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Abstract

We introduce the following consensus estimate prob-
lem. Several processors hold private and possibly dif-
ferent lower bounds on a value. The processors do
not communicate with each other, but can observe
a shared source of random numbers. The goal is to
come up with a consensus lower bound on the value
that is as high as possible. We give a solution to the
consensus estimate problem and show how it is useful
in the context of mechanism design. The consensus
problem is natural and may have other applications.

Based on our consensus estimate technique, we
introduce Consensus Revenue Estimate (CORE) auc-
tions. This is a class of competitive revenue-
maximizing auctions that is interesting for several
reasons. One auction from this class achieves a bet-
ter competitive ratio than any previously known auc-
tion. Another one uses only two random bits, whereas
the previously known competitive auctions on n bid-
ders use n random bits. Furthermore, a parameter-
ized CORE auction performs better than the previous
auctions in the context of mass-market goods, such
as digital goods.

1 Introduction

Recent economic and computational trends, such as
the negligible cost of duplicating digital goods and
the emergence of the Internet, have led to a num-
ber of new and interesting dynamic pricing prob-
lems. A common approach to such problems, orig-
inating in the field of mechanism design (see, e.g.,
[8, 11, 18, 21, 23, 33]), is to develop protocols in
which all rational participants are motivated to follow
the protocol. Traditionally studied by Economists
and Game Theorists, the relevance of mechanism de-
sign to Computer Science applications and challeng-
ing computational issues in mechanism implementa-
tions have recently attracted attention of Computer
Scientists. See, e.g., [1, 2, 13, 20, 26, 27, 28, 29].

In this paper we study auctions, which are an im-
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portant class of mechanisms. We consider auctions
for a set of identical items. We assume that each
consumer has a private utility value, i.e., the maxi-
mum value the consumer is willing to pay for an item.
An auction takes as input bids from each of the con-
sumers and determines which bidders receive an item
and at what price. We say the auction is truthful (or
equivalently, strategy-proof or incentive-compatible)
if it is in each consumer’s best interest to bid their
true utility value.

We are interested in truthful auctions that bring
high expected revenue to the seller. Economists have
studied such auctions in a Bayesian framework, i.e.,
assuming a known probability distribution of bidder
utilities. A natural approach in this setting is to use
the prior distribution knowledge to set reservation
prices in the Vickrey-Clarke-Groves mechanism [8,
18, 33]. This approach has been taken in [7, 25].
Auction design problems under weaker assumptions
on the prior distribution knowledge have recently
been studied in [3, 31]. In contrast to the Bayesian
design and analysis framework, in [15, 16] we consider
a worst case competitive analysis of auctions. This
approach is motivated by on-line algorithms (see,
e.g., [6, 32]). We define competitive auctions as the
truthful auctions that obtain a fraction of the revenue
of an optimal auction1 on every input. An auction is
β-competitive if on every input its expected revenue
is at least the optimal revenue divided by β. We refer
to β as the competitive ratio.

In [15, 16] we established a framework for com-
petitive auction design and opened the important
area of worst-case analysis of profit maximizing mech-
anisms for further research. Subsequent work on
competitive auctions includes extensions to the non-
homogeneous item case [17], to the on-line case [4, 5],
and to more general mechanisms [14]. However, the
area is very rich in open problems. We address some
of these problems in this paper and substantially im-
prove upon some of the previous results.

In [14] the optimal competitive ratio is bounded
between two and four.2 The upper bound is achieved

1We discuss optimal auctions in Section 2.
2In subsequent work with Michael Saks and Anna Karlin



by the Sampling Cost Sharing auction. A natural
problem we address is that of narrowing the gap
between the upper and the lower bounds.

The amount of randomness needed by a compet-
itive auction is another interesting question. An auc-
tion is symmetric if its outcome depends only on the
set of input bids and not on the order the bids are
presented in. No symmetric deterministic auction is
competitive [15]. Previously known competitive auc-
tions are symmetric and randomized. These auctions
are based on random sampling and use one random
bit for every bidder. We show that symmetric auc-
tions can be competitive with very little randomiza-
tion.

