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Abstract criminatory pricing. The first is using public information

about each consumer in the calculation of offer prices. Such
We use techniques from sample-complexity in machinepricing is the de facto standard, for example, in pricing au-
learning to reduce problems of incentive-compatible mech-tomobile insurance. The second is to distinguish between
anism design to standard algorithmic questions, for a wide the products for sale in a way that causes consumers to have
variety of revenue-maximizing pricing problems. Our re- different preferences for the products. A single price for
ductions imply that for these problems, given an optimal (or each product, then, effectively charges consumers diftere
(B-approximation) algorithm for the standard algorithmic prices when they choose different products. This is stahdar
problem, we can convertitinto@ + €)-approximation (or procedure in the sale of all sorts of commodities; common
B(1+¢)-approximation) for the incentive-compatible mech- examples include computer software, computer hardware,
anism design problem, so long as the number of bidders isand airline tickets. When either of these types of discrim-
sufficiently large as a function of an appropriate measure of inatory pricing is possible, auctions that approximate the
complexity of the comparison class of solutions. We applyoptimal single price sale, e.g., [11, 4], may no longer be
these results to the problem of auctioning a digital good, near-optimal.
the attribute auctiorproblem, and to the problem of item- We consider the design of pricing mechanisms in a game
pricing in unlimited-supply combinatorial auctions. From theoretic setting where the consumers (a.k.a., agentslor bi
a learning perspective, these settings present several cha ders) may choose to dishonestly report their preferences
lenges: in particular, the loss function is discontinuowmsla if it might benefit them. We will adopt the now standard
asymmetric, and the range of bidders’ valuations may be paradigm of considering onincentive compatiblenecha-
large. nisms, i.e., ones explicitly designed so that each bidder ha
a dominant strategy of reporting their true preferences.
Our main result is to use techniques from sample-
1. Introduction complexity in machine learning theory to reduce the de-
sign of revenue-maximizing incentive-compatible mecha-

A common goal in the design of many pricing mecha- nisms to sf[andard.algorithmic questiong. When the numb.er
nisms is that of obtaining more profit than is possible from ©f @gents is sufficiently large as a function of an appropri-
a single sale price. There are two prevalent practices in dis &€ measure of complexity of the class of solutions being
compared to, this reduction loses only & ¢ factor in so-

*The full version of this paper is available as Technical ReMU- lution quality; that is, an algorithm (o8-approximation)
CS-05-143. for the standard algorithmic problem can be converted to a
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good (a good of unlimited supply with zero marginal solved for the given bidders), no matter how compli-

cost) andn bidders, where each biddérhas some cated those bidders’ valuations are. In the unit-demand
valuationv; between 1 and. Our goal is to sell our case, when each bidder wants at most one item (such
good so as to make profit comparable to the best single as in pricing different versions of the same software
price: the priceo maximizingp x |{i : v; > p}|. or pricing airline tickets), our bounds give(a + ¢)-

approximation when the optimal revenue is large com-
pared toO(hm/e?) which improves by roughly a fac-
tor of m over the results of [12].

For this problem, Goldberg et al. [11] give a simple

auction based on random sampling and show that it
gives near 6-approximation so long as the optimal rev-
enue is large compared fa! We analyze a slight ~The basic reduction we apply to solve these auction prob-

variant and show (Theorem 6) that it is(a + ¢)- lems is as follows. Given an algorithed (exact or ap-
approximation so long as the optimal revenue is large Proximate) for the non-incentive-compatible pricing prob
compared ta% log(1/e). lem (finding the optimal pricing function in class for a

given set of bidders) and given a set of bidd&rave will
Attribute Auctions. In many generalizations of the digital-  split bidders randomly into two sef§ andS, run the algo-
good auction, the bidders are not a priori indistinguish- rithm separately on each set (perhaps adding an additional
able; instead, publicly known information about bid- penalty term to the objective to penalize solutions that are
ders may allow (or even require) differential treatment. too “complex” according to some measure), and then apply
For example, the motion picture industry uses region the solution found ot%; to S and the solution found of;
encodings so that they can charge different prices forto S;. Sample-complexity techniques from machine learn-
DVDs sold in different markets. ing theory can then give a guarantee on the quality of the
results if the number of bidders is sufficiently large com-
pared to an appropriate measure of the complexity of the
class of possible solutions. From a learning perspectiee, t
mechanism-design setting presents a number of technical
challenges: in particular, the loss function is discorinsi
and asymmetric, and the range of bid values may be large.
In addition to the generic reduction, we also give spe-
cific analyses for several of the above problems, using their
structure to yield better bounds on the number of bidders
needed to achieve a desired approximation factor.

This introduces the natural question of how to use
the distinguishing features of consumers to price-
discriminate to the maximum benefit of the seller. We
consider the following abstraction of these situations.
The bidders in arattribute auctionare not indistin-
guishable but instead have a set of publicly-kn@atmn
tributesand the goal is to achieve revenue comparable
to the best pricing function over these attributes from
some available classg;, of pricing functions. For ex-
ample, [3] considers the special case of 1-dimensional

attributes and a comparison clagsf piece-wise con- Related work: Several papers [4, 3] have applied ma-

stant f‘%”C“O”S- Plgce-W|se_ constant ]‘unct|ons divide chine learning techniques to mechanism design in the con-
the attribute space |r_1to cont_lgupus regions (a'k'a" Mar-ext of online auctions. The online setting is more difficult
kets) _and charge asingle price n each. We give bo_undsthan the “batch” setting we consider, but the flip-side i tha
for this setting more generally, including a generaliza- as a result, that work only applies to quite simple mecha-
tign of the class of functions considered in [3] to higher nism design settings where the clasef comparison func-
dimensions. tions has small size and can be easily listed.

