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Abstract

We study a class of single round, sealed bid auctions for
items in unlimited supply such as digital goods. We focus
on auctions that are truthful and competitive. Truthful
auctions encourage bidders to bid their utility; competitive
auctions yield revenue within a constant factor of the revenue
for optimal fixed pricing. We show that for any truthful
auction, even a multi-price auction, the expected revenue
does not exceed that for optimal fixed pricing. We also give
a bound on how far the revenue for optimal fixed pricing
can be from the total market utility. We show that several
randomized auctions are truthful and competitive under
certain assumptions, and that no truthful deterministic
auction is competitive. We present simulation results which
confirm that our auctions compare favorably to fixed pricing.
Some of our results extend to bounded supply markets, for
which we also get truthful and competitive auctions.

1 Introduction.

Consider the problem of selling a number of identical
items to consumers who each want a single item and the
items are available in unlimited supply. By unlimited
supply we mean that either the seller has at least
as many items as there are consumers, or that the
seller can reproduce items on demand at negligible
marginal cost. Of particular interest are digital items
such as downloadable audio files and pay-per-view
movies. With unlimited supply, consumer wutilities, the
maximum amounts that consumers are willing to pay
for the item, are the sole factor determining sale prices.
The seller’s goal is to maximize their total revenue.
One way to set prices for items in unlimited supply
is to estimate consumer utility via market analysis and
then set a fixed price. We refer to this method as fized
pricing. Pay-per-view movies are an example of fixed
pricing for an unlimited supply market. With perfect
knowledge of consumer utilities, optimal fized pricing
maximizes fixed-price revenue by selecting the optimal
price at which to sell items. Fixed pricing generally
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cannot achieve this ideal due to the inherent inaccuracy
of market analysis. If the price is set too high, not
enough items may be sold; if the price is set too low,
insufficient revenue may be collected per item.

Auctions automatically adjust prices to market
conditions. We study single round, sealed bid auctions.
Such auctions have been studied for items available in
scarce supply, where maximizing the revenue requires
that all available items be sold. They are especially
practical when the number of consumers is large. In
particular, Vickrey [17] introduced a multi-item auction
that is truthful. A truthful auction encourages bidders
to bid their utility value. In an untruthful auction,
bidders may bid significantly below their utility values,
reducing auction revenue.

In a truthful auction, rational bidders bid their
utilities. In addition, we would like such an auction to
be competitive: it must yield revenue within a constant
factor of optimal fixed pricing. To be competitive, a
truthful auction must vary how many items are sold
depending on the bid values. For example, as we show
in Section 3, the multi-item Vickrey auction is not
competitive if the seller chooses the number of items
to sell before knowing the bid values (and not truthful
if the seller chooses the number of items after knowing
the bid values). As with fixed pricing, selling too few
or too many items may not maximize revenue. Thus,
the method for choosing how many bids to satisfy is an
integral part of a truthful competitive auction.

To our knowledge, auctions have never been studied
in a competitive framework. Nor are any existing
auctions competitive in the sense that we introduce
here. As we explore in Sections 11 and 12, this
competitive framework is useful in studying any kind
of auction where identical goods are being sold, not just
auctions for unlimited supply.

Auctions are becoming a popular pricing mecha-
nism in electronic commerce, both for human users
and for trading agents (bots). In many cases, the
use of auctions is complicated by the fact that a good
bidding strategy for a buyer requires an understanding
of strategies and utilities of other buyers. Truthful
auction mechanisms may be attractive in this context



because they avoid this complication.

In this paper we study a class of truthful auctions
for unlimited supply. We study both single-price auc-
tions, where every winning bidder pays the same price,
and multi-price auctions, where the prices may differ. In
addition to deterministic auctions, we study randomized
auctions that use randomization to decide which bids
to fill and at what price. We develop techniques for
design and analysis of auctions for unlimited supply.
Our approach is reminiscent of competitive analysis of
on-line algorithms [1, 15], where performance of an on-
line algorithm is gauged in terms of performance of
an optimal off-line algorithm. Here the optimal off-
line algorithm is analogous to the optimal fixed pricing
mechanism.

Although we develop our results for unlimited sup-
ply, some of the results extend to bounded supply, where
the number of items for sale is bounded, but maximizing
revenue might not result in all items being sold. We
discuss bounded supply in Section 11.

We view auctions as algorithms for deciding which
input bids to fill, and at what price. As with any
algorithm, one needs to address the issues of correctness,
efficiency, and performance. In the context of this
paper, an auction is correct if the auction is truthful
and fills each winning bid at or below the bid value.
Efficiency of an auction refers to the time needed to
process bids. The auctions introduced in this paper are
very fast; sorting of the input bids is the most expensive
computational operation we perform. As discussed
above, we measure auction performance by its revenue
relative to the fixed pricing revenue. This computer
science approach allows us not only to design new
truthful auctions, but also to give theoretical guarantees
for their performance. Such provable performance
guarantees are new to the area of auction mechanism
design.

