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ABSTRACT
We consider profit maximizing (incentive compatible) mech-
anism design in general environments that include, e.g., po-
sition auctions (for selling advertisements on Internet search
engines) and single-minded combinatorial auctions. We an-
alyze optimal envy-free pricings in these settings, and give
economic justification for using the optimal revenue of envy-
free pricings as a benchmark for prior-free mechanism design
and analysis. Moreover, we show that envy-free pricing has
a simple nice structure and a strong connection to incentive
compatible mechanism design, and we exploit this connec-
tion to design prior-free mechanisms with strong approxi-
mation guarantees.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Economics, Theory, Algorithms

Keywords
envy-free pricing, truthful mechanisms, revenue maximiza-
tion, optimal auction, prior-free

1. INTRODUCTION
Mechanism design theory provides guidelines for the de-

sign of economic systems that obtain good performance in
the presence of selfish behavior on the part of the partici-
pants. A standard approach is to restrict attention to mech-
anisms where each participant has a dominant strategy of
truthfully reporting her preference over possible outcomes.
This restriction imposes a constraint, known as incentive
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compatibility, on the mechanism that binds across all pos-
sible misreports of the agents. Reasoning about mecha-
nisms, therefore, requires reasoning about the outcomes of
the mechanism on all possible preferences, not just the true
ones. A mechanism, therefore, may face a performance
tradeoff across different possible preferences. For instance,
there is such a performance tradeoff for the objective of
profit maximization. Consequently, no mechanism obtains
the maximum profit for all possible participant preferences.

In contrast to incentive compatibility, consider the “fair-
ness” constraint of envy-freedom. The envy-free constraint
requires that each participant prefers her own outcome to
that of any other participant. Unlike incentive compatibil-
ity, envy-freedom is a constraint that binds point-wise on the
true preferences. Consequently, for any performance metric,
there is an envy-free outcome with the best performance.

As an example, suppose there are two identical units of an
item for sale. Each agent wants one unit of the item, and her
utility for the unit is her value for the unit minus the price
she pays. There is one high-value agent with value 6 for a
unit, and two low-value agents with value 4. It is envy-free
to price each unit at 5, the high-value agent would opt to
buy a unit, while others would not. It is not envy-free to
price each unit at 2, as all three agents would want a unit,
exceeding the supply.

Our goal is to design incentive compatible mechanisms
that obtain good revenue point-wise, i.e., for any prefer-
ences of the participants. This contrasts from the standard
Bayesian approach for optimal mechanism design in eco-
nomics in which it is assumed that participant preferences
are drawn from a known prior distribution. The knowl-
edge about the distribution allows the designer to optimally
trade-off revenue between different possible preferences of
the participants. In contrast to the economics approach, our
goal is to design good mechanisms without distributional as-
sumptions, i.e., to be prior free.

Our approach to design good prior-free mechanisms is the
following. We view envy-freedom (EF) as a relaxation of
incentive compatibility (IC), characterize revenue-optimal
envy-free pricings, relate the revenue of an IC mechanism
to that of a corresponding EF pricing, and then use this
connection between EF and IC revenues to design and ana-
lyze IC mechanisms.

We consider general single-parameter environments where
each participant (a.k.a., agent) has a single value for receiv-
ing an abstract service and the designer has a feasibility
constraint on which agents can be served simultaneously. In
the previously mentioned multi-unit example, the abstract



service is a unit of the item and the feasibility constraint
requires we serve sets of cardinality at most two.

An environment is downward-closed if any subset of a fea-
sible set is also feasible. The following special cases are of
interest. In a digital good environment all allocations are fea-
sible. In a multi-unit environment there is a fixed number k
of identical units available and each agent desires one unit,
i.e., the feasible sets are those with cardinality at most k. In
a matroid environments the feasible allocations correspond
to the independent sets of a matroid. Matroid environments
include multi-unit and constrained matching environments
as special cases.1

We allow convex combinations of our basic feasibility en-
vironments. For instance, one can express position auction
environments, as popularized by the auctioning advertising
slots on Internet search engines, as a convex combination
of multi-unit auctions. Position auction environments are
specified by a decreasing sequence of probabilities for each
position and a feasible outcome is a partial assignment of
agents to positions. An agent assigned to a position receives
a service with probability equal to the position’s associated
probability.

For many interesting single-parameter environments, e.g.,
position auctions, the feasibility constraint is inherently sym-
metric. Given a feasible allocation, for any permutation of
the names of the agents, the permuted assignment is still
feasible. As an example of an asymmetric environment, con-
sider single-minded combinatorial auctions, i.e., where each
agent has a single value for receiving a particular bundle
of goods (and no value for any other bundle). In such an
environment, an agent is considered “served” if she receives
her desired bundle. Therefore, the feasible subsets of agents
are the ones for which the desired bundles are disjoint. For
such asymmetric feasibility constraints, the notion of envy-
freeness as a fairness condition is ill-defined. However, we
can symmetrize any asymmetric environment by assuming
that the agents’ roles with respect to the feasibility con-
straint are assigned by a random permutation. In the com-
binatorial auction example, this means that we start with
a set of agent values and a set of desired bundles and the
values are associated with the desired bundle via a random
permutation. We refer to these environments as permuta-
tion environments and observe that the random permuta-
tion assumption on values is a natural prior-free analog of
the i.i.d. assumption that is common in Bayesian mechanism
design.

The first result of this paper is a characterization of revenue-
optimal envy-free pricings. Importantly, this characteriza-
tion mirrors the characterization of Bayesian revenue-optimal
incentive compatible mechanisms of Myerson (for i.i.d. dis-
tributions). Optimal envy-free pricings are ironed virtual
surplus optimizers in the sense that they are specified by a
monotone non-decreasing function (known as the ironed vir-
tual valuation function) and the agents served are the feasi-
ble set for which the total ironed virtual value is the highest.
Furthermore, the ironed virtual valuation function that ob-
tains this optimal revenue is the one that corresponds to the
empirical distribution of the given agents’ values.

The above description of ironed virtual surplus optimizers

1A constrained matching environment is one where each
agent has a value for “good” items and a set of items that
are considered good. The agent wants at most one item, and
each item can be allocated to at most one agent.

specifies how to decide which agents should receive services.
It does not explicitly specify the payments. In fact, incentive
compatibility and envy-freedom generally require different
payments. This is because incentive compatible payments
are counteracting agents’ incentive to misreport while envy-
free payments are counteracting agents’ envy (or desire to
swap). As these are different constraints, they lead to differ-
ent payments. Our second result shows that for any ironed
virtual surplus optimizer these payments are, in settings of
interest,2 not too far apart, specifically: EF ≥ IC ≥ EF/2.

