from a un-
truthful bid is bounded by ε. An auction is truthful with
high probability if ε tends to zero with some parameter in
the input, e.g., the number of winners in an optimal auc-
tion. For other solution concepts related to approximate or
probabilistic truthfulness, see for example [10, 11].

The previous work of [5, 6, 7] considered the design of
truthful auction mechanisms for maximizing the profit of
the seller under unknown market conditions. In contrast to
the traditional approach from economics to profit maximiza-
tion, which is to give an average case (Bayesian) analysis of
an auction that is endowed with prior knowledge of the dis-
tribution from which the bidders utility values are drawn,
these works analyze auctions in which the auctioneer has no

2In fact, these results apply to nonrival, or zero marginal
cost, goods.
3Also known as strategy-proof or incentive-compatible



a priori knowledge of bidder utility values.
To analyze uninformed auctions, Goldberg et al. [7] pro-

posed the use of worst case competitive analysis4 wherein
the performance of an uninformed auction is measured by
comparing it to the performance of an optimal auction that
is completely informed. In this setting they gave truthful
auctions that are competitive, i.e., that always obtain a con-
stant factor of the profit of an optimal informed auction.
This work was extended in [5, 6] to improve the constant fac-
tor using new auction design and analysis techniques. Our
analysis differs from that of Goldberg et al. in that we as-
sume that we are in the mass-market case and that it is
always desirable to sell many items.

Unfortunately, all known competitive auctions have the
property that a bidder in the auction may get rejected while
another bidder wins and pays a lower price than the first
bidder’s bid5. In this case, the first bidder would be envious
of the second bidder’s outcome. Thus, these auctions are
not envy-free.

There is a good reason why none of the constant-competitive
auctions considered to date have been envy-free. Our main
result, presented in Section 3, is that it is not possible to de-
sign an auction that is constant competitive, truthful, and
always has an envy-free outcome. We show that any auc-
tion that is always envy-free and truthful has a competitive
ratio of Ω(log n/ log log n), where n is the number of bids.
This bound is fairly tight: In Section 4 we give a truthful
envy-free auction that is O(log n)-competitive.

In light of this fundamental limitation, in Section 5 we
consider two approaches to the relaxation of our goals. The
first approach is to relax the envy-free requirement, requir-
ing envy-free outcomes with high probability but not al-
ways. Another approach, recently employed by Archer et
al. on a different auction mechanism design problem [1],
is to relax the truthfulness requirement by requiring only
that the auction be truthful with high probability. In both
cases, the probability is over random coin tosses made by the
randomized auction mechanism and not input. We present
two auctions that are constant competitive, one always al-
ways truthful but only probabilisticly envy-free, another al-
ways envy-free but only probabilisticly truthful. Both of
these auctions are based on the Consensus Revenue Esti-
mate (CORE) technique of [6].

Auctions that do not have the envy-free property are im-
practical selling mechanisms for markets where consumers
object to differential pricing [2]. For these applications, auc-
tions that are truthful and almost envy-free or envy-free and
almost truthful may be acceptable.

2. DEFINITIONS
We consider single-round, sealed-bid auctions for a set of

identical items available in unlimited supply.

Definition 1. A single-round, sealed-bid auction, A, is
one where:

1. Each bidder submits a bid, representing the maximum

4A technique borrowed from the analysis of on-line algo-
rithms where the performance of an on-line algorithm is
measured in comparison to that of an optimal off-line al-
gorithm.
5In addition some of these auctions sell to different bidders
at different prices; though, most of them can be adapted to
have a single sale price for winners.

amount they are willing to pay for an item. We denote
by b the vector of all submitted bids, i.e., the input.
The i-th component of b is bi, the bid submitted by
bidder i. We denote by n the number of bidders.

2. Given the bid vector b, the auctioneer computes an
output consisting of an allocation, x = (x1, . . . , xn),
and prices, p = (p1, . . . , pn). The allocation xi is an
indicator for bidder i’s receipt of the item (1 if bidder
i receives the item and 0 otherwise). If xi = 1, we
say that bidder i wins. Otherwise, bidder i loses, or is
rejected. The price, pi, is what bidder i pays the auc-
tioneer. We assume that 0 ≤ pi ≤ bi for all winning
bidders and that pi = 0 for all losing bidders (these are
the standard assumptions of no positive transfers and
voluntary participation. See, e.g., [8]).