To state our results more formally, we introduce
the following notation. Let n denote the number of
bidders. Without loss of generality, we assume that the
lowest bid is one and denote the highest bid by h. Let
the total utility 7 be the sum of all bidders’ utilities.
T is an obvious upper bound on the revenue that can
be obtained from this set of bidders. Let F be the
optimal fixed pricing revenue. Clearly F < 7. F is
an upper bound on the revenue that can be obtained
by any fixed priced sale or any single-price auction. We
want revenues of our truthful auctions to be competitive
with F. We assume that A is small compared to F.!
This assumption prevents a trivial upper bound on the
revenue; see Section 2.

TSome of our results hold under weaker assumptions.

We state some of our results in terms of the total
utility, 7, and others in terms of the optimal fixed
pricing revenue, F. We show that F compares favorably
to T; specifically, F = Q(7/logh), and also F =
Q(T /logn). This result shows that the optimal fixed
pricing revenue is within a min(log h,logn) factor of the
revenue of any pricing scheme. We use this result to
relate various bounds expressed in terms of 7 to those
expressed in terms of F.

We introduce a class of truthful single-price auc-
tions and a class of truthful multi-price auctions. A
randomized auction from the first class is competitive: it
has an expected revenue of Q(F) = Q(7/logh). A dual-
price variant of this auction has revenue that is close to
F if F/h is large enough. A randomized multi-price
auction from the second class has an expected revenue
of Q(7 /logh). Thus, both of these auctions have the
same worst-case bound in terms of 7. However, we show
that the latter auction is not competitive. Its expected
revenue is Q(F/+/logh), and this bound is tight: on
certain inputs, the expected revenue is O(F/+/log h).

This provides support for using F, rather than T,
to define competitive auctions. Another result provides
further support. We show that for any truthful auction,
even a multi-price one, the expected revenue does not
exceed F. This result is somewhat surprising: using
single-price auctions does not hurt revenue by more that
a constant factor.

A natural question to ask is if there is a truthful
deterministic auction with an Q(F) revenue. We show
that there is none: for any such auction, there is a set of
bids that leads to an O(F/h) revenue, i.e., revenue that
is a small fraction of F if h is large. Thus, for worst-case
performance, randomized auctions yield better revenue
than the deterministic ones.

Our theoretical analyses are limited in that their
performance metrics are accurate only up to a constant
factor. As a result, the analyses do not reveal whether
one of our auctions dominates the others, or which
auction is better for a natural distribution. As a
supplement to our theoretical results, we performed a
number of simulations to compare our auctions with
each other and to fixed pricing on a variety of input
families. Our simulations suggest that, on natural
inputs, some of our auctions attain revenue very close to
F if the number of bids is large enough. Furthermore,
our auctions can outperform fixed pricing with market
analysis unless that analysis is fairly accurate. We also
show a deterministic auction that, despite the worst-
case result, does very well on natural inputs.

We develop a framework for a theoretical and
experimental analysis of revenue-maximizing truthful
auctions and introduce auctions that perform well in



this framework. We show how algorithm analysis
techniques can be used within this framework to obtain
results that are interesting and in some cases surprising.
Due to the space limit, we omit some material from
this version of the paper. The full paper appears at
http://www.intertrust.com/tr/tr-99-01.html.

2 Competitive Analysis.

We consider auctions with n bidders, each bidder ¢
having a utility value uw; and bidding b;. We also
assume that the bids are ordered so that b; < b;1. In
auctions where ties need to be broken, we can assume
an arbitrary total order on the bid values that respects
the partial order. That is, we can assume that the order
given by the indices is strict. We assume that there is
no collusion among the bidders.

Given a set of bids, the outcome of an auction is
the subset of bids that are satisfied and a corresponding
set of sale prices such that, for each winning bid b;,
the associated sale price is at most b;. A deterministic
auction mechanism maps sets of bids to auction out-
comes. A randomized auction mechanism maps sets of
bids to probability distributions on auction outcomes.
We use R to denote the auction revenue for a particular
auction mechanism and set of bids. R is the sum of all
sale prices. For randomized auctions, R is a random
variable.

We say that an auction is truthful if bidding u; is
a dominant strategy for bidder ¢. More specifically, let
a bidder’s profit be the difference between the bidder’s
utility value and the price the bidder pays if they win the
auction, or zero if they lose. Then an auction is truthful
if a bidder’s profit (or expected profit, for randomized
auctions), as a function of the bidder’s bid, is maximized
at the bidder’s utility value, for any fixed values of
the other bidders’ bids. Truthful auctions encourage
bidding at utility value if the bid value that maximizes
the (expected) profit is unique. When considering
truthful auctions, we assume that b; = u;.