A desirable feature of an auction is its ability
to achieve competitive ratios close to one in mass-
market applications, such as digital goods distribu-
tion, where the number of items sold is guaranteed
to be large. Results of [15] imply that the parame-
terized variant of the Dual-price Sampling Optimal
Threshold auction, DSOTα, is asymptotically good:
its competitive ratio converges to one as α, the min-
imum number of items guaranteed to be sold, grows.
However, the analysis of DSOTα guarantees compet-
itive ratios that are close to one only for very large
values of α. Our new techniques lead to auctions with
good competitive ratios for more reasonable values of
α.

One of the main contributions of this paper is
the definition of a consensus estimate problem and a
solution to this problem. Given ρ > 0 and v > 0, we
say that a function g is a ρ-consensus estimate of v
if for every w : v/ρ ≤ w ≤ v, g(w) is a consensus
estimate of v, i.e., g(w) = g(v) and 0 < g(v) ≤ v.
This problem has no deterministic solution. We show
how to choose g at random so that g is a good
consensus estimate on average: For any v, if we define
a random variable γ to be g(v) if g is a consensus
estimate and zero otherwise, then E[γ] = Ω(v).

As an application of the consensus estimate prob-
lem, we introduce the class of COnsensus Revenue
Estimate (CORE) auctions. Intuitively, these auc-
tions use consensus estimate to compute a lower
bound on the optimal auction revenue that is inde-
pendent of each individual bid, and use this bound
as a target revenue of the cost-sharing auction. Our
analysis of CORE auctions leads to the following re-
sults:

• We show a CORE auction that is 3.39-
competitive. This improves the previous best
competitive ratio of four.

we have improved the lower bound to 2.42.

• We describe a competitive CORE auction that
uses only two random bits. This essentially
closes the question of how much randomness a
symmetric competitive auction needs.

• We introduce a parameterized CORE auction,
COREα, that achieves competitive ratios close
to one for more realistic values of α than DSOTα.
For example, for α = 1, 000, we get the compet-
itive ratio of 1.0465, i.e., the auction revenue is
less than 5% away from optimal.

The fact that the CORE auctions achieve better com-
petitive ratios and use less randomness demonstrates
that techniques behind CORE are interesting and
powerful.

2 Definitions and Background

We consider single-round, sealed-bid auctions for a
set of identical items available in unlimited supply.
As in the previous work on competitive auctions, the
results can be extended to the case when the number
of available items is limited.

Definition 2.1. A single-round sealed-bid auction
mechanism is one where:

• Given the bid vector b = (b1, . . . , bn), i.e.,
the input, the mechanism computes an outcome
allocation, x ∈ {0, 1}n and prices, p ∈ Rn; i.e.,
the output. If xi = 1 bidder i wins (i.e. receives
the item) and pays price pi, otherwise we say
that bidder i loses.

• We assume that 0 ≤ pi ≤ bi for all winning bid-
ders and that pi = 0 for all losing bidders (these
are the assumptions of no positive transfers and
voluntary participation; see, e.g., [24]).

• The auctioneer’s profit is A(b) =
∑

i pi.

We say the mechanism is randomized if the proce-
dure used to compute the allocations and prices is
randomized. Otherwise, the mechanism is determin-
istic. Note that if the mechanism is randomized, the
profit of the mechanism, the output prices, and the
allocation are random variables.

We say that an auction is symmetric if the price
and allocation vectors are independent of the order
of the bids (i.e., they depend only on the set of
input bids). All auctions discussed in this paper are
symmetric.

We use the following private value model for
bidders. Each bidder i has a private utility value
ui, representing the true maximum they are willing
to pay for an item. Bidders are rational, i.e., each



bidder bids so as to maximize their profit, uixi −
pi. Bidders have full knowledge of the auction
mechanism. Bidders do not collude.

In the rest of this section we review the notions
of truthfulness and bid-independence. We describe
the competitive framework that we use as a perfor-
mance metric for analyzing auctions. We review an
interesting special case of cost sharing mechanism [24]
which our auctions use. Finally, we discuss combin-
ing auctions that are competitive on sets of restricted
of inputs to get auctions that are competitive on the
union of the sets.

