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1. INTRODUCTION

The classical economic theory of mechanism design is Bayesian: it is assumed that the
preferences of the agents are drawn at random from a known probability distribution
and the designer aims to optimize her objective in expectation over this randomization.
This leads to mechanisms that are tailored to the distributional setting. In contrast,
prior-free mechanism design looks at mechanisms that perform well without knowl-
edge or assumptions on agent preferences. While these mechanisms do not perform
as well as ones tailored to the distribution, in many environments they provide good
approximations and are more robust.

Prior-free mechanisms are evaluated in terms of the approximation factor they ob-
tain relative to a given performance benchmark. For instance, prior-free auctions for
digital goods, i.e., where there are n agents and n identical units of an item, have been
shown to obtain a constant approximation to the revenue of the best posted price, ex
post. Meaning: there is a constant β such that the expected revenue of the auction
is at least a β-fraction of the revenue from posting the best, in hindsight, price. Of
course, the Bayesian optimal auction for an i.i.d. distribution on agent preferences is a
posted price, so approximation relative to the best posted price provides a very strong
robustness guarantee.

In large markets (under reasonable assumptions) it is possible to design prior-
free mechanisms that obtain arbitrarily close approximations to the Bayesian opti-
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mal mechanism. This follows by sampling theory and the law of large numbers; ex-
plicit constructions have been given by Segal [2003], Baliga and Vohra [2003], and
Balcan et al. [2008]. Furthermore, Jackson and Kremer [2007] show that agents be-
come “price takers” in the limit and, therefore, mechanism design is easy. Our focus,
therefore, is on small, a.k.a., thin, markets where we look for constant approximations
(arbitrarily close approximations are impossible).

In thin markets the Bayesian prior assumption, that the designer has modeled the
agents’ preferences as draws from a continuous distribution, breaks down. Market
analysis cannot hope to give such an accurate prior; and historical data must only be
used with care due to Coase-conjecture-type phenomena [Coase 1972]. Furthermore,
many such thin markets are ones where it is not possible to reoptimize the mechanism
for each scenario. In these markets a prior-free mechanism, i.e., one that works pretty
well under any market conditions, may be preferred.

The simplest environment in which to explore mechanism design is that of sell-
ing a digital good, i.e., where the seller has no constraint over the subsets of agents
that can be served simultaneously. Recent contributions to the literature on prior-free
mechanism design have focused on extending results for digital good environments to
ones that are more structurally rich. From least-general to most-general, these include
multi-unit environments, where there is a given number k of units available for sale
(i.e., any subset of the agents of size at most k can be served); matching environments,
where feasible sets correspond to one side of a bipartite matching; and downward-
closed environments, where the only constraint on feasible sets is that any subset of a
feasible set is feasible.

The only prior-free mechanisms known to give good approximations for general
downward-closed environments are variants of the random sampling auction. This
auction first gathers distributional information from a random sample of the agents
and then runs the Bayesian optimal auction for the empirical distribution on the
remaining agents. Tight analysis of the random sampling auction is difficult, upper
bounds on its approximation factor are 4.68, 25, 50, and 2560 for digital good [Alaei
et al. 2009], multi-unit [Devanur and Hartline 2009], matching [Hartline and Yan
2011], and downward-closed environments [Hartline and Yan 2011], respectively.
Other mechanism design techniques give 3.25 and 6.5-approximations for digital-
good [Hartline and McGrew 2005] and multi-unit environments [Hartline and Yan
2011], respectively, and notably the 3.25 approximation for digital goods surpasses the
lower-bound of 4 which is known for the random sampling auction. These limitations
suggest the need to consider other techniques for obtaining good approximations for
general downward-closed environments.

To obtain good approximation mechanisms for general downward-closed environ-
ments, we generalize the digital-good auction technique of consensus estimates from
Goldberg and Hartline [2003]. The two main ingredients of this approach are a profit
extraction mechanism and a consensus function. Given a target profit, the profit extrac-
tion mechanism should obtain the target if the target is less than the optimal revenue
possible. If we had a good estimate of the revenue, we could then obtain a good revenue
with the profit extractor. The consensus function is used to get an estimate of the rev-
enue from the reports of the agents in a way that is non-manipulable. In particular, for
each agent we can calculate the optimal profit from the other agents, plug this profit
into the consensus function, and with high probability the estimated profit produced
will be the same for all agents. We can then simulate the profit extraction mechanism
for each agent with their consensus estimate. If the estimates agree, the result of this
simulation is the agreed-upon profit, otherwise, it is at least zero.