To enable analysis of auction revenue we define
several properties of an input set of bids. As stated
in the introduction, 7 is the sum of all of the bids.
An equivalent definition of 7 is the revenue due to
the optimal multi-price untruthful auction, the one that
satisfies all bids at their value. The revenue for optimal
fixed pricing is F. Note that F can also be interpreted
as the revenue due to the optimal single-price untruthful
auction. More discussion of F and its relation to
the optimal single-price untruthful auction is given in
Section 4. The other property of the bids that we use
is h, the highest bid value. We assume that bids are
scaled such that the lowest bid value is 1.

Analogous to on-line algorithm theory, we express

auction performance relative to that for optimal un-
truthful auctions, as ratios R/7T or R/F. However, we
solve a maximization problem while on-line algorithms
solve minimization problems. Thus, positive results,
which are lower bounds on R/7T or R/F, are expressed
using “€2”. Impossibility results, which are upper
bounds on R/T or R/F for any auction in a certain
class, are expressed using “O”.

F, T, and h are used only for analysis. Our auctions
work without knowing their values in advance.

If we do not impose any restrictions on h, we get the
upper bound of R/T = O(1/h). To see this, imagine
n — 1 bids at value 1 and one bid, b,, at h. An auction
that wishes to do better than O(1/h) must base the
selling price on bidder n’s bid. However, this would
encourage bidder n to bid below u,,.

To prevent this upper bound on auction revenue we
can make the assumption that the optimal revenue F
is significantly larger than h, the highest bid. That is,
for some constant a, we assume that ah < F. With
this assumption, optimal fixed pricing sells at least «
items. In some cases a is a fixed constant. In other
cases, success probability approaches 1 as a — oo.

We say that an auction is competitive under certain
assumptions if, when the assumptions hold, the auc-
tion’s revenue is Q(F), or equivalently R/F = Q(1).

3 Prior Results.

Our results are related to the field of mechanism design
that combines microeconomic motivation with game-
theoretic tools and includes auction mechanisms. For
introduction to the area, see for example [10, 13]. In
particular, auctions for scarce supply markets have been
extensively studied. See [14] for a survey. Some work in
the Computer Science community combines economic or
game-theoretic questions with computational questions.
Earlier results are surveyed in [9]; for more recent
results, see e.g. [4, 8, 12].

The k-item Vickrey auction [17] was a starting place
for our work. The k-item Vickrey auction is a single-
price auction that sells &k items to the k highest bidders
at the price equal to the k + 1 highest bid (bn_r—1).
For generalizations of Vickrey auctions to the multiple
resource case, see e.g. [3, 6, 16].

In the unlimited supply case, taking k = f(n) yields
a truthful auction for any function f with 1 < f(n) < n.
This auction mechanism is not competitive, however.
To see this, consider a bipolar input that has k bids at
h and n — k bids at 1. In this case R = k and F > hk.
This gives an R/F = O(1/h) bound. As we show later
no deterministic auction can do much better on worst-
case distributions, but randomized auctions can.



4 Optimal Untruthful Auctions.

In this section we study the two untruthful auctions, the
optimal multi-price auction and the optimal single-price
auction, and establish the relationship between their
revenues, 7 and F. We show that F > T /(2logh).
This bounds the penalty for requiring auctions to be
single-price and allows us to compare bounds expressed
in terms of T with those expressed in terms of F.

To get a better understanding of how the optimal
single-price auction works, we define the optimal thresh-
old function, opt(B). This function on a set of bids B
returns the fixed price at which items should be sold to
achieve revenue F. In the optimal single-price auction,
all bid values that are at least opt(B) will be satisfied at
price opt(B). All other bids will be rejected. Formally,

opt(B) = argmaxy,cp b; - (n — i + 1).

Note that n — ¢ 4+ 1 is the number of bids that are at
least b;. The main result of this section is as follows.

THEOREM 4.1. F > T /(2logh).

Proof. Divide the bids into logh bins by partitioning
the bids at values of powers of two. Thus, each bid is
less than a factor of two from any other bid in the same
bin. Since the sum of the bids is 7 and there are logh
bins, then some bin has a sum of at least 7/logh. Note
that the lowest bid in this bin is at least half of any
other bid in the bin. If the optimal single-price auction
chose, as its selling price, the price of the lowest bid in
this bin, then the contribution of each bid in this bin
to the revenue is at least half of the bid’s value. Since
the bin sums to more than 7/ log h, this means that the
revenue is greater than 7/(2logh). Thus the optimal
fixed pricing can always achieve a revenue of at least
T/(2logh). ]

One can make this bound strongly polynomial as sug-
gested by Satish Rao and Eva Tardos.