Item-priging in combina.torif_;ll auctions.. This problem is Structure of this paper: We begin by defining our gen-
a d|ﬁereqt g(_eneral|zat|on of the f!rst problgm above, eral setting (Section 2) and giving a basic reduction at this
and _StUd'ed,'n [12, 15]. The sgtt!ng here is we have level of generality (Section 3). We then proceed to give
m different items, e_ach in unlimited s_upply (ike a5 tighter analysis for the basic auction of a digital good
supermarket), and b|_dders haYe valuationssubsets (Section 4) and describe in Section 5 how the complexity
of items. Our goal is to achieve revenue nearly as a5 res of Section 3 can be instantiated for the case of at-
large as the t.’eSt sale th"?‘t uses item prices (ass,"gn?ribute auctions. We consider item-pricing in combinabri
a separate price to each item), a natural comparisony, ctions in Section 6 and the multicast pricing problem in

. = 2 2 .
clas_s._ Our result_s imply thad(hm?/e) bidders aré  gection 7. We give our conclusions and some outstanding
sufficient to achieve revenue close to the optimum research directions in Section 8

item-pricing (assuming the algorithmic problem can be

2. Definitions

1This problem has also been considered in a framework wherattb-

tion’s performance is compared to the profit obtained froendptimal sale . . . . .
price that results in a sale af least twoitems [7]. In this context the best We will be considering mechanism design problems of

known auction isl 3/4-competitive [14]. the following general form. We have a sgtof n bidders,



and we assume that each bidddras some private infor-
mation priv; (like how much they are willing to pay for
a digital good), as well as public informatigrub, (such
as their location in a network). The game itself will be
defined by an abstract space of legé#fiers (like an offer
to sell a good at $17) together with a mappijnghat de-
fines how much profit a given offer yields from a given bid-

2.1. Examples

Auction of digital goods to indistinguishable bidders.
As described in the introduction, in this setting the bid-
ders have no public information (equivalently, all the bid-
ders have theamepublic informationpub) and the private
information of biddet is exactly its valuatiom; for the dig-

der. For example, in the case of auctioning a digital good, ital good, which is a real number betweeandh. Here, a

p(“offer $17”, priv,) = 17 if priv, > 17 and 0 otherwise.

natural comparison clags = {g,} is the class of all func-

We can think of as defining the assumption about how bid- tions that offer a single pricg, andp is a function defined
ders behave as a function of their private values. The stan-by p(p, priv,) = p if p < priv, andp(p, priv;,) = 0 other-
dard assumption in incentive compatible mechanism designwise.

is that bidders prefer the outcome that maximizes thigir
ity which is defined as the difference between tivailua-

Attribute Auctions.  This is the same as the setting above

tion for the outcome (as specified by their preferences) andexcept now each bidderis associated a publiattribute

the payment they are required to make.

Definition 1 A comparison classg, of pricing functions
is a set of functiong; that map the public information
of a bidder to an offer. Therofit of a functiong is
> p(g(puby), priv;). Note that we are implicitly consider-
ing onlyunlimited supplymechanism design problems, be-
cause the profit from bidderdoes not depend on whethger
received profit from other bidders.

Given a comparison clasg, thealgorithm desigrproblem
is: given both the public and private informationsh find
theg € G of highest total profiOPTg. Some of the prob-

pub € X whereX is theattribute space We viewX as
an abstract space, but one can envisionRgdor example.

G is then a class of pricing functions frofi to R, such
as all linear functions or all functions that partitidhinto

k markets (say based on distancektoluster centers) and
offer a different price in each. The mappipgs a function
from R x [1,h] to [0, k] defined (as in the case of indis-
tinguishable bidders) by(p, priv;) = p if p < priv, and
p(p, priv;) = 0 otherwise. We will give analyses of several
interesting classes of comparison functions in Section 5.

Combinatorial Auctions. Here we have a set of m dis-

lems we consider will also have costs for various functions finct items, each in unlimited supply. Each consumer has

g: for instance, in multicast pricing, a comparison function @ Private valuatior; (s)

for each bundless C J of items,

g consists of both a tree and a proposed price at each nodéVhich measures how much receiving bunelevould be
and its cost is the cost of the tree. In this case, we shouldVerth to the consumei. The private information of bid-

think of p as arevenuefunction, and the algorithm design
problem will be to find they of highest revenue minus cost.

deri can be described by a vector of all its valuations on
subsets of/ (for simplicity, we assume bidders are indis-

In our reductions, we may also want to perform “structural finguishable, i.e., no public information). A natural das

risk minimization”, which adds additional fake penalties t

different functionsy based on some measure of their com-
plexity, in which case we will need to assume we have an

algorithm that optimizes revenue minus penalty.

We now need to define what we mean by an incentive
compatible mechanism. An incentive-compatible mecha-

nism is a function that takes in the public information of all
the bidders, plus the private information of all bidders
ceptthe given biddet# and outputs an offer. Our goal will

of comparison function§ (studied in [15]) is the class of
functions that assign a separate price to each item, suth tha
the price of a bundle is just the sum of the prices of the items
in it (called item-pricing). The mappingis then defined by
assuming bidders will buy the bundle (if any) with largest
positive gap between its value to them and its total cost.