2.1 The Bid-Independent Characterization
of Truthful Auctions. We say that a determinis-
tic auction is truthful if, for each bidder i and any
choice of bid values for all other bidders, bidder i’s
profit is maximized by bidding their utility value. We
say that a randomized auction is truthful if it can be
described as a probability distribution over determin-
istic truthful auctions. Note that with this notion of
truthfulness, the probability that a bidder’s profit ex-
ceeds a value v is simultaneously maximized for every
v by bidding truthfully. In the remainder of this pa-
per, when considering truthful auctions, we assume
that bi = ui.

Next we describe a useful characterization
of truthful auctions using the notion of bid-
independence. We define deterministic bid-
independent auctions first. Let b−i denote the
vector of bids b with bi removed, i.e., b−i =
(b1, . . . , bi−1, ?, bi+1, . . . , bn). We call such a vector
masked. Given a function f on masked vectors, the
deterministic bid-independent auction defined by f ,
Af , is:

Definition 2.2. (Bid-independent Auction, Af)

On input b, for each bidder i do the following:

1. vi ← f(b−i).

2. If vi ≤ bi, set xi ← 1 and pi ← vi (Bidder i
wins).3

3. Otherwise, set xi = pi = 0 (Bidder i loses).

A randomized bid-independent auction is a probabil-
ity distribution over bid-independent auctions. For
these auctions, f(b−i) is a non-negative real-valued
random variable.

3In fact, bid-independence allows the inequality, vi ≤ bi, to

be strict or non-strict at the discretion of f(b−i). Thus f can
specify whether to accept bi at price vi if bi is in (vi,∞) or

[vi,∞). For the auctions presented in this paper this subtlety

is not important.

Theorem 2.1. [14] An auction is truthful if and only
if it is equivalent to a bid-independent auction.

The proof of Theorem 2.1 is constructive. Given
a truthful auction A the proof shows how to obtain
the bid-independent function f such that A is equiv-
alent to Af .

2.2 Competitive Auctions. We now review the
competitive framework from [14]. In order to evaluate
the performance of auctions with respect to the goal
of profit maximization, we introduce the optimal
single price omniscient auction F and the related
auction F (m).

The optimal single price omniscient auction, F ,
is defined as follows: Let b be a bid vector, and let
vi be the i-th largest bid in b. Auction F on input b
determines the value k such that kvk is maximized.
All bidders with bi ≥ vk win at price vk; all remaining
bidders lose. The profit of F on input b is thus
F(b) = max1≤k≤n kvk.

The optimal single price omniscient auction that
sells to at least m bidders, F (m), is defined as follows:
Let b and vi be as in the previous paragraph. Auction
F (m) on input b determines the value k such that k ≥
m and kvk is maximized. All bidders with bi ≥ vk

win at price vk; all remaining bidders lose. The profit
of F (m) on input b is thus F (m)(b) = maxm≤k≤n kvk.

We extend the definition of F (m) to masked
vectors by treating the “?” as zero.

We would like an auction to be competitive with
F on every input; however, as shown in [15], if b is
such that a single bidder’s utility dominates the total
utility of the other bidders, no auction can compete
with F(b). We use two notions of competitiveness
for auctions: a general competitiveness for an auction
on any set of bids [14] and notion of competitiveness
suited for mass-markets where the number of winners
of the optimal auction is large [16, 17]. In the
latter case, an auction need not be competitive on
all inputs.

Let A be a truthful auction. We say that A is
β-competitive against F (2) (or just β-competitive) if
for all bid vectors b, the expected profit of A on b
satisfies

E[A(b)] ≥ F
(2)(b)
β

.

We say that A is competitive if there exist a constant
β such thatA is β-competitive. One can also compare
the auction revenue to F (m) for m > 2; however, we
do not do so in this paper.

For mass-market auctions (Section 4.2) we use an
alternative notion of competitiveness. Given a bid
vector b, let h(b) denote the maximum bid value in



b. Let A be a truthful auction. We say that A is
(α, β)-competitive if for all bid vectors b such that
F(b) ≥ αh(b), the expected profit of A on b satisfies

E[A(b)] ≥ F(b)
β

.

We will use the fact that F(b) ≥ αh(b) implies that
F(b) has at least α winners.

Note that the first definition of competitiveness
is stronger: One can show that the fact that A is
β-competitive against F (α) implies that A is (α, β)-
competitive. The converse is not necessarily true.
Our strongest notion of a competitive auction is that
against F (2).