There are two main challenges to extending this approach for general downward-
closed environments. The first challenge is in designing a profit-extraction mechanism
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for these environments. Our profit extraction mechanism will be parameterized by a
revenue curve, the revenue as a function of number of winners (without taking into
account any feasibility constraints). Given a target revenue curve that is below the ac-
tual revenue curve, our mechanism obtains revenue comparable to that which would
be obtained by the optimal mechanism on the input that corresponds to the target
revenue curve. The second challenge is in ensuring infeasible outcomes are not pro-
duced in the case that the estimates do not have a consensus. Note that for digital
good environments, there is no feasibility constraint that could be violated when the
estimates do not reach consensus. The same is not so for general downward-closed
environments. A parameterized mechanism (such as a profit extractor) is of course re-
quired to always produced feasible outcomes. However, if we determine the outcome
for each agent by simulating the parameterized mechanism with different parameters
for different agents, the combined outcome may not be feasible. To address this poten-
tial inconsistency we give a cross checking approach for identifying a subset of agents
for which consensus is achieved.

Our mechanism is a 30.4-approximation in general downward-closed environments.

1.1. Related Work

The most important prior-free mechanism is the second-price, a.k.a. Vickrey, auction
and its generalization to complex environments which is known as the Vickrey-Clarke-
Groves (VCG) mechanism [Vickrey 1961; Clarke 1971; Groves 1973]. This mechanism
maximizes the social surplus, it is dominant strategy incentive compatible, and it re-
lies on no distributional assumptions on agent preferences. Unfortunately, the objec-
tive of social surplus is singular in this respect; for other objectives such as revenue the
optimal mechanism for any given prior distribution depends on the distribution. My-
erson [1981] solved for this Bayesian optimal mechanism in single-item environments
with independently distributed agent preferences; Bulow and Roberts [1989] provided
a natural economic interpretation of Myerson’s approach; and the approach general-
izes beyond single-item auctions to any abstract environment where the agents have
single-dimensional preferences.

The last decade has seen a resurgence of interest in optimal mechanism design;
however, with the objective of describing good mechanisms for revenue that are more
like VCG in assumptions: they are dominant strategy incentive compatible and have
good revenue regardless of the prior distribution or even adversarially. This direction
was initiated by Goldberg et al. [2001; 2006] who studied a digital good environment.
In this digital good environment there are n agents and the seller has n identical
units of an item. Goldberg et al. gave several digital good auctions which guaranteed
good (i.e., constant) approximation to the revenue of the optimal posted pricing (in
hindsight). The best approximation factor for digital good auctions of 3.25 was obtained
by an auction due to Hartline and McGrew [2005].

An important issue in the design of prior-free mechanism design for objectives like
revenue where the Bayesian optimal mechanism is not prior-free, is how mechanisms
should be judged. For instance, the digital good auctions above were judged relative
to optimal posted pricing. Hartline and Roughgarden [2008] observed that optimal
posted pricing is a good benchmark for comparison of digital good auctions because
the Bayesian optimal mechanism for digital goods under an i.i.d. distribution is a
posted price. Therefore, by approximating the optimal posted pricing revenue, a digital
good auction would simultaneously approximate the Bayesian optimal auction for any
i.i.d. distribution. Hartline and Yan [2011] showed that a good generalization of this
benchmark to structurally rich environments is the optimal envy-free revenue (See
Section 2). Their justification of the envy-free benchmark is reinforced by prior work of
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Jackson and Kremer [2007] who observe that envy freedom and incentive compatibility
are identical in the limit as the market grows.

There are two relaxations of the above approach prior-free mechanism design that
are noteworthy. One can relax the assumption that the agent preferences could be
adversarial and instead assume they are drawn from a distribution. Dhangwatnotai,
Roughgarden, and Yan [2010] considered the design of dominant strategy incentive
compatible mechanisms in such an environment. They consider abstract service pro-
vision in downward-closed environments with the assumption that the values of the
agents are distributed according to a unknown distribution that satisfies a standard
monotone hazard rate condition. Under this assumption, they give (essentially) a 4-
approximation mechanism. Caillaud and Robert [2005] further relax the design consid-
erations by allowing for Bayes-Nash implementation (for single-item auctions). Their
auction relies on the agents’ knowledge of the distribution and obtains the optimal rev-
enue. Furthermore, standard approaches in non-parametric Bayes-Nash implementa-
tion theory suggest that the Caillaud-Robert result can approximately extended to
general environments, see e.g., Jackson [2001]. The mechanisms suggested by this
last approach requires agents to report their knowledge about the distribution of other
agents’ preferences.

Relative to the above discussion, the present paper considers the original problem of
prior-free mechanism design: a single dominant strategy incentive compatible mech-
anism is sought to approximate the envy-free benchmark of Hartline and Yan [2011].
This work can be viewed as generalizing that of Dhangwatnotai et al. [2010] by relax-
ing the monotone hazard rate assumption or improving on the mechanisms of Hartline
and Yan [2011]. The mechanism design techniques we develop are extensions of profit-
extraction and consensus techniques for digital good environments that come from
Goldberg and Hartline [2003; 2005].