COROLLARY 4.1. F > T /(4logn).

Proof. Let v be the optimal price; clearly v > h/n.
If one drops all bids with values below v, F does not
change and 7 decreases by at most a factor of two.
After the bids are dropped, the ratio of the highest and
the lowest bid values is at most n, yielding the desired
result. ]

Now we turn our attention to truthful auctions.

5 Generalized Truthful Auction Mechanisms.

By making observations about auctions that encourage
utility value bids, in particular the Vickrey auction, we

can design general auction mechanisms. We present two
general auction mechanisms that facilitate the design of
truthful auctions. The first, the bid-independent auction
mechanism, is based on the observation that the price
that a bid is satisfied at must be independent from that
bid’s actual value. The second, the random sampling
auction mechanism, is based on the observation that
rejected bids can be used to set prices for bids that are
to be satisfied.

5.1 Bid-Independent Auctions. The first general
truthful auction mechanism that we discuss is one
that is typically multi-price, although some variants
are single-price. The motivation for this mechanism is
the observation that bidder i’s bid value should only
determine whether bidder ¢ wins or loses the auction
(as a threshold). The bid value should not determine
bidder i’s price.

Let B be the set of all bids and let B; be the set of
bids without bidder i’s bid. A bid-independent auction
uses a predetermined function, f, from sets of bid values
to prices. The auction works as follows. Bidder 7 wins
the auction at price f(B;) if b; > f(B;). Otherwise, the
bidder loses.

We can immediately see how this generalizes the
traditional Vickrey auction. The 1-item Vickrey auction
fits into this general framework with f = max. Note
that bidder n wins this auction and pays b, 1. If f is
the function that returns the kth highest element of the
set of bids, we get the k-item Vickrey auction.

5.2 Random Sampling Auctions. Another gen-
eral truthful auction mechanism is based on randomized
sampling. We select a subset B’ of B at random,
independent of the bid values. Let m be the size of
B'. We then compute a function on these sampled bids,
f(B'), and use this as a threshold value for the n —m
bids in the non-sample, B \ B’. Note that this auction
mechanism is inherently single-price.

If a multi-price auction is acceptable, then this
auction can be modified to be dual-price with m = n/2,
by using f(B’) to compute the threshold to use for bids
in B\ B’ and f(B\ B’') as the threshold to use for bids
in B'. This is a good way to avoid revenue loss due to
the rejected bids in the sample; however, it is at the
expense of making the auction dual-price.
6 Random Sampling Optimal Threshold
Auction.

The random sampling optimal threshold auction takes
f = opt, the optimal threshold function, in the random
sampling auction. Intuitively we use the sample to get
an idea for a good threshold value, then we apply that



threshold to the remaining bids. The auction samples
m = n/2 bids at random, computes opt of this sample,
and uses this value as a threshold for the non-sample,
accepting all bids above this threshold at the threshold
value. In this section we show that the expected revenue
of this auction is within a constant factor of F, assuming
F/h is not too small.

For the purpose of simplifying our analysis, we
will be analyzing a different method of sampling, one
that selects a bid to be in the sample independently at
random with probability 1/2. This method of sampling
is simpler to analyze, and it does worse than the former
(this can easily be seen when the probabilistic bounds
are discussed).

In practice, for the single-price auction, we might
want to set m = n/10 or even m = y/n. For the dual-
price version of the auction, m = n/2 is a good choice.

6.1 Performance Analysis. In this section we
show that, under certain assumptions, the expected
revenue of the random sampling optimal threshold
auction is within a constant factor of F. This result
implies that restricting a single-price auction to be
truthful does not affect performance by more that a
constant factor.

Our analysis of the random sampling auction uses
the following lemma, which is a variation of the Chernoff
bound (see e.g. [2, 11]).

LEMMA 6.1. Consider a set A and its subset B C A.
Suppose we pick an integer k such that 0 < k < |A| and
a random subset (sample) S C A of size k. Then for
0< 6 <1 we have

Pr{|S N B| < (1-0)|B| - k/|Al] < exp(~|B|-k5”/(2|Al)).

Proof. We refer to elements of A as points. Note that
|S N B| is the number of sample points in B, and its
expected value is |B| - k/|A|. Let p = k/|A|. If instead
of selecting a sample of size exactly k& we choose each
point to be in the sample independently with probability
p then the Chernoff bound would yield the lemma.

Let A ={ai,...,a,} and without loss of generality
assume that B = {ay,... ,ar}. We can view the process
of selecting S as follows. Consider the elements of A in
the order induced by the indices. For each element a;
considered, select the element with probability p;, where
p; depends on the selections made up to this point.