3. The profit of the auction (or auctioneer) is A(b) =P
i pi.

We say that an auction is deterministic if the allocation
and prices are a deterministic function of the bid vector.
We say that the auction is randomized if the procedure by
which the auctioneer computes the allocation and prices is
randomized. Note that if the auction is randomized, the
profit of the auction, the output prices, and the allocation
are random variables.

We make the following assumptions about bidders:

• Each bidder has a private utility value representing the
true maximum they are willing to pay for an item. We
denote by ui bidder i’s utility value.

• Each bidder bids so as to maximize their profit, uixi−
pi.

• Bidders bid with full knowledge of the auctioneer’s
mechanism.

• Bidders do not collude.

Finally, we formally define the notion of truthfulness.

Definition 2. We say that a deterministic auction is
truthful if, for each bidder i and any choice of bid values
for all other bidders, bidder i’s profit is maximized by bid-
ding their utility value, i.e., by setting bi = ui. A random-
ized auction is truthful if it is a probability distribution over
truthful deterministic auctions.

We will be considering truthful auctions only until Sec-
tion 5.2, where we define and discuss auctions that are truth-
ful with high probability. As bidding ui is a dominant strat-
egy for bidder i in a truthful auction, for the remainder of
this paper, we assume that bi = ui (even for auctions that
are only truthful with high probability).

The notion of a bid-independent auction formalizes the
observation that in a truthful auction the price a bidder
pays if they win should be independent of their bid value.

Definition 3. [7] Let f be a function from bid vectors to
prices (non-negative real numbers). The deterministic bid-
independent auction defined by f is Af . For each bidder
i:

1. ti ← f(b−i).
(where b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn))



2. If ti < bi, set xi ← 1 and pi ← ti. (Bidder i wins.)

3. If ti > bi set xi = pi = 0. (In this case, we say that
bidder i is rejected.)

4. Otherwise, if ti = bi the auction can either accept the
bid at price ti or reject it.

A randomized bid-independent auction is a probability dis-
tribution over deterministic bid-independent auctions.

For example, by setting f = max for all i and breaking ties
arbitrarily, we obtain the 1-item Vickrey auction, i.e., the
highest bidder wins at the second highest price. Similarly,
if f is the function that returns the k-th highest bid, we get
the k-item Vickrey auction [12].

For auctions as defined above, we have the following re-
sult:

Theorem 1. [5] An auction is truthful if and only if it is
equivalent to a bid-independent auction.

We now formalize our notion of an envy-free auction.

Definition 4. The outcome of an auction is envy-free if
there is a price, t, such that every winning bidder pays t, all
bidders with bid values greater than t win, and all bidders
with values lower than t lose. Bidders with bid values equal
to t may either win or lose. Call such an outcome a t-envy-
free outcome.

From this definition it is clear that envy-free outcomes
are completely specified by a number t and a description of
whether tying bids, bids with bi = t, win or lose. We note
that our lower bounds will assume the more general case
that tying bids can be treated differently. This is consistent
with envy-free as such bidders have zero profit if they win
and zero profit if they lose and are therefore assumed to
have no preference over the two possible outcomes. For our
upper bounds we will give auctions that satisfy the stronger
condition that tying bidders are treated the same way, either
they all win or they all lose. In all of our analyses it will be
largely irrelevant how tying bids are treated; therefore, the
relevant characteristic of the outcome is the value t.

We will be gauging the performance of a envy-free auc-
tion using competitive analysis. Following [7] we compare
our auction profit to the profit of an optimal omniscient auc-
tion, one that has perfect knowledge of the bidder values in
advance. As we are interested in the mass-market case, i.e.,
when the number of winners, m, in the optimal omniscient
auction is large, we will be looking for a competitive ratio
β(m) to be a non-increasing function of m.

Definition 5. The optimal single price omniscient auc-
tion F is defined as follows: Let b be a bid vector, and let vi

be the i-th largest bid in the vector b. Auction F on input
b determines the value k such that kvk is maximized. All
bidders with bi ≥ vk win at price vk; all remaining bidders
lose. The profit of F on input b is thus

F(b) = max
k

kvk.

In this paper we will be using the following notion of com-
petitiveness.

Definition 6. We say that auction, A, is β(m)-competitive
for mass-markets if, for all bid vectors b such that F sells
at least m items, we have

E[A(b)] ≥ F(b)

β(m)
.

As always in this paper, the expectation is over the random-
ized choices of the auction.