The first inequality above motivates the selection of the
envy-free optimal revenue as a benchmark to which to com-
pare prior-free mechanisms. Bayesian optimal IC mecha-
nisms are ironed virtual surplus maximizers and their IC
revenue is point-wise at most their EF revenue. Therefore, a
prior-free mechanism that always approximates the optimal
EF revenue is guaranteed to also approximate the revenue of
any Bayesian optimal mechanism. Of course, the Bayesian
optimal mechanism is the one that a designer would select
if a prior were known, and so approximating it without any
knowledge is a strong guarantee.

As a first example to illustrate the relevance of envy-
freedom for prior-free mechanism design, we reduce the prob-
lem of approximating the optimal EF revenue for matroid
permutation and position auction environments to multi-
unit environments. This reduction is enabled by the fact
that incentive compatibility is closed under convex combi-
nation and a structural equivalence between (1) the convex
combinations of multi-unit auction environments, (2) posi-
tion auction environments, and (3) matroid permutation en-
vironments. This implies that for any IC mechanism that is
a β-approximation to the optimal EF revenue for multi-unit
environments, there is an IC β-approximation mechanism
for position auction environments and matroid permutation
environments. In particular, results of [14, 8] imply a 6.5-
approximation for these settings.

The second example we give considers general downward-
closed environments such as single-minded combinatorial auc-
tions. In such an environment we show that a prior-free in-
centive compatible mechanism based on random sampling
approximates the optimal EF revenue (in permutation envi-
ronments). The random sampling auction we consider works
as follows. It first partitions the agents into a market set and
a sample set. Then it calculates the ironed virtual value
function for the empirical distribution of the sample and
simulates ironed virtual value maximization with this func-
tion on the full set of agents. Finally, agents in the sample
are rejected and agents in the market receive the allocation
from the simulation and are charged the corresponding pay-
ments. To analyze this mechanism, we show that its EF rev-
enue (as an ironed virtual surplus maximizer) approximates
the optimal EF revenue, and consequently its IC revenue
also approximates the optimal EF revenue.

Related work. Bayesian optimal mechanisms for single-pa-
rameter environments were characterized as ironed virtual
surplus optimizers by Myerson [18]. The relationship be-
tween revenue curves and virtual valuations, a.k.a., marginal
revenue, was identified by Bulow and Roberts [5]. We make
heavy use of this machinery.

2The first inequality is known to hold for position auction
and matroid permutation environments. The second in-
equality is known to hold under a technical condition.



This paper follows from a line of work that studies prior-
free revenue properties of the random sampling auction of [12].
The tightest analysis of the random sampling auction for dig-
ital good environments is given by Alaei et al. [1]. For multi-
unit environments, Hartline and Roughgarden [15] proposed
a benchmark for prior-free analysis that is derived from
Bayesian optimal auctions and discuss the desirability of
a prior-free benchmark that implies approximation in the
Bayesian setting. With this benchmark, Devanur and Hart-
line [8] extended the analysis from [1] to limited supply set-
tings. In this context, the present paper further extends
the benchmark of [15] and the analysis of [8] to general
downward-closed environments.

It has been observed that position auctions are struc-
turally equivalent to a convex combination of multi-unit auc-
tions. For instance in Dughmi et al. [10], this equivalence
was leveraged to show that the VCG mechanism with re-
serve gives the same revenue in these two environments. We
extend this connection by doing the same thing for less well-
behaved approximation mechanisms. We also make a similar
connection between position auction and matroid permuta-
tion environments.

The prior-free mechanisms we discuss perform well even
when there is no prior distribution; agent values can be ad-
versarially chosen. If there is a prior distribution that is un-
known it is possible to design good prior-independent mech-
anisms. Dhangwatnotai et al. [9] show that a mechanism
based on a“single-sample”approach gives an 8-approximation
for downward-closed environments with distributions that
satisfy a standard monotone hazard rate condition, and a 2-
approximation for structurally nicer matroid environments
with distributions that satisfy a standard regularity condi-
tion. However, as we show, a single-sample cannot give bet-
ter than a logarithmic approximation for the fully general
distributional setting. In this context, we give a constant ap-
proximation for matroid environments with nearly general
i.i.d. valuation distributions. This is important as many dis-
tributions, e.g., bimodal, do not satisfy the regularity con-
dition required by [9].

Connections between envy-free pricings and prior-free mech-
anism design have been made before (e.g. in [13, 3]). Much
of the work on envy-free pricing has been focused on multi-
dimensional agent preferences. Part of our characterization
of envy-free pricings in single-parameter environments is a
special case of Mu’alem’s “local efficiency” condition [17].

This paper uses envy-free pricings as a benchmark for
gauging the performance of a prior-free mechanism. While
it might be nice to have mechanisms that are both incen-
tive compatible and envy-free, achieving both conditions to-
gether while obtaining a reasonable performance is impossi-
ble. This is discussed for profit maximization in digital good
environments by Goldberg and Hartline [11], unrelated ma-
chine scheduling problems by Cohen et al. [6], and for welfare
maximization in general combinatorial auctions by Ausubel
and Milgrom [2]. In fact, Day and Milgrom [7] suggest that
envy-freedom and related conditions (specifically the cooper-
ative game theory condition of the core) are more important
than incentive compatibility and when they are impossible
to achieve together envy freedom should be chosen instead
of incentive compatibility.

2. OPTIMAL ENVY-FREE PRICING
In this section we derive a theory of optimal envy-free pric-

ings in single-dimensional environments that mirrors that
of Bayesian optimal (incentive compatible) mechanisms for
i.i.d. prior distributions [18, 5].

There are n ≥ 2 agents. Each agent i has a valuation
vi for receiving an abstract service. The valuation profile is
v = (v1, . . . , vn). We assume that the agents are indexed in
order of decreasing values, i.e., vi ≥ vi+1. An agent i who
is served with probability xi and charged price pi obtains
utility ui = vixi − pi. Individual rationality requires that ui

be non-negative.
We are allowed to serve certain feasible sets of agents as

given by a set system. The set system is downward-closed
in the sense if a set of agents is feasible, so is any of its
subsets. The empty set is always feasible. We allow ran-
domization in two senses (1) the set system constraint may
be randomized (i.e., by convex combination over set sys-
tems) and (2) the set of agents served may be random (by
convex combination over feasible sets). Notably, randomiza-
tion in (1) is given by the environment and randomization
in (2) is by our choice of outcome. We define an allocation
as a vector x = (x1, . . . , xn) ∈ [0, 1]n where xi is the prob-
ability that agent i is served. An allocation is feasible if it
is the characteristic vector induced by the process above.
The environments permitted include digital good auctions,
multi-unit auctions, position auction environments, matroid
environments, and single-minded combinatorial auctions.