2.3 Cost Sharing. In this section we review the
truthful cost sharing mechanism CostShareC [24].
The goal of cost sharing is, given bids b, to share
the cost of a good or service among a subset of the
bidders. We restrict our attention to the simple case
of sharing a target value C whenever possible.

CostShareC : Given bids b, find the largest k
such that the highest k bidders can equally
share the cost C. Charge each of these
bidders C/k. If no subset of bidders can
share the cost, the auction has no winners.

Important properties of this auction are as follows:

• CostShareC is truthful and symmetric.

• If C ≤ F(b), CostShareC has revenue C; other-
wise it has no winners and no revenue.

Since the auction is truthful, it is equivalent
to a bid-independent auction for some function f
on masked bid vectors. Let csC be this function
(Theorem 2.1 guarantees that such a function exists).

2.4 Convex Combination of Auctions. As we
shall see, the CORE approach works on bids such that
the optimal auction, F (2), has at least three winners.
To get an auction that is competitive on all sets of
bids, we use the following result.

Let A′ and A′′ be auctions such that A′ is β′-
competitive on b ∈ B′ and A′′ is β′′-competitive on
b ∈ B′′. Consider the auction A that is a “convex
combination” of A′ and A′′: With probability p, A
runs A′ and otherwise A runs A′′. The following
result is straight-forward.

Lemma 2.1. A is max(β′/p, β′′/(1− p))-competitive
on b ∈ B′ ∪ B′′. For the optimal choice of p, A is
(β′ + β′′)-competitive on b ∈ B′ ∪ B′′.

Note that the competitive ratio of A may be better
than the lemma guarantees.

Recall that, by definition, F (2)(b) has at least
two winners. Let B3+ denote the set of all b such
that F (2)(b) has at least three winners and let B2

denote the set of all b such that F (2)(b) has exactly
two winners. If a CORE auction is competitive on
B3+, we obtain an auction competitive for all bids by
combining the CORE auction with the Vickrey auc-
tion [33]. The Vickrey auction is the bid-independent
auction defined by the max function. Since the Vick-
rey auction sells to the highest bidder at the price
equal to the second highest bid, we have the follow-
ing result.

Lemma 2.2. The Vickrey auction is 2-competitive on
b ∈ B2.

3 The Consensus Estimate Problem

In this section we study the following consensus
problem that is the key to our CORE auctions. For
a given ρ > 1 and v > 0, we say that a function g is
a ρ-consensus estimate of v if

1. g is a consensus: for any w such that v/ρ ≤ w ≤
v, we have g(w) = g(v).

2. g(v) is a nontrivial lower bound on v, i.e., 0 <
g(v) ≤ v.

We call g(v) the consensus value. Intuitively, we
would like to find a good consensus estimate for v,
where the higher the consensus value, the higher the
quality of the estimate. The payoff, γg, for a function
g is γg(v) = g(v) if g is a ρ-consensus estimate on v
and γg(v) = 0 otherwise.

It is easy to see that no deterministic function
g is a ρ-consensus estimate for all v > 0. First, a
simple induction shows that for a deterministic g(v)
to be a consensus for all positive v it would have to be
a constant function. The only constant values that
are lower bounds on positive v are trivial, i.e., non-
positive.

Definition 3.1. The consensus estimate problem
is, for any ρ, to give a distribution G on functions g
such that for any v the expected payoff is large relative
to v. That is, the worst case value of E[γg(v)] /v is
large over choices of v.

3.1 Consensus Estimate Algorithm. We de-
scribe a distribution G that works well in the fol-
lowing sense: for any v, with g from G we have
E[g(v)] = Ω(v), where the constant hidden by the
Ω notation is a function of ρ. Our solution uses an



additional parameter c > ρ. The value of c is cho-
sen as a function of ρ to maximize the quality of the
estimate. Consider the following function gc

u:

gc
u(v) = v rounded down to nearest cj+u for integer j.

Remark. The definition of gc
u implies that for any v,

v
c ≤ gc

u(v) ≤ v. Thus if gc
u is a consensus for v then

it is a consensus estimate with value within a factor
of c from v.