Let ¢ be the number of points already selected when
a;4+1 is considered. Then i — ¢ is the number of points
considered but not selected. Suppose that t/i < p.
Then p;+1 > p.

We conclude that when we select the sample as a
random subset of size k, the probability that the number

of sample points in B is less than the expected value is
smaller than in the case we select each point to be in
the sample with probability p. [ |

Let R be the revenue of the random sampling
optimal threshold auction. The following theorem
shows that R = Q(F) with probability going to one
as a goes to oo.

THEOREM 6.1. Assume ah < F. Then R > F /6 with
probability of at least 1 — e~/36 — 40e=2/72,

Proof. Let k be the number of bids satisfied in the
optimal single-price solution. Consider the optimal
fixed pricing revenue of the sample, F'. Since we expect
k/2 of these bids to be in the sample, E[F'] > F/2.
Applying Lemma 6.1 with A the set of all bids, B the
set of bids in the optimal threshold solution on A, and
6 = 1/3, we conclude that |S N B| < |B|/3 = k/3 with
probability at least 1 —e~*/36, The assumption ah < F
implies 7 > a. Thus F' > F/3 with probability at least
1—e @ 36‘

Let k; be the number of bids satisfied by optimal
fixed pricing on the sample (i.e. the number of bids
in the sample that are at least opt(B’)) and let &k, be
the number of bids in the non-sample that are at least
opt(B'). If ' > F/3 then ks > a/3.

Now, assuming that ks > «/3, we show that the
probability that k, < ks/2 is small. Note that k, <
ks/2 implies that among the top (3/2)k, bids, at least
ks are in the sample. Note that the sample and the
non-sample are symmetric: taking a random subset
containing half of the elements in A is equivalent to
taking a complement of a random subset of half of the
elements. We apply Lemma 6.1 with S being the non-
sample, B being the top ¢ = (3/2)k; bids, and § = 1/3,
and conclude that the probability that k, < ks/2 =4/3
is at most e—%/36,

If R < F'/2 then k, < k;/2 and thus for some
i>(3/2)a/3 = a/2 we have k,, < i/3. Using the union
bound, the probability that this happens is at most

o>
Z e—i/36 <40€_a/72.

i=a/2

Using the union bound for the probabilities that
R > F'/2 and F' > F/3, we conclude that R > F/6
with probability at least 1 — e~ /36 — 40e—/72, [

Note that in the above theorem, we can trade off the
bound on R and the probability that this bound holds.
In particular, for any constant € > 0, we can show that
R > F/(2+¢€) with probability that goes to 1 as a goes
to infinity, but the convergence is slower for smaller e.



By symmetry, the expected revenue of the dual-
price variant of the random sampling auction is twice
the expected revenue of the original. One can show
that the expected revenue of the dual-price auction is
at least F/(1 + €) if a is large enough.

7 Weighted Pairing.

All truthful auctions we have introduced so far are either
single-price or dual-price. In this section we describe
a multi-price auction. The weighted pairing auction we
present is in the bid-independent class with the function
f defined as follows:

f(B) = b € B with probability ﬁ

Thus, to determine if bidder ¢ wins the auction and
at what price, pick a bid b € B; with probability
proportional to the value of b, i.e., b/(T —b;). This pairs
b; with b. If b < b;, bidder ¢ wins at cost b, otherwise ¢
loses.

We omit discussion and analysis of the weighted
pairing auction and state the two main results. For the
(non-trivial) proofs of these results, see the full paper.

THEOREM 7.1. If4h < T, then for the weighted pairing
auction E[R] = Q(T /logh).

THEOREM 7.2. If 2h < F, then E[R] = Q(F/+/logh)
and this bound is tight.

Although the weighted pairing auction is not com-
petitive in the worst case, it is only a factor of /logh
away from being competitive. This auction is quite
different from our random sampling auctions, and per-
forms relatively well on inputs that are bad for the
latter. One may be able to improve this auction; see
Section 13.

8 An Upper Bound.

A natural question to ask is if we can improve the
bound of Theorem 7.1. We already know that no single-
price auction can do better than F. In this section we
prove that no truthful multi-price auction can have an
expected revenue greater than F. This result augments
that of Section 6, where we showed that the performance
of a truthful single-price auction is within a constant
factor of the optimal single-price auction. Results of
this section imply that no truthful multi-price auction
performs within a constant factor of the optimal multi-
price auction.

Consider a collection of bids B = {b1,... ,b,} with
b; < bj+1. Note that by = 1 and b, = h. Define the
following quantities, which are dependent on the auction

mechanism:
Di the probability a bid 4 is satisfied,
C; expected cost to winning bidder 4,
gi expected profit (gain) for bidder .

With probability p; a bidder ¢ wins. The bidder’s
expected gain, having won, is their utility value minus
the expected price they paid, i.e.