As shown in [7], if the optimal solution of F is to sell to
only one bidder, then it may be impossible for an auction to
be β(1) competitive with β(1) bounded by a constant. Thus,
our goal will be to design an auction with low constant β(2)
and limm→∞ β(m) = 1 for m > 2. This framework is not
as strong as the worst case framework of [5], which allows
measurement of auction performance even on b where F
sells only one item. While it is easy to modify our definition
to generalize that of [5]; we do not do so here because the
more general definition is not necessary for our analysis of
the mass-market case.

However, the weaker framework allows a more precise
characterization of auction performance in the more com-
mon case.

3. LOWER BOUND
In this section, we show that no envy-free auction can be

o(log n/ log log n) competitive.
For a particular input b, an auction that always yields

an envy-free outcome induces a probability distribution on
values t such that the outcome is t-envy-free. Let t(b) be
the random variable for the price used by a auction with
envy-free outcomes and define pb(x) as

pb(x) = Pr[t(b) ≤ x] .

We begin by showing that any auction with envy-free out-
comes has the property that the distribution of t(b) on val-
ues less than x is independent of all bids with values above
x.

Lemma 2. Let A be any truthful envy-free auction A with
t and pb defined as above. For all bids b, b′, values x, and
subsets of bidders S such that all i ∈ S have bi > x and
b′i > x, and i 6∈ S have bi = b′i, t(b) and t(b′) have the same
distribution on values at least x. That is,

∀y ≤ x, pb(y) = pb′(y).

Proof. Assume for a contradiction that there exists b
and b′ differing on some subset S (as defined above) such
that t(b) and t(b′) do not have the same distribution on
values at most x. Let S = {i1, . . . , ik} and Sj = {i` : ` ≤
j}. Let b(j) be equal to b except for bSj = b′Sj

. Note that

b(0) = b and b(k) = b′. It must be that for some j∗ there
exists y ≤ x such that pb(j∗−1)(y) 6= pb(j∗)(y). However this
violates truthfulness as the distribution of prices for bidder
ij∗ when the bids are b(j∗) is not bid-independent: if bidder
ij∗ changes their bid to b′ij∗ they have a different distribution

of prices. An auction that is not bid-independent is not
truthful (Theorem 1).

Theorem 3. No truthful envy-free auction is β(m)-competitive
with β(m) ∈ O(log n

m
/ log log n

m
). In particular, if m is a

constant, e.g., m = 2, we have β(m) ∈ O(log n/ log log n).



Proof. For any integer d ≥ 2, we show that no envy-free
auction, A, is d/2-competitive on an input b of size n = mdd

that has at least m winners. Since d > log(n/m)/ log log(n/m),
this gives the theorem. Assume for a contradiction that
some auction, A, is d/2-competitive.

Let b∗ be the bid vector with n/dk−n/dk+1 bids at value

nk for 0 ≤ k < d and m bids at nd. Let b(k) be identical to
b∗ except for the largest n/dk+1 bids, which are decreased
to nk + ε:

b
(k)
i =

(
nk + ε if i ≤ n/dk+1

b∗i otherwise.

There are two observations about these bid vectors that
will be useful.

• F(b(k)) = nk+1/dk as the highest n/dk bidders win at
price nk.

• A on b(k+1) may place probability mass on prices at
nk or below. An upper bound on the contribution of
this mass to the expected revenue of A is F(b(k)) =
nk+1/dk.

Define t(b) and pb(x) for A as above. We will show by
induction that A has

pb(k)(n
k) ≥ k + 1/d.

This implies that for b∗ we have

pb∗(n
d−1) = 1.

This is a contradiction, because if this were the case, A
would have expected revenue at most nd/dd−1 and could
not be 2d-competitive with F(b∗) = mnd.

We will be using the fact that A is envy-free by invoking
Lemma 2 in the inductive step to guarantee that pb(k+1)(nk) =

pb(k)(nk) ≤ k + 1/d.
For the base case, we show that pb(0)(1) ≥ 1/d. Note that

b(0) is defined as:

b
(0)
i =

(
1 + ε if i ≤ n/d

1 otherwise.

On this input F is n and as d/2-competitive auction, A
must have expected revenue of at least 2n/d. Suppose that
A has pb(0)(1) = p. Given this constraint, the best revenue
is achieved by putting all probability mass p on 1 and the
remaining probability mass 1 − p on 1 + ε. This gives the
following bound on the expected revenue of A:

E
h
A(b(0))

i
≤ np + (1− p)(1 + ε)(n/d).