3. Generic reductions

We are interested in reducing incentive-compatible

be to design such a mechanism whose total profit is nearly,achanism design to the standard algorithm design prob-
as large as the profit of the best function in comparison classiq 1, our reductions will be based on random sampling. Let

G. Note that typically our mechanisms will not actually be-

long to G, such as offering one price to some subset of bid-

ders and another price to another even if our cfass the
set of all single price functions.

One final point at this level of generality: we will assume
that we are given an upper bouhdn the value op; that
is, no individual bidder can influence profit by more thian
This term will come into our sample-complexity bounds.

A be an algorithm for the (non incentive-compatible) prob-
lem of optimizing ovelg. The simplest mechanism that we
consider, which we call RSOR{; 4y (Random Sampling
Optimal Pricing Function), is the following generalizatio
of the random sampling digital-goods auction from [11]:

1. Randomly split the bidders into two groufisandSs,
flipping a fair coin for each bidder.



2. Run A to determine the best (or approximately best)
functiong; € G over Sy, and similarly the best (or
approximately best), € G overSs.

3. Finally, applyg; to Sz andgs to S;.

We will also consider various more refined versions of
RSOPFg 4, that discretizeG or perform some type of
structural risk minimizatior{in which case we will need to
assumeA can optimize over the modifications madeip

3.1. The Basic Analysis

In order to simplify notation, for a given setting (de-
fined by p and G), defineg(i) for a pricing functiong
and bidderi to be the profit made by oni; i.e., g(i) =
p(g(puby), priv,). Similarly, for a set of bidders’ C S,
letg(S") = > ,cs 9(i). S0,0PT¢g = maxycg g(S). Note
that if g1 (i) = g2(¢) for all ¢ € S then they are equivalent
from the point of view of the auction; we will usg| to
denote the number afifferentsuch functions irg.

The following lemma is key to our analysis. Note that
using Hoeffding bounds would produce &h term in the
exponent; by applying McDiarmid’s inequality instead we
only need to lose a factor @¥(h).

Lemma 1 Consider a pricing functioy and a profit level
p. If we randomly partitionS into S; and.Ss, then the prob-
ability that |g(S1) — g(S2)| > emax[g(S),p] is at most
2e—€p/(2h)

Proof: LetYy,...,Y, be ii.d random variables such that
Y; is 1 with probability 1/2 and Y; is 2 with probabil-
ity 1/2, and that define the partition ¢ into S; and Ss.
Let t(y1,....yn) = > 4,.—1 9(4). SO, as a random vari-
able,g(S1) = t(Y1,...,Y,) and clearlyE[t(Y7, ..., Y,)] =
g(S5)/2. Assume first thay(S) > p. From the McDi-
armid concentration inequality (see Appendix A) we get:
Pr{|g(S1) — 9(5)/2| > §9(S)} < 2e7<9(5)/CM)_Thisis
true since by plugging; = ¢(¢) in Theorem 15, we get:

e29(5)2

2 3 g(i)?
1=1

Pr{\gwl) - @] > g<s>} <2 [

N

Sinced"" | g(i)? < max;{g(i)} >, g(i), we obtain:

9(5)

: -[282]
rflasy - 22 > Socs) | < 2
Moreover, sincey(S1) + g(S2) = g(S) andg(S) > p,
we get thaPr{|g(S1) — g(S2)| > €g(S)} < 2e—<"P/(2h),
Consider now thag(S) < p. Again, using the McDiarmid
inequality we have

2p2
2 35 g(i)2
=1 .

Pr{|g(S1) — g(S2)| > ep} < 2e {

SinceY ", g(i)> < h
Pr{[g(S1) — g(S2)| >
us the desired bound.l

9(S)

en}

ph we obtain again that

<
< 2e=<P/(2h) \which gives

We can now give our simplest generic reduction, based
on just the number of functions k. Note that in a number
of settings (see Sections 3.3, 4, and 5.2) we will be able to
get stronger guarantees by a more refined analysis.

Theorem 2 Given comparison classG and a (-
approximation algorithm A for optimizing over G,
then so long a®PTg > fn and the number of bidders
satisfies

n> S n(2/61/9),

then with probability at least -4, the profit of RSOPfg 4
is atleast(1 — €) OPTg /0.

Proof: Let g, be the function inG produced by4 over.S;
and g, be the function inG produced byA4 over.S,. Let
gopt be the optimal function ig overS. Since the optimal
function overS; is at least as good @spr 0n.S; (and like-
wise for S2), the fact thatd is a S-approximation implies
thatg, (S1) > gopr(S1)/B andga(Sz2) > gopr(S2)/ 0.

By Lemma 1 (usingy = n) and plugging in our bound on
n and applying a simple union bound, with probabilityJ,
everyg € G satisfies|g(S1) — g(S2)| < §max[g(S5),n].
In particular, g1(S2) > ¢1(S1) — §max[g:1(S),n], and
92(51) = g2(S2) — 5 max[ga(5), n].

SinceOPTg > Bn, summing the above two inequalities
and performing a simple case-analysis we get that the profit
of RSOPFg, 4y, namely the sumg, (Sz2) +g2(S1), is at least
(1—-€¢)OPTg /5. N

3.2. Structural Risk Minimization

In many natural casesg, consists of functions at differ-
ent “levels of complexity’k, such as partitioning bidders
into & markets for different values df. One natural ap-
proach to such a setting is to perfostructural risk min-
imization(SRM), that is, to assign a penalty term to func-
tions based on their complexity and then to run a version
of RSOPRg ) in which A optimizes profit minus penalty.
Specifically, letG be a series of pricing function classes
G € Gy C ..., and letpen be a penalty function defined
over these classes. Also for simplicity assuthe- 1 (we
have an optimal algorithm for the underlying problem). We
then define the procedure RSOPF-SBM.,)as follows:

1. Randomly partition the bidders into two sef§, and
Ss, flipping fair coin for each bidder.

2. Computey; to maximizemax max [9(S1) — pen(Gy)]
9CYk
and similarly compute@, from Ss.



3. Use price functiory; for bidders inSy andg, for bid-
dersinS;.

A straightforward extension of Theorem 2 to this case
would introduce a quadratic dependencé:jrbut we will

be able to reduce this to nearly linear. Def@®T, =
OPTg,.