We further assume in this section that feasibility con-
straint imposed by the environment is symmetric, i.e., the
set of feasible allocations is closed under permutation. Dig-
ital good, multi-unit auction, and position auction environ-
ments are all symmetric. Given any asymmetric environ-
ment its corresponding permutation environment is obtained
by randomly permuting the agents with respect to the feasi-
bility constraint. Of special interest for us will be downward
closed permutation environments and matroid permutation
environments. By definition these environments are sym-
metric.

Definition 2.1 (Envy freedom). An allocation x with
payments p is envy free for valuation profile v if no agent
prefers the outcome of another agent to her own. Formally,

∀i, j, vixi − pi ≥ vixj − pj .

We first characterize envy-free pricings in terms of the
allocation. For a given allocation x there may be several
pricings p for which the allocation is envy-free. Since our
objective is profit maximization we will characterize the p
corresponding to x that gives the highest total revenue. We
omit the proof of this characterization as it is nearly identical
to that of the analogous (and standard) characterization of
incentive compatible mechanisms.

Definition 2.2. An allocation is swap monotone if the
allocation probabilities have the same order as the valuations
of the agents, i.e., xi ≥ xi+1 for all i.

Lemma 2.1. In symmetric environments, an allocation x
admits a non-negative and individual rational payment p
such that (x,p) is envy-free if and only if x is swap mono-
tone. If x is swap monotone, then the maximum payments
for which (x,p) is envy-free satisfy, for all i, (Figure 1)

pi =
Xn

j=i
(vj − vj+1) · (xi − xj+1)

=
Xn

j=i
vj · (xj − xj+1).



Figure 1: The solid curve depicts a swap mono-
tone allocation as a function of the values (points).
The shaded area corresponds to payment from
Lemma 2.1 for agent i.

Importantly, the above characterization leaves us free to
speak of the (maximum) envy-free revenue of any swap mono-
tone allocation x on values v, which we denote by EFx(v).
For any v and any symmetric environment we now solve for
the envy-free optimal revenue, denoted by EFO(v).

Figure 2: R and R̄ are the revenue curve and ironed
revenue curve of the valuation profile (6, 4, 4). The
ironed virtual value of the high-value agent is 6, and
the ironed virtual value of the two low-value agents
are both (12−6)/2 = 3. E.g., the optimal EF revenue
in the k = 2 unit environment is R̄(2) = 9.

We will characterize the envy-free optimal revenue in terms
of properties of the valuation profile v. Given a valuation
profile v we denote the revenue curve by Rv(i) = i · vi for
i = {1, . . . , n} (recall vi’s are indexed in decreasing order).
For convenience we also let Rv(0) = Rv(n + 1) = 0. The
ironed revenue curve, denoted R̄

v

(i), is the minimum con-
cave function that upper-bounds R. Likewise, define the vir-
tual valuation function Φv(v) = Rv(i) − Rv(i − 1) and the
ironed virtual valuation function Φ̄v(v) = R̄

v

(i)− R̄
v

(i− 1),
where i ∈ {1, . . . , n + 1} is such that v ∈ [vi, vi−1). (We set
v0 = ∞ for notational convenience.) See Figure 2.

Rv(i) is the best envy-free revenue one can get from serv-
ing exactly i agents at the same price deterministically. Again
consider the multi-unit auction example with two units of an
item, one high-value agent with value 6, and two low-value
agents with value 4. It is envy-free to serve one high-value
agent and one low-value agent at price 4, achieving revenue
R(2) = 8. Interestingly, this is not optimal. The follow-
ing allocation and payments are also envy-free: serve the
high-value agent with probability 1 at price 5, and serve a
low-value agent chosen at random at price 4. Both units
are always sold and the total revenue is R̄(2) = 9. In what

follows we will derive that this revenue is optimal among all
envy-free allocations.

Lemma 2.2. The (maximum) envy-free revenue of a swap
monotone allocation x satisfies:

EFx(v) =
Xn

i=1
Rv(i) · (xi − xi+1) =

Xn

i=1
Φv(vi) · xi.

Proof. The proof is by the following equalities:

EFx(v) =
Xn

i=1
pi =

Xn

i=1

Xn

j=i
vj · (xj − xj+1)

=
Xn

i=1
ivi · (xi − xi+1) =

Xn

i=1
R(i) · (xi − xi+1)

=
Xn

i=1
(R(i) − R(i − 1)) · xi =

Xn

i=1
Φv(vi) · xi.

An implication of the characterization of the envy-free
revenue of a pricing as its virtual surplus, i.e.,

P
i Φ(vi)xi,

suggests that to maximize revenue, the allocation should
maximize virtual surplus subject to swap monotonicity. In
symmetric environments with monotone virtual valuation
functions, the maximization of virtual surplus results in a
swap monotone allocation. In general symmetric environ-
ments, the allocation that maximizes ironed virtual surplus
is both swap monotone and revenue optimal among all swap
monotone allocations.

Lemma 2.3. In a symmetric environments, the allocation
that maximizes ironed virtual surplus with ties broken ran-
domly is swap monotone.

Proof. Suppose Φ̄(vi) > Φ̄(vj) then xi > xj ; otherwise,
swapping xi for xj would have higher ironed virtual surplus.
Suppose Φ̄(vi) = Φ̄(vj), then xi = xj because of random-
tie-breaking and the symmetry of the environment.

Theorem 2.4. In any symmetric environment with any
valuation profile v, the allocation x that maximizes ironed
virtual surplus w.r.t. Φ̄v maximizes envy-free revenue among
all swap-monotone allocations. I.e., EFO(v) = EFx(v).

This theorem is proved by a useful lemma that relates
revenue to ironed virtual surplus.

Lemma 2.5. For any swap-monotone allocation x on val-
uation profile v,

EFx(v) ≤
Xn

i=1
Φ̄v(i) · xi =

Xn

i=1
R̄

v

(i) · (xi − xi+1),

with equality holding if and only if xi = xi+1 whenever
R̄

v

(i) > Rv(i).