This is an increasing function of p ∈ [0, 1]. For p = 1/d we
have the following:

E
h
A(b(0))

i
≤ n/d + (1− 1/d)(1 + ε)(n/d).

For ε chosen such that (1 + ε)(1− 1/d) = 1 we have

E
h
A(b(0))

i
≤ 2n/d.

Therefore p must be at least 1/d forA to be d/2-competitive.

As the inductive step, assume that pb(k−1)(nk−1) ≥ k/d

and consider running A on b(k). By Lemma 2 and the def-
inition of b(k), pb(k−1)(nk−1) = pb(k)(nk). Therefore, the
probability mass remaining to be placed on values strictly
larger than nk−1 is P = 1− pb(k)(nk−1) < 1− k/d. A must

place p of this remaining mass on values at most nk and
the rest on higher values. Note that by definition, b(k) has
n/dk bids at value strictly greater than nk−1: it has n/dk+1

of them at nk + ε and the remaining at nk.
Thus, the most revenue can be obtained by placing all

of p on nk and all of the P − p remaining mass on nk + ε.
As discussed above, the expected revenue due to probability
mass on values at most nk−1 is at most nk/dk−1. Thus, A’s
expected revenue is bounded as follows:

E
h
A(b(k))

i
≤ pnkn/dk + (P − p)(nk + ε)n/dk+1 + nk/dk−1

This is an increasing function of p. For p = 1/d we have

E
h
A(b(k))

i
≤ nkn/dk+1 + (P − p)(nk + ε)n/dk+1 + nk/dk−1.

Routine manipulation using the fact d ≥ 2 shows that

E
h
A(b(k))

i
≤ 2nk+1/dk+1.

F of b(k) is nk+1/dk, thus p is at least 1/d. This gives the
inductive claim that pb(k)(nk) ≥ k + 1/d.

4. A LOG-COMPETITIVE, TRUTHFUL, ENVY-
FREE AUCTION

We now give an auction that is truthful, envy-free, and
has β(m) ∈ Θ(log n) for all m ≥ 2.

Theorem 4. There exists a truthful auction that is Θ(log n)-
competitive.

Proof. First consider the k-item Vickrey auction that
sells to the k highest bidders at the k+1st highest bid value.
This auction is envy-free all winners pay the k + 1st price
and all losers bid at most the k + 1st price.6

Our (2 log n)-competitive auction picks i uniformly at ran-
dom from [0, . . . , blog nc] and runs the 2i-item Vickrey auc-
tion. The worst-case value of β(m) for this auction occurs
on b with n−m bids at value 0 and m bids at distinct values
in [v, v+ε] for any positive v and ε. Note that the 2i-Vickrey
auction gets revenue approximately 2iv if 2i < m and zero
otherwise. Since we choose each auction with probability
1/ log n, our expected revenue on b (with m winners in F)
is at least:

E[R] = v
log n

dlog me−1X
i=0

2i = v
log n

“
2dlog me − 1

”
≥ v

log n
(m− 1) ≥ m−1

m log n
F(b) ≥ F(b)

2 log n
.

6In place of k-Vickrey we can use a slight modification of
k-Vickrey that does not arbitrarily break ties in the case
that there are more than one bid value tied with the k +1st
price. This version of Vickrey may sell more than k items.
For example, consider the auction for k = 2 on (4, 2, 2, 1).
The the first three bidders win the auction and pay 2 each.



5. RELAXATIONS
In Section 3, we showed that no truthful, envy-free auction

can be better than log n/ log log n-competitive. Nonetheless,
envy-free outcomes are still a desirable goal. In this section,
we present two auctions that come close to being compet-
itive, truthful, and envy-free at the same time. The first
auction is truthful, but is only envy-free with high probabil-
ity; the second auction is envy-free, but only truthful with
high probability.

5.1 CORE and envy-free outcomes
In this section, we relax the condition that the auction

outcome is always envy-free and instead consider auctions
that are truthful but only envy-free with high probabil-
ity. One such auction is the Consensus Revenue Estimate
(CORE) auction from [6]. We review the mass-market ver-
sion of the CORE auction and discuss its properties.

The CORE auction combines two general ideas that have
proven to be successful for designing competitive mecha-
nisms [4, 5]. The first is that of a profit extractor. A profit
extractor is a truthful parameterized mechanism that, given
a target profit, extracts that profit from the bidders if it is
possible. For basic auctions the maximum extractable profit
is the same as the profit of the optimal omniscient auction
F . The profit extraction mechanism for basic auctions is
the following special case of the Moulin-Shenker cost shar-
ing mechanism [8]:

CostShareR: Given bids b, find the largest k such
that the highest k bidders can equally share the
cost R. Charge each of these bidders R/k. If no
k exists, no bidders win.