1.2. Organization

In Section 2 we will formally describe our auction environment, design and analysis
framework, and review the consensus technique. In Section 3 we describe our cross-
checking approach as it applies to obtaining a consistent consensus estimate. In Sec-
tion 4 we describe a mechanism for extracting the profit suggested by a given target
revenue curve. In Section 5 we describe an approach for obtaining a consensus esti-
mate on revenue curves. Finally, in Section 6 we combine the three parts to give a good
mechanism and we analyze its performance.

2. PRELIMINARIES

Here we describe the abstract setting in which we consider mechanism design and the
structural tools that we will be using to design and analyze mechanisms.

2.1. Incentives

Let [n] = {1, . . . , n} be a set of n ≥ 2 bidders. Each bidder i ∈ [n] has a private valuation
vi for receiving some abstract service. A bidder i, upon reporting his valuation, will be
served with a probability xi and charged a payment of pi. We denote the valuation
profile, allocation vector, and payment vector by v = (v1, . . . , vn), x = (x1, . . . , xn), and
p = (p1, . . . , pn) respectively.

We assume the standard risk-neutral quasi-linear utility model, i.e., an agent i
wishes to maximize his expected utility which is given by ui = vixi − pi. We will fo-
cus solely on dominant strategy incentive compatible (IC) mechanisms; which means
for any agent, reporting his true valuation would be a dominant strategy; and we as-
sume that agents follow this dominant strategy. We view a mechanism as a function
from reports to allocation and payments and denote these functions by x(·) and p(·).
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Incentive compatibility is defined as, for all i, v, and z:

vixi(v) − pi(v) ≥ vixi(z,v−i) − pi(z,v−i) (1)

where (z,v−i) is the valuation profile v with vi replaced with z. A mechanism is incen-
tive compatible if and only if for all i [Myerson 1981]:

(1) xi(v) is monotone non-decreasing in vi, and
(2) pi(v) satisfies the payment identity:

pi(v) = vixi(v) −

∫ vi

0

xi(z,v−i) dz. (2)

When we give a mechanism we will describe only the allocation rule and infer the
payment rule from the payment identity.1 For allocation rule x(·) we will denote the
incentive compatible payment for agent i by ICx

i (v) and the total revenue by ICx(v).

2.2. Feasibility

The designer faces a feasibility constraint which describes the subsets of the agents
that can be served simultaneously. We assume that this feasibility constraint is down-
ward closed, i.e., any subset of a feasible set is feasible. As described in the intro-
duction, many common environments for mechanism design are downward closed. We
allow the feasibility constraint to be probabilistic, i.e., given by a convex combination
of downward-closed set systems.2 For the purpose of calculating revenue the allocation
x and payments p are taken in expectation over the randomization in the mechanism
and the set system.

Symmetry will play an important role in our performance analysis. Given an asym-
metric set system we can always make it symmetric by randomly permuting the identi-
ties of the agents. This assumption is akin to standard assumptions in the performance
analysis of the secretary problem and in settings where one might consider the agents
to be a priori indistinguishable. For instance, symmetry is without loss in Bayesian op-
timal mechanism design when values drawn from an i.i.d. distribution. The resulting
feasibility constraint we refer to as a downward-closed permutation environment.

2.3. Algorithms

Our mechanisms will be based on an algorithm for weighted optimization.3 Given
weights w = (w1, . . . , wn), for each agent, this algorithm selects a feasible set to op-
timize the sum of the selected weights (for the realized set system) with ties broken
randomly. As suggested above, xi will denote the probability (over randomization in
the set system and random tie-breaking) that agent i is selected. Clearly x maximizes
∑

i wixi subject to feasibility and so we will refer to x as the maximizer for weights w.
In downward-closed permutation environments it is without loss to index the agents

in decreasing order of value, i.e., vi ≥ vi+1. For weights w sorted in decreasing order,
the maximizer x for weights w is monotone, i.e., xi ≥ xi+1 for all i. Of course, the
maximizer x for w is not generally the maximizer for v.

2.4. Performance Benchmarks

We adopt the framework from Hartline and Yan [2011] wherein the revenue of the de-
signed prior-free mechanism is compared to the envy-free revenue benchmark. We will

1Of course such a payment can be easily calculated, e.g., with techniques from Archer et al. [2003].
2For instance, the position auction environment which models advertising on Internet search engines is
structurally equivalent to a convex combination of multi-unit auctions. See, e.g., Hartline and Yan [2011].
3We make no comment on this algorithm’s computational tractability.
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Fig. 1. Agents are indexed in decreasing order by value. The point set {(i, ivi) : i ∈ [n]} is depicted. The
revenue curve is the smallest non-decreasing concave function that upper-bounds this point set and the
origin. The value of agent i can be represented by a line from the origin with slope vi; the virtual value of
agent i is the left-slope of the revenue curve at i.

denote the maximum envy-free revenue by EFO(v). For technical reasons the envy-

free benchmark is defined to be EFO(2)(v) = EFO(v2, v2, v3, . . . , vn).4 In our downward-
closed permutation environment, the goal of such a design and analysis framework is
then to give a mechanism that, in expectation over the random permutation of agent
identities, obtains a revenue that is a good approximation, in worst case over agent

valuation profiles v, to the benchmark EFO(2)(v). Hartline and Yan [2011] give for-
mal Bayesian justification for this benchmark by showing that a prior-free mechanism
that approximates it simultaneously approximates the Bayesian optimal mechanisms
for most i.i.d. distributions.