Proof. To show the inequality, we have:

EFx(v) =
Xn

i=1
R(i) · (xi − xi+1)

=
Xn

i=1
R̄(i) · (xi − xi+1)

−
Xn

i=1
(R̄(i) − R(i)) · (xi − xi+1)

≤
Xn

i=1
R̄(i) · (xi − xi+1),

where we use the fact that R̄(i) ≥ R(i) and xi ≥ xi+1.
Clearly the equality holds if and only if xi = xi+1 whenever
R̄(i) > R(i).



Proof of Theorem 2.4. Consider x that optimizes ironed
virtual surplus with random tie breaking and also consider
any other swap monotone x′. Note that whenever R̄(i) >
R(i), we have Φ̄v(vi) = Φ̄v(vi+1) for which random tie-
breaking implies xi = xi+1. Therefore x satisfies Lemma 2.5
with equality, whereas x′ satisfies it with inequality. Thus

EFx(v) ≥ EFx
′

(v) and x is optimal.

As an example of this theorem, consider position auction
environments with click probabilities w1 ≥ w2 ≥ . . . ≥ wn.
An ironed virtual surplus maximizer assigns agents with
higher ironed virtual values to slots with larger click prob-
abilities, breaking ties randomly, ignoring agents with neg-
ative ironed virtual values. The ironed virtual surplus, and
thus revenue, is

P
i : Φ̄(vi)≥0 Φ̄(vi) ·wi, which can be read off

the revenue curve, e.g., Figure 2.

3. MATROIDS, POSITION AUCTIONS, AND
MULTI-UNIT AUCTIONS

In this section we consider matroid permutation, position
auction, and multi-unit environments. We show that for
both incentive compatible mechanism design and envy-free
pricing, these environments are closely related. In fact, for
either IC or EF, respectively, the optimal mechanisms across
these environments are the same and approximation mech-
anisms give the same approximation factor. As an example,
we will focus on approximating the optimal EF revenue with
a prior-free mechanism. For reasons we motivate in Sec-
tion 5, the EF revenue benchmark that we will approximate
is EFO(2)(v) = EFO(v(2)) where v(2) = (v2, v2, v3, . . . , vn).
Our solution will be via a two-step reduction: we reduce ma-
troid permutation to position auction environments, which
we then reduce to multi-unit environments.

Recall that in a multi-unit environment it is feasible to
serve any set of agents of cardinality at most some given
k. In position auction environments there are weights w1 ≥
w2 ≥ · · · ≥ wn for positions and feasible outcomes are par-
tial assignments of agents to positions. In matroid permu-
tation environments there is a feasibility constraint given by
independent sets of a matroid, but the roles of the agents
are assigned by random permutation.

The property of these three settings that enables this re-
duction is that in each environment the greedy algorithm
on ironed virtual values (with ties broken randomly) obtains
the maximum ironed virtual surplus. The greedy algorithm
works as follows: order the agents by ironed virtual value
and serve each agent in this order if her ironed virtual value
is positive and if doing so is feasible given the set of agents
previously served. Notice that the only information needed
to perform the surplus maximization is the ordering on the
agents’ ironed virtual values (but not their magnitudes).

Definition 3.1. The characteristic weights w1 ≥ w2 ≥
· · · ≥ wn of a matroid environment are as follows: choose
any valuation profile v with all distinct values, assign the
agents to elements in the matroid via a random permutation,
run the greedy algorithm w.r.t. v, and define wi to be the
probability that agent i is served.

3.1 Reduction for Ironed Virtual Surplus Max-
imizers

We first show ironed virtual surplus optimization in the
three environments is equivalent.

Lemma 3.1. The ironed virtual surplus maximizing as-
signment (and its virtual surplus) is equal in expectation in
the following environments:

1. a matroid permutation environment with characteristic
weights w,

2. a position auction environment with weights w,

3. a convex combination of multi-unit environments where
k units are available with probability wk − wk+1 for
k ∈ {1, . . . , n} and wn+1 = 0.

Proof. Fix a tie-breaking rule, which induces an order-
ing on the agents. Consider the greedy algorithm on the
agents with non-negative Φ̄ values according to this order-
ing. The j-th agent with non-negative Φ̄ value in this or-
dering (1) gets allocated with probability wj in the matroid
permutation setting by definition of characteristic weights,
(2) gets assigned to position j in the position auction and
hence gets allocated with probability wj , and, (3) gets al-
located in k-unit auction for each k ≥ j, and hence has
probability

P
k≥j(wk − wk+1) = wj of being served in the

convex combination setting. Taking expectation over all tie-
breaking orders, agent i has the same probability of being
served in the three settings.

The following corollary is immediate.

Corollary 3.2. For any valuation profile v and any weights
w, the envy-free optimal revenue is the same in each of the
environments of Lemma 3.1.

A basic fact about incentive compatibility is that it is
closed under convex combination, i.e., a randomization over
two incentive compatible mechanisms is incentive compat-
ible: truthtelling is an optimal strategy in each, and so it
remains an optimal strategy in the combination.

We now illustrate how to use Lemma 3.1 to show that an
incentive compatible prior-free approximation mechanisms
for multi-unit environments can be adapted to give the same
approximation factor in position auction and matroid per-
mutation environments. Consider the following incentive
compatible mechanism.

Definition 3.2. The Random Sampling Empirical Myer-
son (RSEM) mechanism: (discussion of payments omitted)

1. randomly partitions the population of agents N = {1, . . . , n}
into a market M and a sample S,

2. calculates the ironed virtual surplus function Φ̄S for
the sample S, and,

3. serves a feasible subset of M to maximize surplus with
respect to Φ̄S and rejects all other agents.

Lemma 3.3. [8] In multi-unit auction environments, RSEM
is a prior-free incentive compatible 50-approximation to the
envy-free benchmark EFO(2)(v).

Notice that this mechanism can easily be generalized to
other downward-closed environments. It remains incentive
compatible for these settings because it is essentially an
ironed virtual surplus optimizer on the set M , and further-
more, it is incentive compatible even if the permutation that
assigns agents to the set system is fixed. As a final corol-
lary of Lemma 3.1, we can view its revenue in the matroid
permutation or position auction environment as the analo-
gous convex combination of its revenue in multi-unit auction
environments.



Corollary 3.4. In matroid permutation and position auc-
tion environments, RSEM is a prior-free incentive compati-
ble 50-approximation to the envy-free revenue EFO(2)(v).

3.2 General Reduction
The following prior-free approximations are essentially the

best known for digital good and multi-unit environments.
Notably, the mechanism from Corollary 3.7 below, is not
based on ironed virtual surplus maximization and therefore
Lemma 3.1 cannot be applied to a construct matroid per-
mutation or position auction mechanism from it.