Corollary 3 Suppose we randomly partitighinto S; and
So. With probability at leastlt — 4, we obtain that for all
functionsg in G such thatg(S) > 2 [In (2) + In(|Gx|)]
we havelg(S1) — g(S2)| < €g(S).

Proof: Follows from Lemma 1 by plugging ip = ¢(S),
for g € G, and then using a simple union bounil

3.3. Better Bounds via Cover Arguments
and Discretization

In a number of case$y| is overkill as a measure of the
true complexity of the clas§. In this section, we discuss a
number of methods that can produce better bounds. These
include bothanalysistechniques, where we do not change
the mechanism but instead provide a stronger guarantee,
anddesigntechniques, where we modify the mechanism to
produce a better bound. Due to space restrictions, we only
outline the methods here. The details can be found in our
full version of the paper.

Discretizing. In many cases, we can greatly redyce
without much affectin@PT¢ by performing some type of

Notice that a key difference between the above lemma discretization. For instance, for auctioning a digital oo
and Theorem 2 is that the lemma requires only a lower there are infinitely many single-price functions but only

bound orprofit rather than on the number of bidders. Using
Corollary 3 we can now prove the following lemma:

Lemma 4 Assume that we have an algorithdy, for opti-

mizing overg;, and letg; be the best function if; oversS;.

For any given value of,, ¢, andd, with probability at least
1 — & we have that ifOPT), > % 2 1n(2|G,|/d) then
9i(S;) = 15 OPTy, fori = 1,2, # j. In particular, this
implies the revenue of RSORF 4, is at least:

(1 —¢) OPTy, —pen(Gy),

wherepen(Gr) = -2 In(2|Gx| /).

Proof: We prove that, with probabilityl — §, we
have that ifOPT; > 2% 1n(2|Gk|/5) theng;(S;) >
%(1;;,,)2 OPTy; this implies our desired result usirg =

In(2|Gx|/9), then

¢/3. Notice that if OPT, > 2381
from Corollary 3, we havgopr(S;) > 84 In(2|G.|/6) for

1—¢’ €2
= €2

i = 1,2, whichimplies thay; (S;) > 24 In(2|Gx|/6) (since
9:(Si) > gopr(S;)) . Using again Corollary 3 we obtain
thatg;(S;) > }%:fgi(Si) for j # ¢, which then implies the
desired result. B

We can finally obtain a guaranteed for the RSOPF-
SRM(g peny mechanism as follows:

Theorem 5 Assuming that we have an algorithm for
solving the optimization problem required by RSOPF-
SRMg ey then for any given value of, ¢, and §, with
probability at leastl —d, the revenue of RSOPF-SRM..,

for pen(Gr) = (1_%)273—2}1 In(8%2|Gr|/9) is
max ((1 — €) OPTy —pen(Gy)).

Proof Sketch:Follows from Lemma 4 using the union
bound over value§, = §/(4k*). N

log,, . h ~ L Inh prices at powers ofl + €). Also, since
rounding down the optimal price to the nearest power of
1+ € can reduce revenue for this auction by at most a factor
of 1 + ¢, the optimal function in the discretized class must
be close to the optimal function in the original class. More
generally, if we can find a smaller clagssuch thaDPTg:

is guaranteed to be close @PTg, then we can instruct
our algorithmA to optimize ovelG’ and get better bounds.
Note that we do not know whether the simple+ ¢)? dis-
cretization is guaranteed to only minimally aff€ePT in

the case ofombinatorial auctiongsee Section 6).

Counting possible outputs. Suppose our algorithmi,
run on a subset o¥, can only output pricing functions from
arestricted se§4 C G. Then, we can simply replad§|
with |G 4| (or |G 4| + 1 if the optimal function is not one of
them) in all the above arguments. For exampled ipicks
the optimal single price over its input for auctioning a thgi
good, then this price must be one of the bids|Gg| < n.

Using cover size. Suppos& has the property that there
exists a much smaller clags that “covers” it, with respect
to the given set of bidderS. In particular, for everyy € G
there existg/ € G’ such thaty’ extracts the same revenue
as g does from each bidder, up tola+ ¢ factor; that is,
lg(i) — ¢'(i)| < eg(i) for all i. In this case ¢’ is an Lo,
multiplicative e-cover ofG), it is clear that if all functions
in G’ perform similarly onS; as they do orS,, then this
will be true for all functions irG as well. E.g., our results in
Section 5.2 use this type of analysis to avoid discretinatio
In the full version of this paper, we show that similar bounds
can be proved with.;-covers, where we require only that
Yiesl9(@) = g'(@)] < €d,cq9(i). We also demonstrate
the utility of L; covers by showing the existencelof cov-
ers of sizen(n) for the digital good auction; this is not pos-
sible for the other cover notions above.

It is worth noting that a straightforward application of
analogouse-cover results in learning theory [1] (which



would require an additive, rather than multiplicative gdp o
¢ for every bidder) would add an extra factor/ointo our
sample-size bounds.