We will only consider envy freedom in permutation environments were x is the allo-
cation in expectation over the permutation. An outcome (x,p) is envy free if no agent
wants to swap outcome with another agent, i.e., for all i, j ∈ [n],

vixi − pi ≥ vixj − pj . (3)

An outcome is envy free if and only if [Hartline and Yan 2011]:

(1) x is monotone non-decreasing (i.e., xi ≥ xi+1), and
(2) p (for maximum payments given x) satisfies the payment identity (for all i):

pi =
∑n

j≥i
vj · (xj − xj+1). (4)

For allocation x, we denote the envy-free payments from the payment identity as
EFx

i (v) and the total envy-free revenue by EFx(v). Notice that unlike incentive com-
patibility, which is defined on allocation and payment rules, envy freedom is defined
point wise on allocations and payments.

The envy-free revenue can be understood structurally in terms of the revenue curve
and virtual values. The revenue curve R(v) for v is a vector that describes the optimal

4No prior-free mechanism can approximate EFO(v) in the case where there is one agent with an extremely
large value, see Goldberg et al. [2006] for discussion.
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revenue (when feasibility constraints are ignored) indexed by the number of agents
served. The ith coordinate of the revenue curve, Ri(v), can be calculated by evaluating
at i the smallest concave non-decreasing function that contains the point set {(i, ivi) :
i ∈ [n]} and the origin. The virtual value at i is the left-slope of this function, i.e.,
φi(v) = Ri(v) − Ri−1(v). Where there is no ambiguity with respect to the valuation
profile we will denote R(v) and φ(v) as R and φ, respectively. See Figure 1.

LEMMA 2.1. [Hartline and Yan 2011] The envy-free revenue of monotone allocation
x satisfies

EFx(v) ≤
∑n

i=1
φi(v) · xi =

∑n

i=1
Ri(v) · (xi − xi+1) (5)

with equality when xi = xi+1 whenever φi(v) = φi+1(v).

The optimal envy-free revenue, EFO(v), can be found from Lemma 2.1, in particu-
lar, from the maximizer for virtual surplus, i.e.,

∑

i φi(v) · xi, with random tie break-
ing. Random tie breaking results in an allocation x that satisfies xi = xi+1 whenever
φi(v) = φi+1(v).

Notice that for the same allocation rule x(·), the envy-free payments (4) and incen-
tive compatible payments (2) are distinct, i.e., ICx

i (v) 6= EFx

i (v).

2.5. Consensus estimates.

A central ingredient in our approach is the technique of consensus estimates that was
introduced by Goldberg and Hartline [2003]. A consensus function maps shared ran-
domness and a statistic to an estimate of the statistic. The objective of such a consensus
function is that, when applied individually to each of a set of statistics that are within
some bounded range, with high probability (in the shared randomness) the estimates
will coincide, i.e., there will be a consensus among the estimates.

Definition 2.2. For implicit parameter c > 1 and shared randomness σ ∼ U [0, 1],
the consensus function on statistic s is,

Consens(σ, s) = ⌊s⌋{cσ+d : d∈Z},

where ⌊s⌋S denotes s rounded down to the nearest element of S.

LEMMA 2.3. [Goldberg and Hartline 2003] For c ≥ β, The probability (over ran-
domization of σ) that the consensus function is constant on interval [s/β, s] is 1− logc β.

3. CROSS-CHECKING

Given some statistic on valuation profiles s(·), we will be using the consensus function
(Definition 2.2) to get an estimate of this statistic, e.g., by calculating Consens(σ, s(v−i))
for each i where v−i is the valuation profile v without coordinate i. Notice that if we had
some mechanism Ms that was parameterized by statistic s then, if there is consensus,
simulations of MConsens(σ,s(v−i)) to determine the allocation xi and payment pi for all
agents i are internally consistent. I.e., the outcome produced by Ms is feasible for
any s; therefore, so is the combined outcome. Unfortunately, when consensus is not
achieved then these simulations may not be consistent.

In this section we give a method of cross-checking to ensure that consistent estimates
of the statistic for some subset of the agents. For environments with downward closed
feasibility constraints, such a method can be used in mechanism design as agents out-
side this consistent subset can be rejected.

Definition 3.1. For shared randomness σ, statistic s, consensus function Consens,
and valuation profile v calculate the following:
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(1) For all pairs i 6= j ∈ [n], calculate the estimate s̃i,j = Consens(σ, s(v−i,j)) where
v−i,j is the valuation profile v without coordinates i and j.