We define G as a distribution of functions of
the form gc

U with U chosen uniformly on [0, 1]. We
repeatedly make use of the following result.

Lemma 3.1. For g from G, g(v) is distributed iden-
tically to cU ′

v/c for U ′ uniform on [0, 1].

Proof. Consider a random variable Y = logc g(v) and
let t = logc v − 1. Then Pr[Y ≤ t + x] = Pr[U ′ ≤ x]
and therefore Y is uniformly distributed between t
and t + 1. Thus, g(v) is identical to cU ′

v/c.

For U uniform [0, 1], the random variable cU

satisfies Pr
[
cU ≤ z

]
= Pr[U ≤ logc z] = logc z =

ln z
ln c . The probability density function for cU is
π(x) = 1/(x ln c) for 1 ≤ x < c. To see this, note
that Pr

[
cU ≤ z

]
is

∫ z

1
1

(x ln c)dx = ln z
ln c .

Next we bound the probability that g is a con-
sensus.

Lemma 3.2. For g from G, the probability g is a
consensus estimate is 1− logc ρ.

Proof. g is a consensus estimate for v if g(v) ≤ v
ρ .

Using Lemma 3.1, we get

Pr
[
g(v) ≤ v

ρ

]
= Pr

[
cUv/c ≤ v

ρ

]
= Pr

[
cU ≤ c

ρ

]
= logc(c/ρ) = 1− logc ρ.

In the application to auctions, the value of ρ is
fixed and we chose c to maximize the expectation of
γ. Lemma 3.2 implies E[γg(v)] ≥ v

c (1− logc ρ). The
following theorem gives a better bound.

Theorem 3.1. For g from G defined above, for all v,
E[γg(v)] = v

ln c

(
1
ρ −

1
c

)
.

Proof. By Lemma 3.1, g(v) is distributed as cUv/c
for U uniform on [0, 1]. Therefore,

E[γ(v)] =
v

c

∫ c/ρ

1

x · π(x)dx +
∫ c

c/ρ

0 · π(x)dx

=
v

c

∫ c/ρ

1

1
ln c

dx =
v

ln c

(
1
ρ
− 1

c

)
.

Note that for a fixed ρ, one can chose the value of c
that maximizes E[γg(v)] /v.

3.2 Consensus Estimates with One Random
Bit. Given the above consensus estimate solution
that uses a random real number chosen uniformly
from [0, 1] and the fact that no purely deterministic
consensus estimate exists, it is natural to ask how
much randomness is necessary. We show how to
give a consensus estimate with only one random bit.
Choose a constant c′ > ρ and let c = c′

2. Pick the
value of u uniformly from {0, 1/2} and use function
gc

u as defined above. Note that for these values of
u, we round the revenue estimates to even and odd
powers of c′, respectively. Since c′ > ρ, for any value
of v, at most one of these values can be in the interval
[v/ρ, v] and therefore the revenue estimates agree
with probability of at least 1/2 and the expected
payoff is at least v/(2c′ρ). This gives the following
lemma:

Lemma 3.3. The consensus estimate solution with
g uniform from {gc

0, g
c
1
2
} and c =

(
ρ + ε

2ρ

)2

gives

E[γg(v)] = v/(2ρ2 + ε).

4 CORE Auctions

In this sections we introduce the class of CORE auc-
tions. Recall from Section 2.3 the cost sharing mech-
anism CostShareC and the bid-independent function
csC that implements it. To explain the intuition be-
hind the CORE auctions, consider the generic bid-
independent mechanism Af : For each bidder i we
use the price f(b−i). If it was possible to compute
F (2)(b) from b−i then f could use this value and
output the price, csF(2)(b)(b−i). This mechanism
would achieve revenue F (2)(b). Unfortunately, we
cannot compute F (2)(b) from b−i. However, if we
can show that removing a bidder does not change
F (2) much, i.e., F (2)(b)/ρ ≤ F (2)(b−i), then using a
ρ-consensus estimate on F (2)(b−i) for each bidder i
is likely to agree on a consensus value that is close
to but less than F (2)(b). Since this value is com-
puted bid-independently, it can be used with the bid-
independent cost share function.

First we show that removing a bid does not
change F (2) much.