This mechanism has the following properties:

• It is truthful [8].

• It has profit R if R ≤ F (otherwise there are no win-
ners).

• It is envy-free.

To see the last point, note that by definition all winners
pay the same price R/k and furthermore, all other bidders
bid less than R/k (otherwise a larger set of bidders could
share the cost evenly).

The second technique for the design of competitive mecha-
nisms is that of using a bid-independent consensus estimate.
Note that Theorem 1 and the truthfulness of CostShareR

imply that it is implemented by some bid-independent func-
tion, csR. That is, the bid-independent auction defined by
f(b−i) = csR(b−i) is exactly CostShareR. Consider the
auction, A, parameterized by function r(·) that is defined
by bid-independent function f(b−i) = csr(b−i)(b−i). Note
that if r is a consensus, i.e., r(b−i) = R for all i, then A is
identically CostShareR.

Recall that CostShareR gives profit R in the case that the
profit R is achievable, i.e., R ≤ F . The consensus estimate
technique is to construct an r(·) that gives an estimate of F
and is constant on b−i for all i (i.e., it is a consensus). For
the case that F(b−i) is a constant fraction of F(b), i.e.,

1
ρ
F(b) ≤ F(b−i) ≤ F(b),

it is possible to pick an r(·) from a distribution of functions
that are good estimates of F such that with high probability
(in the choice of r), r is a consensus.

Parameterized by constant c with c > ρ, we choose r(·)
as follows. For U be uniformly distributed on [0, 1], define
r(b) is F(b) rounded down to nearest ci+u for integer i.

Lemma 5. [6] For ρ < c and b with F(b−i) ∈ [F(b)/ρ,F(b)],
the probability that r is a consensus is 1− logc ρ.

Combining the consensus estimate solution with the profit
extractor, CostShareR, we get the following auction:

Definition 7 (COREc). For constant c,

• pick U uniformly at random from [0, 1], and

• let function r(·) be F(·) rounded down to nearest ci+U

for integer i.

The COREc auction is defined by bid-independent function
f(b−i) = csr(b−i)(b−i).

We say that COREc achieves a consensus at value R if
r(b−i) = R for all i. In this case, by definition, COREc’s
outcome is identical to that of CostShareR. Thus, this out-
come of COREc is envy-free.

Lemma 6. If COREc achieves consensus then its outcome
is envy-free.

The auction COREc is constant-competitive:

Lemma 7. [6] For ρ < c and b with F(b−i) ∈ [F(b)/ρ,F(b)],
the expected revenue of COREc is

F(b)

ln c

„
1

ρ
− 1

c

«
.

For mass-market applications, removing one bid does not
change the maximum extractable profit by much. If the
optimal mechanism, F , sells m items then removing any
bid can change the optimal by at most a factor of 1/ρ =
(m− 1)/m. Plugging this into Lemma 5 and using the fact
that the Taylor expansion of log(1+1/x) = Θ(1/x), we have:

Corollary 8. On b with F selling m ≥ 2 items, COREc

is envy-free (i.e., achieves a consensus) with probability at
least

1− logc
m

m−1
= 1−Θ(1/m).

Corollary 9. When F sells m ≥ 2 items, the COREc

auction is β(m)-competitive with

β(m) =
ln c

1− 1
c
− 1

m

.

In the limit COREc is limm→∞ β(m) = c ln c/(c − 1) com-
petitive.

The choice of c in the COREc auction is crucial. In order
for consensus to work on bids b on which F sells at least
m items, we need c > m/(m− 1). Otherwise there exists a
set of bids such that no consensus is achievable. If we set
c = 1 + 1/

√
m, then β(m)→ 1 as m→∞.

As noted in [6], in the case that CORE does not achieve a
consensus, there are two sale prices, and the auction is not
envy-free. For mass markets, such as television broadcasts
where the number of viewers is in hunderds of thousands,
the probability of a non-envy-free outcome is very small.



5.2 Truthful with high probability
Another approach to deal with the non-existence of truth-

ful competitive auctions that always have envy-free out-
comes is to relax the requirement that the auction always
be truthful. Next we define a probabilistically truthful mech-
anism. Let m be the number of winners in the optimal
auction on a given set of bids. We will be looking for a
mechanism with good probabilistically truthful properties
in terms of m.