4. Auctioning Digital Goods to Indistinguish-
able Bidders

We now consider the simplest problem of auctioning a o
digital good to indistinguishable bidders, and competing

against the best single price. We can apply the discratizati
technique by defining/ to be the set of all constant-price
functions whose pricg € [1, 4] is a power of(1 + €/2): if
we can get revenue at legdt — ¢/2) times the optimal in
this class, we will be withiri1—¢) of the optimal fixed price
overall. Applying Theorem 24 can trivially find the best
function inG by simply trying all of them), with probability
1 — 0 we get at leastl — €) times the optimal fixed price so
long as the number of biddersis at least2? In(422),

It is interesting to contrast these results with that of

Proof: First for a given pricev let a,, ., be|n, — %|. To
prove our lemma we will use the consequence of Chernoff
bound we present in Appendix A (see Theorem 16). For
anyv andj > 1 we considem’ = w, and

(1+a) log(l/(aé)))} <

SO we getPr{an,U > emax (nv, -
2e—2(1+a)’ log(1/(ad)) - This further implies that we have

> emax (n w) with probability at
most 2(ad)2(1+e)” h/(1 4+ «
we have Pr{]ﬁv — Z| > max (M,erv)}

2(a6)20+2)’ and so the probability that there exists a

go € G such that|f, — 2| > max (2, er,) is at most

230,(a8)20+2) < 2% L(ad)*?" < 5. This implies
that with high probability, at least — 5, we have thasi-
multaneouslyfor everyg, € G the observed revenue ¢

satisfies: < max (M, erv). ]

Therefore forv

)j
<

Ty

Ty 2

[11] which showed that RSOPF over the set of constant- Proof of Theorem 6:Assume now that it is theHcase that
price functions is near 6-competitive with the promise that for everyg, € G we have\ru - 7\ < max (?,6%).

n > h. A much more complicated analysis of RSOPF in a
slightly different competitive framework is given in [10].

where H = hlog(2/(ad)). Letv* be the optimal price
level among prices iy, and leto* be the price that looks

We now present a more refined analysis, which gives usbest onS:. Obviously, our gain o is 73~ —7;-. We have

even better guarantees.

Theorem 6 Let G be the class of constant price functions,
discretized at powers ¢ + 5), and letd < 1/2. Then with
probability 1 — 6, RSOPFg 4, obtains profit at least

OPTg —81/h OPTg log(2/(e9)).

So, this implies that foOPTg > (12)2hlog(2/(ed)) we
get profit at leasfl — ¢/2) OPTg, which is at leasfl — ¢)

For > 2 — B —ery = (1-26)/2 — £, 750 > 7y

andfg < 2= + 2 erpe < 2= 4 B 4 ep . and there-
fore rg- — fge > 75« — £ — er,+, which finally implies
thatrg. — P« > ry- (3 —2¢) — 2Z. This implies that
with probability at leasfi — §/2 our gain onS; is at least
- (% — 2€) — 2L, and similarly our gain oi$; is at least
o (& — 2¢) — 2£. Therefore, with probability — 4, our

revenue iOPTg (1 — 4e) — 4%. Optimizing the

times the optimal non-discretized fixed price. So, even in pound we set = \/h log(1/(ad))/OPTg and get a rev-
the worst-case that the optimal single-price solution is at enye ofOPT; — 8y/h OPTg log(1/(ad)), which com-

price 1 (S0OPTg = n) we get anO(loglog h) improve-
ment over the generic bound, but(fPTg extracts sub-

stantially more profit on average per bidder, we can get an

improvement of up t@(h loglogh).

To prove Theorem 6, let us for convenience defin®
be the discretization parameter (which wa8 above) and
assumeh is a power of(1 + «). For comparison function
g, Offering pricewv, let n, denote the number of winners
(bidders whose value is at leadt and letr, = v-n,, denote
the profit ofg, on S. Denote byr, the observed revenue of
g, on Sy (and so#, = v - n,, wheren,, is the number of
winners insS; for g,). So, we haveE[,] = . We now
begin with the following lemma.

Lemma7 Lete < 1,6 < 1/2. With probability at least
1 — 6 we have that, for every, € G the observed revenue

on S; satisfies:
< max <M>
€

N Ty
Ty — —

pletes the proof. B

5. Attribute Auctions

We begin by instantiating the results in Section 3 for
market pricing auctions, and connecting to the notion of
VC-dimension. We then give an analysis for general pric-
ing functions over the attribute space that uses the nofion o
covers to avoid discretization.

5.1. Market Pricing

For attribute auctions, one natural class of comparison
functions are those that partition bidders im@rketsin
some simple way and then offer a single sale price in each
market. For example, suppose we defihdo be the set of
functions that choosebidders,, . . ., b, use these as clus-
ter centers to partitio into £ markets based on distance to
the nearest center in attribute space, and then offer aesingl



price in each market. In that case, if we discretize prices to Theorem 9 For any given value af, &, ¢, andd, with prob-

powers of(1+e¢), then clearly the number of functionsdh

is at most* (log, | h)*, so Theorem 2 implies that so long
asn > 2 In(2/6) + kInn + k1n (log, . h)] and we can
solve the algorithmic problem then with probability at ieas
1 — 4, we can get profit at least — ¢) OPTyg, .

Another interesting and general way to do market pricing
is the following. LetC be a class of subsets &f, which
we will call feasible marketsFor & a positive integer, we
considetFy, 1 (C) to be the set of all pricing functions of the
following form: pick k disjoint subsets;,...,s;, from C, and
k + 1 pricespy,...py discretized to powers df+ ¢. Assign
pricep; to bidders ins;, and pricepg to bidders not in any
of s1,...,5x. For example, it¥ = R? a naturalC' might be
the set of axis-parallel rectanglesltf. The specific case
of d = 1 was studied in [3].