Lemma 4.1. If F (2)(b) has k ≥ 3 winners, then for
any i,

k−1
k F

(2)(b) ≤ F (2)(b−i) ≤ F (2)(b).

When the the number of winners in F (2)(b) is k ≥ 3,
i.e., b ∈ B3+, Lemma 4.1 allows us to estimate
F (2)(b) from F (2)(b−i). In this case, we can use



ρ = 3
2 ≥

k
k−1 in combination with our ρ-consensus

estimate solution from Section 3 as follows.
Let g be a function picked from G as defined in

Section 3. Let R be a function from masked bid
vectors to reals defined by R(b−i) = g(F (2)(b−i)).
We define the Basic CORE auction as the bid-
independent auction given by function fR:

fR(b−i) = csR(b−i)(b−i).

Since g, and therefore R, is chosen from a probability
distribution, the auction is randomized. Intuitively,
R estimates the optimal revenue.

It is not difficult to see that the Basic CORE
auction is competitive on b ∈ B3+. In Section 2.4
we showed that a convex combination of an auction
competitive on B3+ with the Vickrey auction, which
is competitive on B2, gives an auction that is com-
petitive on any input.

Definition 4.1. The CORE auction is a convex
combination of Vickrey (with probability p) and the
Basic CORE auction (with probability 1− p).

To get a tighter analysis than that implied di-
rectly from Theorem 3.1 and Lemma 2.1 we utilize
the following observation: The Vickrey auction is k-
competitive on B3+. Therefore if we run the Vickrey
action with probability p, this adds pF (2)(b)/k to the
expected revenue of the B3+ case. Judicious choices
of p and c give the following result:

Theorem 4.1. For an appropriate choice of c and
p, the CORE auction is 3.39-competitive against
F (2)(b).

Proof. Case 1 (b ∈ B3+): For the Basic CORE
auction, γ, defined in Section 3, is a lower bound on
the auction revenue. Then Theorem 3.1 implies that
if the Basic CORE auction is selected, the expected
revenue is at least F(2)(b)

ln c

(
k−1

k −
1
c

)
. If the Vickrey

auction is selected, the expected revenue is at least
F(2)(b)

k . Thus the total revenue is at least

F (2)(b)
(

p

k
+

1− p

ln c

(
1− 1

k
− 1

c

))
.

Case 2 (b ∈ B2): The expected revenue for b is
at least F (2)(b)p

2 due to the Vickrey auction.
We pick p and c to balance the Case 1 and Case 2

revenue. Numeric simulation shows that c = 2.0 and
p = 0.59 is a near-optimal choice. This choice gives
a competitive ratio of 3.39.

This auction has several interesting properties.
One property is that in the “normal” case, i.e., when

the revenue estimates agree or when the Vickrey
auction is used, the outcome of the auction is a single
sale price with the property that every bidder that
bid above this price wins. In general, we have the
following result.

Lemma 4.2. The CORE auction is at most dual-
priced.

Proof. If we are using Vickrey, the sale price is
unique. Otherwise, if we have a consensus estimate,
the sale price is also unique. Suppose the estimates
disagree. Consider two cases, k ≥ 3 and k = 2.

In the first case, R(b) is between k−1
k F

(2)(b)
and F (2)(b). Thus, some bids will use the sale price
from CostShareR(b) and some will use the price from
CostShareR(b)/c. Lower bids will use the former (a
higher price) and higher bids will use the latter (a
lower price).

In the second case, F (2)(b) is determined by the
two highest bids. If bi is not one of these bids, then
F (2)(b−i) = F (2)(b). The values of F (2) when one
or another of the two bids is removed are the same.
It follows that there are only two possible values of
F (2)(b−j), and therefore at most two distinct sale
prices.

4.1 Random Reals vs. Random Bits. The
CORE auction of the previous section needs to select
a real-valued random u. To combine this auction with
the Vickrey auction, we use another random real, p.
Consider a more realistic model of computation that
does not allow infinite-precision reals. In this case p
and u must be rational. The CORE approach easily
adapts to such a model.

Using Lemma 3.3, one can show the following
result.

Theorem 4.2. For any ε > 0, and with appropriate
parameter settings, a CORE auction that only uses
two random bits is (6 + ε)-competitive against F (2).