Definition 8. [1] An auction is truthful with probabil-
ity 1 − ε if the probability that any bidder can benefit from
an untruthful bid is at most ε. An auction is truthful with
high probability if ε→ 0 as m→∞, where m is the number
of winners in the optimal auction F .

Definition 9 (CORE′c). For constant c and input b,
CORE′c is:

1. Pick U uniformly at random from [0, 1].

2. Let function r(·) be F(·) rounded down to nearest ci+U

for integer i.

3. Run CostSharer(b) on b.

Lemma 10. For bids b and choice of U fixed identically
for both COREc and CORE′c, if COREc is a consensus then
CORE′c is truthful.

Proof. Let R = r(b). To prove the lemma, we must
show that for U such that COREc is a consensus, no bidder
can benefit from bidding any value other than their true
utility value. First we note that CORE′c runs CostSharer(b)

on b. Consider the effect of bidder i changing their bid to
b′i resulting in bid vector b′. Bidder i cannot benefit from
bidding any b′i such r(b′) = r(b) = R because CostShareR is
truthful and therefore bidder i’s best strategy in mechanism
CostShareR is to bid bi.

The fact that COREc is a consensus for this value of U
means that r(b−i) = r(b) = R for all i. Again consider b′

identical to b except for bidder i bidding b′i. For b′i ∈ [0, bi],
since r(·) is a monotonically increasing function of the bids,
r(b−i) = r(b′) = r(b) = R. Thus, no bidder can lower the
the value of r(b).

We now consider bidder i raising their bid enough to
make r(b′) > r(b). Although we do not go into the de-
tails here, it is not difficult to show that csR(b−i) (the bid-
independent function implementing CostShareR), for b−i

fixed, is a monotone increasing function of R. Thus, if bid-
der i raises their bid to raise R, the price offered them in
the by csR′ is going to be higher than for csR and therefore,
bidder i would be worse off.

The following corollary follows from the fact above lemma
and Corollary 8.

Corollary 11. On b with F selling m ≥ 2 items, CORE′c
is truthful with probability

1− logc
m

m−1
= 1−Θ(1/m).

We now consider the performance of CORE′c. We can
view the use of r(·) in CORE′c as a consensus problem with
ρ = 1 since the same value, r(b), is used for all bidders.
This allows us to make use of Lemma 7 directly to obtain
the following corollary.

Corollary 12. The expected revenue of CORE′c is

F(b)

ln c

„
1− 1

c

«
.

Conclusions and Extensions
The CORE technique of computing a consensus revenue es-
timate and using a profit extractor to obtain the estimated
revenue has several notable properties. First note that for
the mass-market sale of a good, digital or otherwise, we
would expect that the result of the sale should not depend
on the actions of any one bidder. In this respect, the out-
come of the CORE auction fits with our expectations: with
high probability the results of the CORE auction are not
affected by any one bidder.

The second observation is that, with high probability, the
CORE auction is equivalent to the profit extraction mech-
anism that it is based on, which is a special case of the
Moulin-Shenker [8] cost sharing mechanism. We exploited
the fact that the latter mechanism is envy-free. The mecha-
nism is also group strategy-proof: no coalition of bidders can
collude by bidding untruthfully so as some members of the
coalition strictly benefit without causing other members of
the coalition to be strictly worse off. As such, both COREc

and CORE′c have collusion resistant properties. We are cur-
rently formalizing the extent of these properties.

In this paper we consider truthfulness with high probabil-
ity to get an auction that is both envy-free and competitive.
In our analysis we make the assumption that bidders will
still reveal their true utility values even though the mecha-
nism is only truthful with high probability. In the case where
each bidder is perfectly informed as to the bidding strategies
and utility values of other bidders, any non-truthful auction
would fail to obtain true bids, as each bidder could calcu-
late their own optimum bid. However, in the presence of
uncertainty about the strategies or utility values, this calcu-
lation is no longer straight-forward. A bidder in an auction
that is truthful with high probability is faced with a choice.
The bidder can bid truthfully, which with high probability
is an optimal strategy. Alternatively, the bidder could try
to gain by manipulating their bid on the basis of available
information. If information is incomplete, the latter may be
impossible.

More generally, we have shown that one can get stronger
results by relaxing the notion of truthfulness. Relaxed truth-
fulness is an interesting direction for future research. For ex-
ample, is it possible to get better competitive ratios under
a reasonable relaxation? Which relaxations are reasonable?
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