We can apply the results in Section 3 by using the ma-
chinery of VC-dimension to count the number of distinct
such functions over any given set of biddéts In partic-
ular, letD = VCdim(C) be the VC-dimension of’ and
assumeD < oo. DefineC[S] to be the number of dis-
tinct subsets ofS induced byC. Then, Sauer's Lemma

[1] states thatC[S] < (%)D, and therefore the number

of different pricing functions inFj,(C) over S is at most

(logy h)’C (ﬁ)w. Thus applying Theorem 2 here, and
performing simple algebra (to remove tha #,” term from
the right-hand-side) we get:

Corollary 8 Given ag-approximation algorithnd for op-
timizing overg = F(C), then so long a®PTg > Bn and
the number of bidders satisfies

I

then with probability at least — ¢, the profit of RSOPE 4
is atleast(1 — €) OPTg /0.

>16h
n_€—2

2

]

4kh

) + kln (llnh) —i—len(
€ €

2

For certain classe€ we can get better bounds. In the
following, denote byC the concept class of unions of at
mostk sets fromC. E.qg., if C is the class of all axis paral-
lel rectangles, then the VC-dimension@f is O(kd) [8].

In these cases we can remove thek term in our bounds,

ability 1 — ¢, the revenue of RSORE ¢y, 4 is
(1—¢€)OPTy —h-rp(k,D,h,e, ),

))-

Finally, using Theorem 5 we can extend our results to
use SRM, where we want the algorithm to optimize dver
by viewing the additive loss term as a penalty function.

kDh

whererp (k, D, h,€,0) = O (E2 In (£Z

Theorem 10 Let G be the sequence of pricing function
classest (C), F5(C), ..., F,(C), and letpen(Fy(C)) be
the additive-loss term below. Then for any value:afith
probability 1 — & the revenue of RSOPF-SBM,, is

max (1 —€)OPTy —h - r'p(k, D, h,¢,0)),

))-

To illustrate the relevance of Theorem 10, notice that for
the special case of pricing using interval functions (th&eca
of d = 1 was studied in [3]), the following lower bound
holds.

kDh

wherer’.(k, D, h,€,6) = O (E2 In (E2

Theorem 11 There is no randomized incentive compatible
mechanism whose revenueﬂ'ﬁmgx (OPTx —o(k)h)).

A similar lower bound holds for most base classes; note
also for the case of intervals on the line, an auction in [3]
essentially matches this lower bound.

5.2 General Pricing Functions over the
Attribute Space

In this section we generalize the results in Section 5.1 in
two ways: to general classes of pricing functions (not just
piecewise-constant functions defined over markets) and by
removing the need for discretization by using the notion of
covers. For example, we might want to consider a compari-
son class of linear functions over the attributes, or quadra
functions, or perhaps functions that divide the space into
markets and are linear (rather than constant) in each mar-
ket.

which is nice because it means we can interpret our results Assume thatt C R?, and letG be fixed a class of pric-

(e.g., Corollary 8) as chargingPT a penalty for each mar-
ket it creates. However, we do not know how to remove this
log k term in general, since in general the VC-dimension of
C, can be as large &Dk log(2Dk) (see [2, 6]).

Corollary 8 gives a guarantee in the revenue of
RSOPR;, (¢),4 so long as we have enough bidders In
the following, fork > 0 let OPTy, = OPTp, (). We can
also use Lemma 4 to show a bound that holds forn.abut
with an additive loss term (we assume for simplicity here
thatg = 1):

ing functions over the attribute spaéé Forg € G let
pg © X x [1,h] — R be its associated profit function.
Let's denote byp(G) be the class of the profit functions
corresponding t@j. ConsiderOPTg = OPT(S,G) to
be the profit of the optimal pricing function ié over S.
Now, letG, be the class of decision surfaces @A) in-
duced byg: that is, to eacly € G we associate the set of
all (z,v) € X x [1,h] such thatg(x) < v. Finally, let
D = VCdim(Gy). Assume in the following thab < cc.
We now give our main lemma.



Lemma 12 If we randomly partitionS into S; and.Ss, then plexity issue of computing an optimal outcome with the
n>31n(2)+ DIn[2 (2Inh +1)]] bidders are suf-  game-theoretic issue of incentive compatibility. To date
ficient so that with probability at leagt— § for all functions almost exclusively the focus has been on socially optimal
gin G we havdg(Sy) — g(S2)| < emax[g(S),n]. combinatorial auctions. Deviating from this literatureg w
consider the goal of profit maximization of the seller in the
case where the items for sale are available in unlimited sup-
ply. In this section we consider the general version of the
combinatorial auction problem as well as the special cases
of unit-demandidders (bidders desire only singleton bun-
dles) andsingle-mindedidders (each bidder has a single
desired bundle).