(2) I is the set of agents i that have consensus on s̃i,j for all j; or ∅ if no such i exists.
(3) s̃ is the estimate s̃i,j of any i ∈ I and any j (they are all the same).

The cross-checked consensus function is defined as

CrossConsens(σ, s,v) = (s̃, I).

Cross-checked consensus estimates are non-manipulable in a strong sense. Whether
or not an agent i is in I is not a function of that agents value. Furthermore, the final es-
timate is not a function of the report of any agent i ∈ I. This implies that mechanisms
which take the following form are incentive compatible.

Definition 3.2 (cross-checked consensus estimate composition). Given an incentive
compatible mechanism Ms that is parameterized by some statistic s and a consensus
function Consens for the statistic, compose them as follows:

(1) Calculate cross-checked consensus estimate (s̃, I) = CrossConsens(σ, s,v).
(2) Simulate incentive compatible mechanism Ms̃ on v.
(3) For agents i ∈ I output result of simulation, reject all others.

THEOREM 3.3. Mechanisms produced by the cross-checked consensus estimate com-
position are incentive compatible.

PROOF. Let (s̃, I) = CrossConsens(σ, s,v). Agent i 6∈ I has no report he can make to
win; therefore, he has no incentive not to report truthfully. Agent i ∈ I has no report
he can make to change the value of s̃; therefore, the incentive compatibility of Ms for
any fixed value of s implies that he has no incentive not to report truthfully.

4. PROFIT EXTRACTION MECHANISM

In this section we will show how to design a mechanism with good revenue that is
parameterized by an approximation of the revenue curve. Such a mechanism is termed
a profit extractor. Given a target revenue curve that is upper-bounded by our actual
revenue curve, this mechanism will obtain at least the optimal envy-free revenue for
the target revenue curve. The target revenue curve will be provided to the mechanism
in the form of the valuation profile ṽ that generates it. We will denote by R̃ and φ̃ the
revenue curve and virtual values for ṽ.

Definition 4.1 (profit extractor, PEṽ). Parameterized by non-increasing valuation
vector ṽ:

(1) Sort the bids in a non-increasing order, break ties arbitrary. If ṽi > vi for some i,
reject everyone.

(2) Assign weights φ̃ to agents in the same order as their values.
(3) Serve the set of agents to maximize the sum of their assigned weights.

We will show that the IC revenue obtained from the profit extractor for ṽ on v is
higher than the optimal envy-free revenue for ṽ. Furthermore, for appropriately cho-
sen ṽ, this revenue approximates the optimal envy-free revenue for v.

THEOREM 4.2. For any downward-closed environment and any ṽ, the profit extrac-
tor for ṽ is dominant strategy incentive compatible.

PROOF. Fix the randomization in the set system, fix the values v−i of all agents
except agent i, and suppose i is served with value vi. We will show that agent i contin-
ues to be served when he reports a higher value z between the jth and j − 1st highest
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values (for j < i); consequently the allocation rule is a step function which is monotone
and sufficient for incentive compatibility.

First, since i was served with value vi, Step 1 did not bind and will continue to not
bind when i increases his bid to z.

Second, consider what happens in the weighted maximization when i out bids j.
He assumes the weight wj of j (positive change of weight: di = wj − wi), all agents
i′ ∈ {j, . . . , i − 1} assume the weight of the agent below them (negative change of
weight: di′ = wi′+1 − wi′ ), and all other agents i′ 6∈ {j, . . . , i} keep their old weights
(zero change of weight: di′ = 0). Of course the total weight change is conserved and
∑

i′∈[n] di′ = 0. Therefore, the total weight change of any subset of agents that contains

i is non-negative and the total weight change of any subset of agents that does not
contain i is non-positive. Since agent i was served with value vi, he was in the weight-
maximizing set with report vi, when i out bids j he continues to be in the weight-
maximizing set (though this set may change). Therefore, agent i continues to be served
when bidding z > vi.

THEOREM 4.3. For any ṽ ≤ v and any downward-closed permutation environment,
the revenue of the profit extractor for ṽ on v is at least the envy-free optimal revenue for

ṽ. Moreover, the inequality holds on each agent’s payment, i.e., ICPEṽ

i (v) ≥ EFOi(ṽ).

PROOF. We show the second condition of the theorem for any agent i (the first condi-
tion follows). Let x̃ be the allocation for EFO(ṽ) (in expectation over the permutation).
This is the same allocation as used by PEṽ unless v ≥ ṽ fails to hold.

First, notice that the IC payments, from equation (2), and EF payments, from equa-
tion (4), correspond to the area in the region bounded by x ≤ x̃i (above), 0 ≤ v (left),
and the “allocation rule” (bottom right). For IC payments, this allocation rule is the
probability that the agent is served for any possible misreport z. For EF payments,
this “allocation rule” is the smallest monotone function that upper-bounds the point
set {(ṽi, x̃i) : i ∈ [n]}. To prove the lemma we need only show that the IC allocation
rule gives a weaker bound than the EF “allocation rule.”