(8.1) 9i = pi(u; — ¢;)

The following lemma shows that in a truthful
auction, probabilities of winning are monotone functions
of bid values.

LEMMA 8.1. Suppose in a truthful auction b; < b;.
Then p; < p;.

We omit the proof. The main result of this section is

as follows.

THEOREM 8.1. For any truthful auction, E[R] < F.

Proof. In a truthful auction, if a bidder ¢ — 1 had the
utility value of b; but bids b;_1, their gain would not
exceed g;, thus

(8.2) 9i > pi—1(bi —ci—1).

So,

9i > pi—1(b; —bi—1 +bi—1 — ci—1)
=pi—1(b; —bi—1) + pi—1(bi—1 — ¢i—1)
=pi1(bi —bi1)+gi1.

We can recursively expand g;—; in the same way until
we get to g1 which is 0 because all bids are satisfied at
value at least 1, and get

i—1

9: > Y pi(biy1 —by).

Jj=1

(8.3)

Now let R; be the total expected revenue from
bidder ¢. That is

Ri = pic;-

We can rearrange equation (8.1) as p;¢; = p;b; — ¢; and
get

Ri = pibi — 9i-



Using equation (8.3) we get

i—1

Ri < pibi — Y _ pj(bj41 — by)-

j=1

Looking at the sum of the R;’s, we see that the first
term is mostly canceled by the summation term and we
get a telescoping effect.

n n n i—1
E[R] = sz < Zpibi - Z zpj(bj+1 —bj)
i=1 i=1 1

i=1 | j=

By counting the number of times each p;(bjy1 — b;)
occurs, we can rearrange the second summation to get

n n—1
E[R] <> pibi — Y pi(bjs1 — bj)(n —j)
i=1 j=1

n—1 n—1
E[R] < pnbn + sz'bi - ij(bjﬂ —bj)(n —j).
j=1

j=1

n—1
= pnbn + ij [bj — (Bj1 — bj)(n — )]
j=1

Regrouping
n—1
E[R] < ppbn + ) pj[bj(n—j+1) = bja(n — j)].
7j=1

Now, let V; = bj(n — j + 1). Intuitively, this is the
revenue attained by using b; as the sale price in fixed
pricing. Note that V; < F.

n—1

E[R] < ppVi + ij (Vi = Vi)

Jj=1

Rearrange this sum to sum over V; instead of p; and for
symmetry, define py = 0.

E[R] < Z (pj —pj—1) Vj-

But, V; < F and by Lemma 8.1, p; — pj—1 is non-
negative.

n
E[R] < FY (pj—pj1)
=1
This sum telescopes to p,, — po and po = 0 so we have

9 Deterministic Auctions.

We have shown several randomized auctions with an
Q(F) expected performance under the assumption that
ah < F and «a is big enough. In this section we study
deterministic auctions.

The deterministic optimal threshold auction is the
bid-independent auction with f = opt, the optimal
threshold function defined in Section 4. The only
difference between the deterministic optimal threshold
auction and the optimal fixed pricing mechanism is that
the former uses threshold opt(B;) for bidder 7 and the
latter uses opt(B). Recall that B; and B only differ in
that b; is not in B;. From this, we might also expect
that for large n with suitable constraints on h, the
deterministic optimal threshold auction would perform
to within a constant fraction of F. As we will see
shortly, this is not the case. An interesting result that
we will not show in this paper is that the deterministic
optimal threshold auction is single-price.

9.1 Upper Bound for Deterministic Bid-
Independent Auctions. In this section we prove the
following upper bound:

THEOREM 9.1. For any truthful deterministic bid-

independent auction and any constant «, there exists
an input for which R/F = O(1/h) and ah < F.

Proof. Let f be the (deterministic) function that defines
the auction. Consider a bipolar input with nj, bids
at value h and n; bids at value 1. Restricted to such
inputs, f is a function of nj and ny. Note that we can
assume, without loss of generality, that f takes on only
two values, 1 and h. Other values of f lead to smaller
revenues.

We wish to find an input family such that the
bid-independent auction with function f has revenue
O(F/h). To obtain this family, we chose nj and nyg in
such a way that f(np, —1,n¢) = 1, f(np,ne — 1) = h,
and np > «a (implying ah < F). For such an input,
R =np and F > hnp, so R/F < 1/h. Our goal now is,
given a deterministic f, to find values of ny, and n, that
have the above properties.

Consider the ny,ng plane. For a fixed m look at
the line ny = k and ny = m — k, and consider the line
segment, connecting (0,m) and (m,0). We need to find
a value of k with k£ > a where, when k increases by one,
f changes from 1 to h.