It is interesting to restrict our attention to the case of
item-pricing, where the auctioneer intuitively is attempt
to set a price for each of the distinct items and bidders then
choose their favorite bundle given these prices. Itemipgic
is without loss of generality for the unit-demand case, and
the general bundle-pricing can be realized with an auction

nearly the same profit from every bidder. Moreover, by con- With 7’ = 2m.“|temzs", one for each of possible bundle of
struction, for every function ip,, € p(H), there exists € Originalm itemss _ _
py € p(Splitg) such that for everyz,v) € S, we have For combinatorial auctions, the size of the class of all
both pg, ((z,v)) < (1 + a)py((z,v)) and py((z,v)) < possible item-pricingsg|, is infinite. Nonetheless, we can
(14 a)pg, (2, v)). This implies that for for every function ~ Use the technique of counting possible outputs (See Sec-
in g, € G, there exisy € Splitg S.tlg1(S1) — g1(S2)| < tion 3.3) to get a bound on the performance of the random
agi(S) + |g9(S1) — g(S2)|- Choosinga = &, it follows sampling auction. This approach calls for bound||ﬁg|,
that in order to prove the desired result it is enough to showthe number of different pricings RSORF4) can possibly
that with probability at least — ¢, for each function in  Output. We restrict our analysis here to considering exacta
Splitg we havelg(S1) — g(S2)| < §max [g(S),n]. This gorithms for gomputing the optimal item_pricing; for a dis-
is true since by Lemma 1 for a fixaed € Splitg we have  cussion of this approach for approximation algorithms, see

. [_827}} the full version of the paper. Our results for this approach
Pr{lg(S1) — g(S2)| = 5 mgx [9(S),n]} < 2e » WE are summarized in the first row of Table 1 and proofs of
also haveSplitg| < (%) . n these results are given in the full version of the paper.

We can obtain better bounds if we are willing to op-

tomize over a smaller class of discretized item-pricings

Proof Sketchfor each biddefz, v) we conceptually in-
troduceO(Z In k) “phantom bidders” having the same at-
tribute valuer and bid valued, (1 + «), (1 + «)?,--- ,h
(we fix o shortly). LetS* be the setS together with the
set of all phantom bidders; let* = |S*|. Let Split
be the set of possible splittings 6 with surfaces from
Ga. We clearly havdSplit| < Gq[n*]. For each element
s € Split consider a representative functiongnthat in-
duces splittings in terms of its winning bidders, and let
Splitg be the set of these representative functions. We
then have thap(Splitg) induces a multiplicativex-cover
for p(g)‘s with respect to the.,, norm. That is, for ev-
ery function ing there is a function irbplitg that extracts

Simple algebra (to remove the™on the RHS) yields:

Corollary 13 If we randomly partitionS into S; and Ss, (again, see Section 3.3). In particular, if we can find a
thenn > 1f—2h In(2)+ Dln (15"’_2’I (% Inh +1))] bidders small clasgy’ with the property thaOPTg: is guaranteed
are sufficient so that with probability at least— § for all to be close t®OPTg, we can argue that RSORF- 4) per-
functionsg in G we havedg(S1)—g(S2)| < emax [g(S), n]. forms well compared t®PTg using bounds on the size

of |G’|. No such small se§’ is known to exist for item-
pricing in general combinatorial auctions; however, far th
unit-demand and single-minded special cases we can use
Theorem 14 Given comparison classG and a (- the classes of discretized item-pricings constructed 3. [1
approximation algorithmdA for optimizing overg, then so Note that these constructions are not as simple as the dis-
long asOPTg > $n and the number of bidderssatisfies cretization for digital-good auctions (Section 4). The-dis
cretization results from [13] are summarized in the second

Corollary 13 together with an analysis similar with the
one in Theorem 2 imply that:

nz%[1n<§>+l)1n(% (1_61nh+1>)], row of Table 1.

€ € € We can apply Theorem 2 to the sizes of the complexity
then with probability at least -4, the profit of RSOPfg 4 classes in Table 1 to get good bounds on the profit of ran-
is atleast(1 — ¢) OPTg /0. dom sampling auctions for combinatorial item pricing. In

particular, we get thaD(hm?/€?) bidders are sufficient to
6 Combinatorial Auctions

2We make the assumption that all desired bundles contain sit ome

. . . . . . of each item. This assumption can be easily relaxed and sultseapplied
Combinatorial auctions have received much attention in gien any bound on the number of copies of each item that aiieedeby

recent years because of the difficulty of merging the com- any one consumer.



general | unit-demand | single-minded sufficient competition at the leaves for the results of [T}, b
1Gal | nm22m° | pm(m + 1)2m nm we can extracf)(nh) usinggG; .
9’| O(m™logi’y . ¢) | O(logi’. ?)

8. Conclusions

Table 1. Size of comparison classes for com- . )
binatorial auctions. In this work we have made the connection between ma-

chine learning and mechanism design explicit. In doing

S0, we obtain a unified approach to considering a variety

) _ ) o of profit maximizing mechanism design problems including

achieve revenue close to the optimum item-pricing in the many that have been previously considered in the literature
general case, an@(hm/e?) bidders are sufficient for the Some of our techniques give suggestions for tiee

unit-demand case. Also, by using Corollary 3 instead of sjgn of mechanisms and others for theinalysis In terms
Theorem 2 we can replace the condition on the number ofs¢ gesign, these include the use of discretization to pro-

bidders with a condition o®PTg, which is factor ofm  qyce smaller function classes, and the use of structisted-ri

improvement on the bound given by [12]. minimization to choose an appropriate level of complex-
) o ity of the mechanism for a given set of bidders. In terms