For any j > i, the EF allocation rule drops from x̃j to x̃j+1 at ṽj . We claim that the IC
allocation rule makes the same drop but at a value that is at least ṽj . To see this claim,
consider the minimum bid z that agent i can make to secure allocation probability
at least x̃j . If vj+1 ≥ ṽj then obtaining slot j requires bidding z at least vj+1 ≥ ṽj .
Otherwise, ṽj > vj+1 and preventing Step 1 from rejecting everyone requires bidding
z at least ṽj . In either case, i must bid at least ṽj to get allocation probability at least
x̃j .

LEMMA 4.4. For any ṽ and v with R̃ ≥ 1
β
R, the envy-free optimal revenue for ṽ is

a β-approximation to that from v, i.e., EFO(ṽ) ≥ 1
β
· EFO(v).

PROOF. Let x and x̃ be the allocations EFO(v) and EFO(ṽ), respectively.

EFO(ṽ) =
∑

i
R̃i · (x̃i − x̃i+1) ≥

∑

i
R̃i · (xi − xi+1) ≥

1
β

∑

i
Ri · (xi − xi+1) = 1

β
EFO(v).

The first inequality follows from the optimality of x̃ for ṽ and Lemma 2.1. The second
inequality follows from monotonicity of x and the assumption that ∀i, R̃i ≥

1
β
· Ri.

Combining these lemmas, we see that with the right ṽ, PEṽ(v) can approximate the
optimal envy free revenue on v.
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THEOREM 4.5. For any ṽ ≤ v with R̃ ≥ 1
β
R and any downward-closed permutation

environment, the profit extractor for ṽ on v is a β-approximation to the optimal envy-free

revenue for v, i.e., ICPE
ṽ(v) ≥ 1

β
· EFO(v).

5. CONSENSUS ESTIMATES OF REVENUE CURVES

Our objective now is to get a consensus estimate of the revenue curve. We will express
the estimated revenue curve, R̃, in terms of the estimated valuation profile, ṽ, that
generates it.

In addition to the implicit parameter c > 1 in the definition of consensus (Defini-
tion 2.2) we will also use implicit parameter α > 1 and a minimum required sup-
port m ∈ Z+. A statistic we will be interested in getting consensus on is the num-
ber of agents with value at least αj for any given j. We will use nj(v) to denote
this statistic. As per our notation in the previous section, we will denote ñj(σ,v) =
⌈Consens(σ, nj(v))⌉ where we round the estimate up to the nearest integer because it
is an integer statistic. Estimates that do not have the minimum required support of
ñj(σ,v) ≥ m will be discarded. We will use the remaining estimates to construct an

estimate of the valuation profile ṽ(σ,v) and revenue curve R̃(σ,v) as follows.

Definition 5.1 (estimated revenue curve and valuation profile). For any j for which
the estimate ñj of the number of agents with values αj is at least the minimum re-

quired support m, define point Qj = (ñj , α
j ñj). The estimated revenue curve, R̃, is the

minimum non-decreasing concave function that upper-bounds the point set {Qj}j∈Z

and the origin. Let jk denote the kth largest index such that point Qjk
is on R̃. For

each k, the estimated valuation profile, ṽ, has ñjk
− ñjk−1

values equal to αjk . Pad the
remainder of ṽ with zeros to get an n-vector. (See Figure 2.)

In the above construction ṽ is the smallest (point-wise) valuation profile that has
revenue curve R̃, and furthermore, ṽ ≤ v. For statistical estimates ñj(σ,v) the es-

timated revenue curve and valuation profile will be denoted ṽ(σ,v) and R̃(σ,v). Our
goal now is to show that with high probability the estimated revenue curve (and valua-
tion profile) has consensus when a few agents, S, are omitted, i.e., R̃(σ,v) = R̃(σ,v−S).
To do this we define a notion of relevance for statistics j and show that with high
probability there is simultaneous consensus for all relevant statistics.

Definition 5.2 (t-consensus on v). Given a fixed valuation vector v, a positive inte-
ger constant t and a fixed choice of σ, the jth statistic has a t-consensus on v if for
every set S ⊂ [n] of no more than t elements,

ñj(σ,v) = ñj(σ,v−S).

Definition 5.3 (relavant statistic). For a given valuation vector v and a positive in-
teger t, the jth statistic nj is relevant if there exists σ ∈ [0, 1], and a set S ⊆ [n] of no

more than t elements such that the point Qj(σ,v−S) is on R̃(σ,v−S).

Notice that when t-consensus happens for a relevant statistic j, then points Qj(σ,v)
and Qj(σ,v−S) in the construction of the estimated revenue curve are identical.