Lemma 3.5. [14] In the digital good environment, there
is a prior-free incentive compatible 3.25-approximation to
EFO(2)(v).

Lemma 3.6. [8] If there is a prior-free incentive compati-
ble mechanism for the digital good environment that β-approx-
imates EFO(2)(v), then there is such a mechanism for multi-

unit environments that 2β-approximates EFO(2)(v).

Corollary 3.7. In multi-unit environments, there is an
incentive compatible prior-free 6.5-approximation to EFO(2)(v).

We now show how to construct, from any multi-unit auc-
tion, a position auction and matroid permutation mecha-
nism that has the exact same outcome (in expectation) as a
convex combination of multi-unit auctions (as in Lemma 3.1).
The challenge here is the distinct interfaces to the environ-
ment: in multi-unit auctions we are given a supply con-
straint k and we need to specify a set of at most k winners,
whereas in position auctions, we are given weights and need
to output a partial assignment of agents to positions.

Definition 3.3 (Position Auction Reduction).
Given k-unit auction mechanisms for k ∈ {1, . . . , n}, we
construct the following mechanism for the position auction
environment with weights w:

1. Introduce n dummy agents and n dummy positions into
the system, indexed by {n + 1, . . . , 2n}. Correspond-
ingly, we pad weights w and valuation profile v with
zeros such that they have dimension 2n.

2. For each k ∈ {1, . . . , n}, simulate the k-unit auction
on valuation profile v, and give the unallocated leftover
units to the dummy agents arbitrarily for free. Let the
resulting allocation of all 2n agents be x(k).

3. Calculate the probability that each agent is served in

the convex combination: xi =
Pn

k=1 x
(k)
i (wk − wk+1),

for i ∈ {1, . . . , 2n}.

4. Solve for a set of permutation matrices Pt ∈ {0, 1}2n×2n

and nonnegative weights rt with
P

t
rt = 1 such thatP

t rt · Pt · w = x.

5. With probability rt, assign agents to positions accord-
ing to the permutation specified by Pt.

6. Discard dummy agents and dummy position assign-
ments.

To justify step 4, one can verify that w majorizes x in
the sense that

Pk

i=1 wi ≥
Pk

i=1 xi for k ∈ {1, . . . , 2n}, with
equality holding for k = 2n. Therefore by a theorem of
Rado [19], the desired permutation matrices and weights
exist. The following consequences are immediate.

Lemma 3.8. The resulting mechanism for position auc-
tion with weights w obtained from the above reduction has
the same allocation as the convex combination of k-unit auc-
tions with (wk − wk+1)’s as probabilities.

Lemma 3.9. Given an incentive compatible multi-unit auc-
tion, the mechanism from the position auction reduction is
also incentive compatible.

Definition 3.4 (Matroid Permutation Reduction).
Given a position auction mechanism for weights w, we con-
struct the following mechanism for matroid permutation en-
vironment with characteristic weights w:

1. We run the position auction and for i = 1, . . . , n, let
ji be the position assigned to agent i, or ji = ⊥ if i is
not assigned a position.

2. Reject all agents i with ji = ⊥.

3. Run the greedy algorithm in the matroid permutation
setting with agent i’s value reset to ji.

The following conclusions are immediate.

Lemma 3.10. The resulting mechanism for matroid per-
mutation environment obtained from the above reduction has
the same allocation as the position auction.

Lemma 3.11. Given an incentive compatible position auc-
tion, the mechanism from the matroid permutation reduc-
tion is incentive compatible (in matroid permutation envi-
ronments).

Theorem 3.12. The factor β to which there is a prior-
free incentive compatible approximation of EFO(2)(v) is the
same for multi-unit, position auction, and matroid permu-
tation environments.

Corollary 3.13. There is a prior-free incentive compat-
ible 6.5-approximation to EFO(2)(v) in position auction and
matroid permutation environments.

There are two weakness in the reductions implied by The-
orem 3.12 in comparison to those implied by Lemma 3.1.
Recall that for the latter, ironed virtual surplus maximiza-
tions are via the greedy algorithm, and so the reductions
were algorithmically trivial. In contrast, Theorem 3.12 re-
quires knowledge of the characteristic weights to run the
construction, which may be hard to compute. In addition
the mechanism that results from the matroid permutation
reduction is only incentive compatible if the agents are as-
signed to roles in the matroid via a random permutation
as suggested in the model. In contrast, RSEM in matroid
environments is incentive compatible without any random
permutation (Corollary 3.4).

4. INCENTIVE COMPATIBILITY VERSUS
ENVY FREEDOM

The major challenge in designing and analyzing incen-
tive compatible mechanisms is that the incentive constraint
binds across all possible misreports of the agents. We there-
fore view a mechanism as an allocation rule and payment
rule pair where x(v) and p(v) denote the allocation and
payments as a function of the agent values.



Definition 4.1 (Incentive Compatibility). A mech-
anism is incentive compatible if no agent prefers the out-
come when misreporting her value to the outcome when re-
porting the truth. Formally,

∀i, z,v, vixi(v) − pi(v) ≥ vixi(z,v−i) − pi(z,v−i),

where (z,v−i) is obtained frmo v with vi replaced by z.

Definition 4.2 (Value Monotonicity). An allocation
rule is value monotone if the probability that an agent is
served is monotone non-decreasing in her value, i.e., xi(z,v−i)
is non-decreasing in z for all agents i.

The following well-known theorem characterizes ex post
IC mechanisms.

Theorem 4.1. [18] An allocation rule x(·) admits a non-
negative and individually rational payment rule p(·) such
that (x,p) is incentive compatible if and only if x(·) is value
monotone, and the uniquely determined payment rule is:

pi(v) = vixi(v) −

Z vi

0

xi(z,v−i)dz.

Because the payments are uniquely determined by the al-
location rule, for any allocation rule x(·), we let ICx(v) de-
note the IC revenue from running x(·) over v.

We now compare envy-free revenue to incentive compati-
ble revenue for ironed virtual surplus optimizers in permu-
tation environments, i.e., where agents are assigned to roles
in the set system via a random permutation. We show that
these quantities are often within a factor of two of each other.

First we lower bound IC revenue by half of the maximum
envy-free revenue under a technical condition. In the fol-

lowing we use ICΦ̄
i (v) and EFΦ̄

i (v) to denote the IC and EF
revenue from agent i by applying the ironed virtual surplus
maximizer Φ̄, respectively.