Set m = h%a. Assume that f(a,m —a) = 1. As
we increase k from k = « the value of f(k,m — k)
must change from 1 to h because for & = m we have
f(k,m—k) = f(m,0) = h. Thus it must be at some k*
that f(k*,m—k*) =hand f(k*—1,m—-k*+1)=1. If
we now choose np = k* and ny = m — k* + 1, we satisfy



our criteria that np, > a and that f(np, —1,n,) =1 and
f(nn,ne —1) = h. Thus, R/F = O(1/h).

Suppose now that our assumption that f(a,m —
a) = 1 is false and instead it is h. Then for np, = k =«
andng=m—k+1wehave F=m+1=~hr%a+1and
R < ha so

ha ha __ 1
RIF < oaia < w55 = &-

Thus for any bid-independent auction with deter-
ministic function f there exists a distribution such that
R = O(F/h). [

9.2 Truthful Deterministic Auctions are Bid-
Independent. The following lemma allows us to extend
the result of Theorem 9.1 to arbitrary deterministic
auctions.

LEMMA 9.1. Any truthful deterministic auction is bid-
independent.

See the full version of the paper for the proof.
Using Lemma 9.1, we generalize Theorem 9.1 as follows.

THEOREM 9.2. For any truthful deterministic auction
and any constant «, there exists an input for which
R/F =O0(1/h) and ah < F.

In terms of asymptotic worst-case performance,
deterministic auctions are significantly worse than ran-
domized auctions. This is not to say that deterministic
auctions are bad to use for all input families. In fact
our experimental results reveal that for many families,
the deterministic optimal threshold auction works very
well. Adequate knowledge of the bidding distribution
may make it possible to use a deterministic auction.

10 Experimental Results.

Our theoretical analysis of auctions has limitations.
Worst-case analysis against F or T /logh leaves a logh
gap for inputs which come from “typical” (as opposed to
tailored to be hard) distributions. In addition, constant
factors we obtain in our analysis are often too pes-
simistic. Theoretical analysis for specific distributions
seems quite difficult even for simple distributions.

In practice, constant factors of the auction revenue
are important. We introduced several auction mecha-
nisms that provably perform within a constant factor
of each other in worst-case. However, we do not know
which one is better. We would also like to know how
these auctions compare to fixed pricing with imperfect
market analysis.

We turn to experiments to answer these questions.
In our experiments, we simulate various auctions on sev-
eral input families and see how they compare. Below we

present experimental results for two problem families.
See the complete paper for more experimental results.
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Figure 1: Zipf(theta=0.5, high=n) with n = [10, 100k]

In the first problem family, each bid is chosen
independently from the Zipf distribution [18] with
6 = 1/2. This is a generalization of the distribution
with 80% of the total bid value coming form 20%
of the bidders. For i in the interval [1, high], we
define Pr[X =i] = ¢/i?, with ¢ chosen so that the
probabilities integrate to one. Figure 1 shows the results
of simulation for the Zipf family as the number of
bidders varies between 10 and 100,000. This family
has the property that any uniformly chosen random
subset of the bids has the same distribution as the
original. Because of this property, the random sampling
auctions perform very well for these families. In the plot
ratios R/F are reported for the following mechanisms:

DSO  dual-price sampling optimal threshold.

SSO  single-price sampling optimal threshold,
m = /n.

WP  weighted pairing.

DOT deterministic optimal threshold.

FP— fixed pricing with optimal price less 25%.

FP+ fixed pricing with optimal price plus 25%.

For large n, DSO and DOT are the best auc-
tions. As m increases, the ratio of their revenue to F
approaches 1, whereas the ratios for FP— and FP+
approach a constant less than 1. As a result, even
for moderately large n our best auctions perform better
than fixed pricing with a 25% price error. On average-
case distributions, WP is the worst auction; its ratio
asymptotically approaches 2/3.

In the bipolar family, bids have only two values, 1
and h, and the ratio of high bids to the total number of
bids varies. The results appear in Figure 2.

There are several key things to note about the
bipolar family. First, it demonstrates the problem with
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Figure 2: Bipolar(low=1,high=10,ratio=[0, 1])

the DOT auction. There is a sharp dip in the revenue
of DOT precisely when the number of high bids is 10
and the number of low bids is 90. This is because
opt(B\ {h}) =1 and opt(B \ {1}) = h in this scenario
and thus 10 high bids get satisfied at price 1 and the
90 low bids get rejected. The optimal solution in this
case is to accept the 10 high bids at price h = 10. Aside
from this case, DOT performs well. The randomized
optimal threshold variants have degraded revenues for
the number of high bids around 10. However, due to
randomness, the revenue loss is significantly smaller,
but spread over a wider region. The DSO auction
outperforms WP and SSO for most ratios. The WP
auction usually outperforms SSO.