We now argue that the probability that any statistic j does not have consensus is
roughly proportional to 1/nj(v), that for relevant statistics the nj(v) values are geo-
metrically increasing, and thus the union bound implies that all estimates of relevant
statistics, and thus the estimated revenue curve, have consensus with high probability.
This approach is adapted from Goldberg and Hartline [2005].
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Fig. 2. The dotted vertical lines are ⌈cd+σ⌉ for d ∈ Z; while the diagonal lines from the origin represent
value αj (as their slopes) for j ∈ Z. Each value vi is represented with “•” at point (i, ivi). The line upper-
bounding the black dots represents the original revenue curve, R. For each diagonal line representing αj ,
nj(v) is the number of values that lie above it; the dotted vertical line immediately to the left of the right-

most among these values represents ñj(σ, v); finally the intersection between this line and αj is the point

Qj , represented with “×”. R̃ and ṽ are constructed from estimates ñj(σ, v) ≥ m and their corresponding

Qjs. The thick dotted function upper-bounding these Qjs is R̃, and each ṽi is represented by the point (i, iṽi)
with a “2”.

LEMMA 5.4. For any v and σ ∼ U [0, 1], the probability that the jth statistic has a

t-consensus on v is at least 1 + logc

(

1 − t
nj(v)

)

.

PROOF. Observe that for every set S of no more than t elements, nj(v) − t ≤
nj(v−S) ≤ nj(v). These inequalities hold since when some bids are removed, the num-
ber of bids above any αj decrease, but only by at most the size of the removed set. Thus

the probability that Consens(σ, nj(v)) = Consens(σ, nj(v−S)) is at least 1 − logc
nj(v)

nj(v)−t

as suggested by Lemma 2.3. The lemma follows from the power rule for logarithm.

LEMMA 5.5. The values above successive relevant statistics are bounded by a geo-
metrically increasing function: for any relevant statistic j, nj(v) ≥ mαr−j where r is the
largest index of any relevant statistic.

PROOF. First note that the largest index of a relevant statistic r is well defined.
For any j that is relevant, it must be that nj(v) ≥ m; otherwise, j would be discarded
by the estimated revenue curve construction. Thus, the largest index that may not be
discarded is r that satisfies αr+1 > vm ≥ αr.

From the definition of ñj(σ,v−S), we have αj ñj(σ,v−S) ≤ αjnj(v−S) ≤ αjnj(v) for
any σ and S. Since j is relevant, there exists a σ and S and with size at most t such that
the corresponding point Qj(σ,v−S) is higher than Qr(σ,v−S); therefore, αj ñj(σ,v−S) ≥
αrñr(σ,v−S) ≥ mαr. Combining this with the previous inequality, we have the desired
claim.
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LEMMA 5.6. The probability of t-consensus at all relevant values is at least

1 + logc

[

1 − tα
m(α−1)

]

.

PROOF. We will first bound the probability of consensus at one relevant value, then
use the union bound to find a lower bound on the probability of consensus at all rel-
evant values. For any relevant statistic j, let Ej denote the event that nj has a t-
consensus on v.

Pr[Ej] ≥ 1 + logc

(

1 − t
nj(v)

)

≥ 1 + logc

(

1 − t
m

α−(r−j)
)

.

The first inequality is from Lemma 5.4, while the second inequality is from Lemma
5.5. Let J = {j : nj is relevant}. The probability that all relevant statistics have t-
consensus on v, using the union bound, is

Pr[t-consensus] ≥ 1 −
∑

j∈J
Pr[¬Ej ] ≥ 1 +

∑

j∈J
logc

(

1 − t
m

α−(r−j)
)

≥ 1 +
∑

i≥0
logc

(

1 − t
m

α−i
)

= 1 + logc

[

∏

i≥0

(

1 − t
m

α−i
)

]

≥ 1 + logc

[

1 −
∑

i≥0

t
m

α−i
]

= 1 + logc

[

1 − t
m

α
α−1

]

.

The last thing that we need for our estimated revenue curves is for them to be good
estimates. This follows directly from their definition.

LEMMA 5.7. For any σ and v, the consensus revenue curve R̃(σ,v) is a cα-

approximation of the revenue curve R(m′) for m′ = ⌊mc⌋ and truncated valuation profile

v(m′) = (vm′ , . . . , vm′ , vm′+1, vm′+2, . . . , vn), i.e., R̃(σ,v) ≥ 1
cα

R(m′).

PROOF. It is sufficient to show that R̃i ≥ 1
cα

ivi for i ≥ m′ as concavity of revenue
curves would then imply the lemma. Consider then any index i ≥ m′ and let j be the
index of the statistic that satisfies αj ≤ vi < αj+1. Since nj(v) ≥ i, by the definition
of ñj and m′, respectively, ñj ≥ ⌈i/c⌉ ≥ m; therefore, statistic j is not discarded in the

first step of the construction of R̃. Furthermore, the point Qj = (ñj , α
j ñj) is above and

to the left of (i, 1
cα

ivi) because ñj ≤ i, αj ≥ vi/α, and ñj ≥ i/c. Monotonicity of R̃, then,

implies the desired R̃i ≥
1
cα

ivi.