Lemma 4.2. For downward-closed permutation environ-
ments, all valuations v, and Φ̄, the ironed virtual valuation
function corresponding to some v′ obtained from v by set-

ting a subset of agents’ values to be 0, we have that ICΦ̄
i (v) ≥

1
2

EFΦ̄
i (v) for all i.

Proof. Let x(·) denote the allocation rule of the ironed
virtual surplus optimizer Φ̄. By the assumption of the lemma,
for all j, Φ̄(z) is constant for all z ∈ [vj+1, vj), and hence
the IC allocation rule in fact maps each z ∈ [vj+1, vj) to
xi(vj+1,v−i).

By Lemma 4.1, ICΦ̄
i (v) is equal to

Pn

j=i
(vj−vj+1)·(xi(v)−

xi(vj+1,v−i)) which, referring to Figure 3, equals the area
above the IC curve and below the horizontal dotted line. On
the other hand, EFΦ̄

i (v) is equal to
Pn

j=i
(vj−vj+1)·(xi(v)−

xj+1(v)), which similarly corresponds to the area above the
EF curve and below the horizontal dotted line. It suffices
to prove that: xi(v)− xi(vj+1,v−i) ≥

1
2
· (xi(v)− xj+1(v)).

Note that xi(vj+1,v−i) = xj+1(vj+1,v−i) as now agents i
and j + 1 have the same value, this is equivalent to xi(v) +
xj+1(v) ≥ xi(vj+1,v−i) + xj+1(vj+1,v−i).

The last inequality says that the total winning probability
of agent i and j + 1 can only decrease if agent i lowers her
bid to vj+1. To prove this, we fix the permutation that maps
agents to roles of the set system, and show that the number
of winning agents from i and j + 1 can only be lower after

agent i decreases her value. There are two cases to verify: (1)
Agent i wins after the decrease. Then before the decrease,
agent i had higher value, and the optimal feasible set would
be the same. (2) Agent j +1 wins and agent i loses after the
decrease. Then before the decrease, at least one of agents i
and j + 1 would win.

Figure 3: Depiction of EF allocation and IC allo-
cation rule from which the payments for agent i are
computed. The EF allocation curve maps each value
in [vj+1, vj) to xj+1(v), and the IC allocation curve
maps each z to xi(z,v−i).

In matroid permutation environments, envy-free revenue
upper-bounds incentive compatible revenue.

Lemma 4.3. For matroid permutation environments, all
valuations v, and all ironed virtual valuation functions Φ̄,

for all agent i, EFΦ̄
i (v) ≥ ICΦ̄

i (v).

Proof. Recall that EFΦ̄
i (v) =

Pn

j=i
(vj − vj+1) · (xi(v)−

xj+1(v)) and ICΦ̄
i (v) =

R vi

0
(xi(v) − xi(z,v−i))dz. By the

monotonicity of xi(z,v−i) in z, ICΦ̄
i (v) is upper-bounded

by
Pn

j=i
(vj − vj+1) · (xi(v) − xi(vj+1,v−i)). Recall that

xi(vj+1,v−i) = xj+1(vj+1,v−i). It suffices to prove that
xj+1(v) ≤ xj+1(vj+1,v−i). To see this, ironed virtual sur-
plus maximizers are greedy algorithms in matroid permuta-
tion settings, and if agent i decreases her bid to vj+1, agent
j + 1 is less likely to be blocked by i who was earlier in the
greedy order, and is hence more likely to be allocated.

5. PRIOR-FREE MECHANISM DESIGN AND
BENCHMARKS

As discussed previously, no incentive compatible mecha-
nism obtains an optimal profit point-wise on all possible val-
uation profiles. Therefore, to obtain point-wise guarantees,
the literature on prior-free mechanism design looks for the
incentive compatible mechanism that minimizes, over val-
uation profiles, its worst-case ratio to a given performance
benchmark. It is important to identify a good benchmark
for such an analysis to be meaningful.

If the designer had a prior distribution over the agent
valuations then she could design the mechanism that max-
imizes revenue in expectation over this distribution. This
is the approach of Bayesian optimal mechanism design as
characterized by Myerson [18] and refined by Bulow and
Roberts [5]. Given a distribution F , virtual values and rev-
enue curves can be derived. The optimal mechanism is the
one that maximizes ironed virtual surplus.

Theorem 5.1. [18] When values are i.i.d. from distribu-
tion F the optimal mechanism, ICOF , is the ironed virtual
surplus optimizer for Φ̄ corresponding to F .



If the agent values are indeed drawn from a prior distri-
bution, but the designer is unaware of the distribution, then
a reasonable objective might be to design a mechanism that
is a good approximation to the optimal mechanism for any
unknown distribution. This prior-independent objective is a
relaxation of our prior-free objective.

One important criterion for a prior-free benchmark is that
its approximation should imply prior-independent approx-
imation: if a mechanism is a constant approximation to
the benchmark, then for a relevant class of distributions, it
should be a constant approximation to the Bayesian optimal
mechanism under any distribution from the class.

For matroid permutation environments, Lemma 4.3 im-
plies that for any values v the optimal envy-free revenue
EFO(v) (which is at least the envy-free revenue of any ironed
virtual surplus optimizer) is at least the incentive compat-
ible revenue of any ironed virtual surplus optimizer. By
Theorem 5.1, the Bayesian optimal mechanism is an ironed
virtual surplus optimizer so EFO(v) upper-bounds its rev-
enue. Consequently, a prior-free β-approximation to EFO
is also a prior-independent β-approximation for all distribu-
tions.

Unfortunately, even for simple the digital good environ-
ment it is not possible to obtain a prior-free constant approx-
imation to EFO (see [12]). This impossibility arises because
it is not possible to approximate the highest value v1. For
essentially the same reason, it is not possible to design a
prior-independent constant approximation for all distribu-
tions. We therefore restrict attention to the large family of
distributions with tails that are not too irregular.

Definition 5.1 (Tail Regularity). A distribution F
is n-tail regular if in n-agent 1-unit environments, the ex-
pected revenue of the Vickrey auction is a 2-approximation
to that of the Bayesian optimal mechanism.

The definition of tail regularity is implied by Myerson’s
regularity assumption via the Bulow-Klemperer Theorem [4].
The intuition for the definition is the following. For n-agent
1-unit environments, all the action happens in the tail of the
distribution, i.e, values v for which F (v) ≈ 1 − 1/n; there-
fore, irregularity of the rest of the distribution does not have
much consequence on revenue. Tail regularity, then, restates
the Bulow-Klemperer consequence, as a constraint on the
tail of the distribution and leaves the rest unconstrained.