Proof. If b ∈ B2, we chose the Vickrey auction with
probability 1/2. In this case, the competitive ratio is
four. For the rest of the proof we assume b ∈ B3+;
this case determines the competitive ratio.

For b ∈ B3+, the revenue in the case when
the Vickrey auction is selected is F (2)(b)/k. In the
other case, our one random bit consensus estimate
algorithm with c′ ≈ 3

2 and ρ = k/(k − 1) gets an
expected consensus value of v/(2c′ρ) = v(k−1)

3k . Thus
the expected profit is approximately

F (2)(b)
2

(
1
k

+
k − 1
3k

)
≥ F

(2)(b)
6

.



By using more random bits, we get better discrete
approximation of the continuous distribution of u and
of the optimal value of p of the previous section. With
sufficiently many bits, we can get arbitrary close to
the 3.39 competitive ratio.

4.2 CORE for Mass-Markets. In the context of
mass-market goods, one may be able to assume that
the number of items sold is large (e.g., guaranteed
to be at least a thousand). In this context, it is
possible to design (α, β)-competitive auctions that
have relevant performance guarantees that are better
than those of worst case auctions. In this section we
introduce a parameterized variant of CORE, COREα.
We assume that α ≥ 2 is an integer.

Definition 4.2. COREα is the Basic CORE auc-
tion with consensus parameter c set optimally as a
function of α.

Theorem 4.3. For any α ≥ 2, there is β such that
COREα is (α, β)-competitive and β = 1−O

(
1√
α

)
.

Proof. Assume F(b) ≥ αh(b). For any i we have
α−1

α F
(2)(b) ≤ F (2)(b−i) ≤ F (2)(b). We analyze

the performance of the consensus estimate for ρ =
α/(α − 1). Using Theorem 3.1 we get an expected
revenue of at least:

(4.1)
F(b)
ln c

(
1− 1

α
− 1

c

)
.

Set c = 1 + 1√
α
. Using the inequality ln(1 + x) ≤

x, we get the following bound on the expected revenue
of COREα.

F(b)
ln c

(
1− 1

α
− 1

c

)
≥ F(b)

√
α

(
1− 1

α
− 1

1 + 1/
√

α

)
≥ F(b)

(
− 1√

α
+

1
1 + 1/

√
α

)
≥ F(b)

(
1− 1√

α

(
1 +

1
1 + 1/

√
α

))
≥ F(b)

(
1− 3

2
√

α

)
.

Using equation (4.1) in a numeric simulation, we
can compute near-optimal values of c and β for a
given value of α. Table 1 gives values of β for several
values of α. The data suggests that for mass-market
goods, COREα performance may be acceptable.

α β
2 5.3567
3 3.2833

10 1.7021
100 1.1602

1000 1.0465
10000 1.0144

100000 1.0045

Table 1: Competitive ratios of COREα for some
values of α.

5 Concluding Remarks

The two key ingredients of a CORE auction are an
estimator that computes a consensus lower bound on
the optimal solution value in a bid-independent way,
and a profit extractor that generates the revenue that
is equal to the estimated value. Note that a profit
extractor may be easier than a competitive auction
to design, as the former has additional information,
namely a good lower bound on the auction revenue.
For the basic auction problem we address in this
paper, the well-known cost sharing auction is a profit
extractor. This general estimator-extractor approach
applies beyond the basic auctions. As an example it
has already been successfully applied to the double
auction problem [10].

Our solution to the consensus problem is a nat-
ural one. We would like to know if this solution is
optimal or if there is a better solution.

One desirable consumer “fairness” property for
an auction is for winners to all pay a single price
and for all bidders that bid above that price to win.
More formally we say an auction outcome is simple if
it has the following structure: there is a price p such
that all bids above p win at price p, all bids below p
lose, and bids tied with p either all win at price p or
all lose. Recently with Anna Karlin, we have shown
that no auction that always has a simple outcome
is competitive. On the other hand, CORE auction
outcomes are simple in the “normal” case when the
auction achieves consensus.

The consensus problem has some similarity to
coding theory (see, e.g., [9]), Byzantine agreement
(see, e.g., [22, 30]), and to the private approximation
problem, [12, 19]. We wonder if there is a deeper
relationship with one of these areas.
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