6. DESIGNED MECHANISM

We now proceed to define a mechanism that is a good approximation to EFO(2)(v).
This mechanism will be a convex combination of a primitive cross-checked consensus-
estimate profit-extraction mechanism and an extension of the Vickrey [1961] auction
to downward-closed permutation environments.

Definition 6.1. The primitive cross-checked consensus-estimate profit-extraction
mechanism, CCEPE′ is the profit extraction mechanism PEṽ (Definition 4.1) composed
(Definition 3.2) with the valuation profile estimate (Definition 5.1). CCEPE′ is param-
eterized implicitly by α, c, and m.

Definition 6.2. The pseudo-Vickrey auction, PV, serves the highest valued agent
(and charges her the second highest agent’s value) if doing so is feasible with respect
to the set system; otherwise, it rejects everyone.

Definition 6.3. The cross-checked consensus-estimate profit-extraction mechanism,
CCEPE, is a convex combination of the pseudo-Vickrey auction (with probability p) and
CCEPE′ (with probability 1 − p). CCEPE is parameterized implicitly by α, c, m, and p.
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The pseudo-Vickrey mechanism is intended to obtain good revenue from the highest-
valued agents where as CCEPE′ is intended to obtain good revenue from the lower-
valued agents. The convex combination obtains good revenue over all. This analysis is
given by the following lemmas and theorem.

LEMMA 6.4. For any v, m′ = ⌊mc⌋, and downward-closed permutation environ-

ment; the expected revenue of CCEPE′ is a β′-approximation of EFO(m′) with

β′ ≤ cα
[

1 + logc

(

1 − 2α
m(α−1)

)]−1

.

PROOF. Let (ṽ, I) denote the outcome of the cross-checked consensus estimate
of the valuation profile. By Lemma 5.6 (with t = 2) with probability at least 1 +

logc

[

1 − 2α
m(α−1)

]

all agents are cross-checked and I = [n]. In this case, ṽ ≤ v (from

Definition 5.1) and R̃ ≥ 1
cα

R(m′) (Lemma 5.7); therefore, the profit-extraction mecha-

nism for ṽ, PEṽ, on v obtains revenue at least 1
cα

EFO(m′)(v) (Theorem 4.5).

LEMMA 6.5. For any v and downward-closed permutation environment, the
pseudo-Vickrey auction revenue is at least the envy-free optimal payment of the highest-

valued agent, i.e., ICPV(v) ≥ EFO
(2)
1 (v).

PROOF. Assume that v1 = v2, this is without loss for this lemma because
both pseudo-Vickrey’s revenue and EFO(2)’s revenue is the same on v and v(2) =
(v2, v2, v3, . . . , vn). The payment for agent 1 upon winning in pseudo-Vickrey is v2 = v1;

the payment upon winning in EFO(2) is at most v1 = v2. The probability that agent 1
wins in pseudo-Vickrey is the highest of any feasible allocation (because agent 1 wins

whenever serving agent 1 is feasible); in particular it is as high as that of EFO(2).

Therefore, the revenue from agent 1 in pseudo-Vickrey is at least that of EFO(2).

THEOREM 6.6. For any v and downward-closed permutation environment, CCEPE

is a β-approximation to EFO(2)(v) where β satisfies

β ≤ max

{

⌊mc⌋
p

, cα
1−p

[

1 + logc

(

1 − 2α
m(α−1)

)]−1
}

.

PROOF. We will separate our revenue into two parts; the first part is obtained from
the top m′ = ⌊mc⌋ agents, denoted H = {1, . . . , m′}; and the second part is obtained
from the remaining n − m′, denoted L = {m′ + 1, . . . , n}.

The contribution to the envy-free optimal revenue by the top agents satisfies

EFO
(2)
H (v) ≤ m′ ICPV(v). This bound follows from Lemma 6.5 and the observation that

envy-free payments are monotonically non-increasing in agent values.
The contribution to the envy-free optimal revenue by the bottom agents satisfies

EFO
(2)
L (v) ≤ EFO(m′)(v). This bound follows as EFO(m′) could try to simulate the out-

come of EFO(2) and would then receive the same contribution to revenue from agents

L as EFO(2); of course, its revenue from all agents must only be higher.

In conclusion, EFO(2)(v) ≤ m′ ICPV(v) + EFO(m′)(v).
The revenue of our mechanism, CCEPE, the sum of a β1 = m′/p approximation to

m′ ICPV(v) and a β2 = β′/(1 − p) approximation to EFO(m′)(v), with β′ as defined in

Lemma 6.4. Therefore, it is a β = max(β1, β2) approximation to EFO(2)(v).

We can optimize the parameters of CCEPE to obtain the following corollary.
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COROLLARY 6.7. For any v and downward-closed permutation environment,
CCEPE with p = 0.627, c = 1.666, α = 2.734 and m = 12 is a 30.4-approximation to

EFO(2)(v).
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