We now define the benchmark for prior-free mechanism
design. Approximation of this benchmark guarantees prior-
independent approximation of all n-tail-regular distributions.

Definition 5.2. The envy-free benchmark is EFO(2)(v) =

EFO(v(2)) where v(2) = (v2, v2, v3, . . . , vn).

Theorem 5.2. With any n-agent matroid permutation en-
vironment, any n-tail-regular distribution F , and any β-
approximation mechanism to EFO(2), the expected revenue
of the mechanism with valuations v drawn i.i.d. from F is a
3β-approximation to the optimal mechanism for F .

Proof sketch. By the reduction from matroid permu-
tation environments to multi-unit environments, we focus
on showing the result for k-unit auctions. We use tail reg-
ularity to get a bound on the payment from the highest
agent in terms of the Vickrey auction revenue, v2. Of course,
EFO(2)(v) is at least v2, and so the payment from the high-

est agent is at most 2EFO(2)(v) (in expectation over i.i.d. draws

of v from F ). The second part of the argument involves
bounding the total payments of agents {2, . . . , n}, point-wise

from above, by EFO(2)(v). This is possible by Lemma 4.3
and detailed analysis of k-unit auction payments.

It is useful to compare the EFO benchmark to ones pro-
posed in the literature that are based on the Vickrey-Clarke-
Groves (VCG) mechanism with the best (for the particu-
lar valuation profile v) reserve price (e.g., [16]). The VCG
mechanism with a reserve price first rejects all agents whose
values to not meet the reserve, then it serves the remaining
agents to maximize the surplus (sum of values).

The VCG-with-reserve benchmark can be expressed as an
ironed virtual surplus optimizer, and so by Lemma 4.3, in
matroid permutation environments, EFO is no smaller. For
a digital good, EFO and VCG-with-reserve are identical.
For multi-unit auctions EFO is at most twice VCG-with-
reserve [8]. For matroid permutation environments EFO
can be (almost) a logarithmic factor larger than VCG-with-
reserve. Therefore, the EFO-based benchmark results in
stronger approximation guarantees.

Lemma 5.3. There exists a distribution F and n-agent
matroid environment for which VCG with any reserve price
is an Ω(log n/ log log n)-approximation to ICOF .

Proof sketch. We construct a set system and an ir-
regular distribution with a jagged revenue curve that has
m = Ω( log n

log log n
) deep “trenches”, such that the following

are true. (1) Myerson’s mechanism gets about 1/m fraction
of its revenue from each trench via ironing. (2) The VCG
mechanism with reserve gets similar amount of good revenue
from at most one of the trenches by setting an appropriate
price, but only gets low revenue from the other trenches due
to the lack of ironing. In total, VCG with reserve only gets
about 1/m fraction of Myerson’s revenue.

6. DOWNWARD-CLOSED PERMUTATION
ENVIRONMENTS

For downward-closed permutation settings, there are cer-
tain bizarre settings where the maximum envy-free revenue
may not upper-bound the incentive compatible revenue, which
means that approximating the EFO benchmark does not
necessarily imply prior-independent approximation for i.i.d. dis-
tributions. (See full paper for proof.)

Lemma 6.1. There exists a downward-closed set system,
and valuation profile v, such that if Φ̄ = Φ̄v is the ironed

virtual valuation function of v, then ICΦ̄(v) > EFΦ̄(v).

These settings seem pathological, and even in these set-
tings the EF revenue seems to be not too far below the IC
revenue of any ironed virtual surplus optimizer. Therefore
we believe EFO remains an interesting benchmark for ap-
proximation in downward closed settings.

In this section, we will show that a variant of RSEM (recall
Definition 3.2) approximates the envy-free benchmark by a
constant factor.

Definition 6.1 (RSEM′). The variant RSEM′ is iden-
tical to RSEM except Step 3 where instead it:

3′ finds the feasible subset W of N (the full set of agents)
to maximize surplus with respect to Φ̄S and serves agents
in M ∩ W (the winners from the market M) only, re-
jecting all others.



In the rest of this section we prove our main theorem.

Theorem 6.2. For downward-closed permutation environ-

ments, ICRSEM′

(v) ≥ 1
2560

EFO(2)(v) for all v.

Consider EFΦ̄S

(v), the envy-free revenue of Step 3′ of
RSEM′. Notice that Φ̄S , the ironed virtual valuation func-
tion for S, is not the right ironed virtual valuation function
for optimizing envy-free revenue on v. The goal of this sec-
tion is to understand the envy-free revenue that results from
optimizing using the wrong ironed virtual valuation func-
tion. To do this we introduce two auxiliary revenue curves
eR and bR (and their corresponding valuation profiles). Intu-

itively, bR corresponds to the revenue we think we get when

optimizing Φ̄S on v, and eR corresponds to the revenue curve
we actually end up with.

Definition 6.2 (Effective revenue curve eR).
For values v and ironed virtual valuations Φ̄S for S: group
agents with equal nonnegative Φ̄S values into consecutive
classes {1, . . . , n1}, {n1 + 1, . . . , n2}, . . . , {nt−1 + 1, . . . , nt}

and define the effective revenue curve eR from R = Rv by
connecting the points (0, 0), (n1, R(n1)), . . . , (nt, R(nt)) and
then extending horizontally to (n, R(nt)), i.e., ironing the
values in each class.

Figure 4: Effective Ironing

Figure 4 depicts an example of the effective revenue curve.
The three rays from the origin, which correspond to values at
which Φ̄S makes a piece-wise jump, divide the first orthant
into four regions. For every region, every point (i, R(i)) in
the region (which corresponds to value vi) has the same Φ̄S

value. In each region these points get “ironed”, and hence

the line segment in eR.

Lemma 6.3. EFΦ̄S

(v) =
Pn

i=1
eR(i) · (xS

i (v) − xS
i+1(v)).

Proof.

EFΦ̄S

(v) =
Xn

i=1
R(i) · (xS

i (v) − xS
i+1(v))

=
Xn

i=1

eR(i) · (xS
i (v) − xS

i+1(v))

Here the first equality is by Lemma 2.5. To justify the second

equality, note that whenever eR(i) 6= R(i), there are two
cases: (1) i is in {nj−1 + 1, . . . , nj − 1} for some j, and
so vi and vi+1 have the same Φ̄S value, and hence xS

i (v) =
xS

i+1(v). (2) i is bigger than nt, and so vi and vi+1 both have
negative Φ̄S value, and hence xS

i (v) = xS
i+1(v) = 0.