7 Multicast Pricing of analysis, these include both the use of basic sample-

complexity arguments, and the notion of multiplicative €ov
In the multicast pricing problem, each bidder resides at ers for better bounding the true complexity of a given set of
some node of a tree, and in order to sell its service to SOMefynctions.
bidder, the service-provider must have purchased all edges oOuyr bounds on random sampling auctions for digital
on the path from the root to that vertex. Given a set of Edgegoods [11] not on|y show how the auction proﬁt approaches
costs, our goal as service-provider is to determine a seibtre the optimal profit, but also weaken the required assump-
tOgether with priceS at nodes of this tree that aChieVes-high tions by a constant factor. S|m||ar|y for random Samp”ng
est revenue minus cost. A 4-approximation to this problem, ayctions for multiple digital goods [12] our unified analysi
under the assumption that the optimal solution has revenueyives a bound that approaches the optimal profit with as-
at least 4 times its cost and that there is sufficient competi-sumptions weakened by a factor of more thanthe num-
tion at each node is given in [7]. ber of distinct items. This multiple digital good auction
Using our generic results we can say that so long as theproblem is a special case of the a more general unlimited
optimal solution has revenue at leagt times its cost, and  supply combinatorial auction problem for which we obtain
we have on averag@(h/¢) bidders at each node (using the first positive worst-case results by showing that it is-po
Theorem 2) or at leag?(//€*) revenue at each node (using  sible to approximate the optimal profit with an incentive-
Corollary 3) then we get &l + O(e))-approximation. compatible mechanism. Furthermore, unlike the case for
Briefly, to apply the generic results, we define our algo- combinatorial auctions for social welfare maximizationt o
rithm A so that it finds the revenue-maximizing tree baly incentive-compatible mechanisms can be based on approx
overthe subset of trees whose revenue on the given subseimation algorithms instead of exact ones.
of bidders is at leaq®2 + ¢€) /¢ times its cost. By Corollary We have also explored the attribute auction problem pro-
3, with high probability the optimal tree has this property posed in [3], a special case of general profit maximizing
over bothS; andS,, and so the revenue achieved Hyis mechanism design, in a very general setting: the attribute
nearly that of the optimal tree, and by design the cost of thevalues can be multi-dimensional and the target pricingfunc
tree produced byl is only anO(e) factor of revenue. tions considered can be arbitrarily complex. We bound the
We can also apply structural-risk-minimization in the performance of random sampling auctions as a function of
case that the total number of bidders is not sufficient for the complexity of the target pricing functions. Our attitidsu
the entire class of trees. In particular, one interestirgpca auction results can be used for more general problems such
is the comparison-class of functions that choose some subas multicast pricing, where there is a cost to be paid by the
tree and add fake “markups” between 0 aridto the edges = mechanism that is a function of its outcome.
of that subtree, and then perform cost-sharing on the result Our random sampling auctions assume the existence of
(also add a “super-root” with a single zero-cost edge into th exact or approximate pricing algorithms. Solutions to ¢hes
root). If we definej;, to be the set of such functions whose pricing problem have been proposed for several of our set-
subtree ha# edges, thefg,| < (nlog,  (nh))*. We can tings. In particular, optimal item-pricings for combinato
then perform SRM using Theorem 5. An interesting special rial auctions in the single-minded and unit-demand special
case to consider is a simple depth-1 multicast tree whosecases have been considered in [15, 13]. On the other hand
edges have cost 0 and with two bidders at each leaf: onéfor attribute auctions, many of the clustering and market-
with value 1 and one with valuk. In this case, there is not segmenting pricing algorithms have yet to be considered at



all.

Probably the most important direction for future work is
in relaxing the assumption that the items for sale are avail-
able in unlimited supply. In the random sampling frame-
work, we propose the following mechanism: randomly par-
tition the bidders into two sets, evenly divide the items
among the two sets, compute the optirealry-freé pric-
ing function for the two partitions, and applying the pric-
ing function to the opposite partition. Of course, a pricing
function g that is envy-free forS; may not necessarily be
envy-free forS,. There are several approaches that may
work here. First, we could artificially deplete the supply
by a constant factor and ask for an pricing function that is
envy-free for the depleted supply. Then it may be possible
to argue that it is envy-free for both; and.S> with high
probability. Another option would be to take the bidders of
S1 in an arbitrary (or random) order and allow them to take
an item if they desire one. When we run out of items, stop.
The remaining bidders get none, whether they want one or

not. It is easy to see that the technique outlined above re-

sults in an incentive compatible mechanism. Is it also close
to optimal?
It is possible to further generalize the feasibility con-

straints imposed by limited supply to arrive at the general

single-parameter agent auction problem (See e.qg., [9] for a

precise definition). This abstract problem can be viewed as
auctioning a service to a number of agents where the ser
vice provider must pay a cost that is a function of the agents
served. In its full generality, this cost function could e a
bitrary. Note that the multicast pricing problem is a spkcia
case of this problem where the cost function is defined by a
tree. The possibly asymmetric cost function can be viewed

as endowing the agents with public attributes, or the agents

could have additional attributes. A very interesting direc
tion for future research is in determining for what clasdes o
cost functions the general problem of profit maximization
in this setting can be solved.
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Concentration inequalities

Here is the McDiarmid inequality (see [5]) we use in our
proofs:

Theorem 15 Let Y3, ..., Yn be independent random variables
taking values in some set, and assume that : A — R sat-
isfies:

sup
Yn€AY;EA

t(y17 '“7y’i*17yi7yi+17y")| S Ci,

Pr{[t(Y1,..,Y,) — E[t(Y1,..., V)] > 7} gze[’ ]

Here is also a consequence of the Chernoff bound that we used
inLemma 7.

|t(y17 iads] y’”) -

,,,,,

forall 7,1 < ¢ < n. Then for ally > 0 we have:

2'y2
o

=1

Theorem 16 Let X4, ..., X,, be independent Poisson trials such
that, forl < i < n,Pr[X;=1] = 1/2and letX = }_ X,.

1=1
Then anyn’ we have:
[727’1/62]

Pr{’X — %‘ > emax{n,n'}} < 2e