11 Bounded Supply.

Up to this point, we have studied the unlimited supply
case which is motivated by the digital goods market
where the cost of making a copy of an item is negligible.
In this section we consider the case where the number of
items available for sale is bounded. This case is typical
of physical goods markets. We denote the number of
items available by k. Here again, the seller wishes
to maximize their revenue, possibly not selling all of
the items. Note that the definitions of truthful and
competitive auctions, which we stated for the unlimited
supply case, also apply to the bounded supply case. We
denote by Fj, the revenue for optimal fixed pricing that
sells at most k items, and it is this quantity that we
wish to be competitive with.

The bounded supply case is a generalization of the
unlimited supply case as items are available in unlimited
supply when the number of available items is the same
as the number of bidders (i.e. K =n). Where unlimited
supply is one extreme of the bounded supply case, scarce

supply is another extreme. In the scarce supply case, the
optimal fixed pricing revenue is maximized by selling all
the items when the number of available items is around
k. Previous work on auctions concentrated on the scarce
supply case. The multi-item Vickrey auction is the best
single-price auction for the scarce supply case (and it is
competitive). Our results, extended to bounded supply,
are competitive in the full range of the supply-demand
spectrum with only the assumption that ah < Fy.

We now show how to extend our optimal threshold
sampling auctions to the k-item bounded supply case.
Let opt; be the function that, given a set of bids,
returns the optimal threshold that sells k items or
less. This function, on the entire set of bids, gives
the threshold to use for Fj. The single-price sampling
optimal threshold mechanisms can now be modified to
use threshold function opt,,;/(,—m) on sample of size
m. If this results in too many bids being satisfied,
arbitrarily (e.g. at random) reject bids until there are
only k left. One can show that with high probability,
the number of bids rejected will be small and that this
auction is competitive.

In the dual-price auction with sample size m = n /2,
use opty, /, so that about k/2 bids are selected from each
of the sample and the non-sample. Once can show that
the resulting auction is also truthful and competitive.

We have shown that in a relatively straight-forward
way, our sampling auctions extend from the unlimited
to the bounded supply case. One can extend the
deterministic optimal threshold auction to bounded
supply as well. Also, all of our upper bounds apply to
bounded supply because it generalizes unlimited supply.

To generalize Theorem 4.1 for the k-item case, recall
the alternative definition of 7 as the revenue due to the
optimal untruthful multi-price auction. Define T to be
the revenue of the optimal multi-price auction restricted
to only satisfying k bidders (i.e. the sum of the highest
k bids) and F}, as above. Then the generalized result is
Fi > Te/(2logh).

One result we do not know how to extend to
bounded supply is that for the weighted pairing auction.

12 Concluding Remarks.

We have demonstrated that there exist truthful auc-
tions for unlimited supply markets. We have shown
randomized auctions that are competitive in that they
yield revenue that is within a constant factor of optimal
fixed pricing. We have shown that this result is tight
up to a constant factor, even for multi-price auctions.
We have also shown that no deterministic auction is
competitive in the worst-case. Finally, via simulations,
we have argued that our auctions compare favorably to
fixed pricing with market analysis.



For unlimited supply markets, our analysis assumes
that there is no cost for producing the items being
auctioned. With the following modification we can also
accommodate non-zero marginal costs. If the marginal
cost is v per item, then first subtract v from each bid
and reject all negative value bids. After running the
auction, add v back to the selling price of all winning
bids. If the marginal cost of producing k items is a
more complicated function of &k, we can modify the opt
function used in the sampling optimal threshold auction
to take into account these marginal costs. In this case
the opt function would, as above for bounded supply,
need to be parameterized by the ratio of the sample size
and the non-sample size so as to correctly use marginal
cost information.

To prevent cheating by the auctioneer or the bid-
ders, one may need a trusted third party or a special
cryptographic protocol. Note that cheating prevention
is a problem shared by all on-line auctions. Related
results appear in [5].

13 Open Problems.

We proved that the weighted pairing auction is not
competitive. It is possible, however, that a variant of
this auction that uses different weighting is competitive.

The weighted pairing auction can have revenue
greater than F for some random pairings. It seems like
this might not be the case for the dual-price sampling
optimal threshold auction. Can one prove that it is
always the case that for any randomly chosen sample,
the auction revenue does not exceed F?

We have not considered issues such as the extent to
which bidders can remain anonymous or bid values can
remain secret. See [7] for ways to maintain bid secrecy
in an on-line Vickrey auction.

A significant issue in auctions like ours is resistance
to adversarial attacks. How resistant are our auctions
to bidder collusion, and can collusion resistance be
improved? How well do our auctions resist attacks such
as a competitor attempting to reduce the revenue of an
auction by submitting a large number of low bids?

Repeated auctions for the same item may be of
interest in some applications. In this case, the challenge
is to design a truthful auction mechanism.
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