For a set of agents S, let vS denote (vS,0N−S), i.e., the
valuation profile (of n agents) obtained from v by decreasing

the values of agents outside S to 0. Note that v = vN . Let

RS and R̄
S

be the revenue curve and ironed revenue curve
of the valuation profile vS respectively.

Lemma 6.4. For all 1 ≤ i ≤ n, eR(i) ≥ R̄
S
(i).

Figure 5: Revenue dominance

Proof sketch. Figure 5 depicts the relationship between
the revenue curves. Observe that revenue curve R dominates
RS in the sense that for every slope t, the intersection of the
ray y = tx with R is farther away from the origin than its
intersection with RS. Transforming R and RS to the effec-
tive revenue curves using the same ironed virtual valuation
function Φ̄S do not change such dominance relationship, and

moreover, because R̄
S

is non-decreasing and concave, it fol-

lows that vertical dominance also holds, i.e., eR(i) ≥ R̄
S
(i)

for all i.

Definition 6.3 (Perceived revenue curve bR).

The perceived revenue curve for Φ̄S on v is given by bR(i) =Pi

j=1 Φ̄S(vi) for i ∈ N .

Let v̂ be the valuation profile corresponding to bR, i.e., v̂i =
bR(i)/i, and let xv̂ be the ironed virtual surplus maximizer
for Φ̄v̂.

Lemma 6.5. xS
i (v) = xv̂

i (v̂).

Proof. Compare running the ironed virtual surplus max-
imizer xS for Φ̄S on v with running xv̂ for Φ̄v̂ on v̂, the
ironed virtual valuation of agent i in either case is equal to
φi. Therefore these two ironed virtual surplus optimizers
will choose the same allocation, and the lemma follows.

Recall that there are at least two agents. We will focus
on the case that agent 1 is in M , and agent 2 is in S.

Definition 6.4. We say that the partitioning (S, M) of
agents N = {1, . . . , n} is balanced if Yi ≤ 3i/4 and double-
side balanced if i/4 ≤ Yi ≤ 3i/4 for all i ∈ {3, . . . , n} and
Yi = |{1, 2, . . . , i} ∩ S|.

Lemma 6.6. Conditioning on 1 ∈ M, 2 ∈ S, a random
partitioning (S, M) of N is balanced with probability at least
0.8, and is double-side balanced with probability at least 0.6.

Lemma 6.7. Given a balanced partitioning (S, M), for ev-
ery non-increasing sequence a1, . . . , an of nonnegative reals
and all i ∈ N ,

P
j∈M∩{1,...,i} aj ≥ 1

4

P
j∈{1,...,i} aj.

Lemma 6.8. If (S, M) is a double-side balanced partition-

ing with 1 ∈ M, 2 ∈ S, then R̄
S
(i) ≥ 1

4
bR(i) ≥ 1

4
R̄

S
(i) for all

1 ≤ i ≤ n.



Proof. For each i, bR(i) =
Pi

j=1 φj and R̄
S
(i) is the sum

of the i largest φj values with j ∈ S. Therefore bR ≥ R̄
S
(i).

Since (S, M) is double-side balanced, applying Lemma 6.7,

we also have that for all i, R̄
S
(i) ≥ 1

4
bR(i).

Now we are ready prove the following key lemma:

Lemma 6.9. For any downward-closed permutation envi-
ronments, any valuation profile v, and double-side balanced

partitioning (S, M), EFΦ̄S

(vN) ≥ 1
4

EFΦ̄S

(vS) = 1
4

EFO(vS).

Proof. Let xv̂ be short-hands for the ironed virtual sur-
plus optimizers with ironed virtual valuation functions de-
fined for vS and v̂, respectively. The proof is by the follow-
ing inequalities:

EFΦ̄S

(vN) =
X

i

eR(i) · (xS
i (vN) − xS

i+1(vN ))

=
X

i

eR(i) · (xv̂

i (v̂) − xv̂

i+1(v̂))

≥ 1
4
·

X
i

bR(i) · (xv̂

i (v̂) − xv̂

i+1(v̂))

≥ 1
4
·

X
i

bR(i) · (xS
i (vS) − xS

i+1(vS))

≥ 1
4
·

X
i
R̄

S
(i) · (xS

i (vS) − xS
i+1(vS)).

Here the first two equalities are guaranteed by our defini-

tions of eR and bR. The first inequality is by Lemma 6.4 and
Lemma 6.8, the second inequality is by the optimality of xv̂

for v̂, and the third inequality is by Lemma 6.8 again.

The following lemma, together with symmetry, will help
us relate EFO(vS) to EFO(vN).

Lemma 6.10. For a partitioning (S, M) of N , we have
that EFO(vS) + EFO(vM ) ≥ EFO(vN).

Proof. EFO(vN) = EFO(vS∪M) is the maximum rev-
enue we can get from S ∪ M subject to the envy free con-
straints. Let agents in M contribute total revenue R to
EFO(vN ). By setting the agents in S to have zero valua-
tions to obtain valuation profile vS, we basically removed
envy-free constraints between agents in S and agents in M .
With less envy free constraints, the maximum envy-free rev-
enue we can get from M , i.e., EFO(vM ), can only be larger.
Similarly, the total revenue that S contributes to EFO(vN)
is at most EFO(vS), and our lemma follows.

Now we can establish the performance guarantee for RSEM′.

Proof of Theorem 6.2. We condition our analysis on
that agent 1 is in M , and agent 2 is in S, which happens
with probability 1/4. Conditioning on this, by Lemma 6.6,
the partitioning (S, M) is double-side balanced with proba-
bility 0.6, and by Lemma 6.10 and symmetry, EFO(vS) ≥
1
2

EFO(vN ) with probability 0.5. Both of these events hap-
pen with probability at least 1− (1− 0.6) − (1− 0.5) = 0.1.

We assume both events happen. For each i, by Lemma 4.2,

we have ICx
S

i (vN) ≥ 1
2

EFΦ̄S

i (vN). Note that EFΦ̄S

i (vN) is
non-increasing in i. Because (S,M) is balanced, applying

Lemma 6.7, we have
P

i∈M EFΦ̄S

i (vN ) ≥
P

i∈N
1
4
·EFΦ̄S

i (vN )

and therefore by Lemma 4.2,
P

i∈M
ICx

S

i (vN) ≥ 1
8

EFΦ̄S

(vN).

Together with that EFΦ̄S

(vN ) ≥ 1
4

EFΦ̄S

(vS) ≥ 1
8

EFO(v(2))

by Lemma 6.9 and Lemma 6.10, we have
P

i∈M
ICx

S

i (vN) ≥
1
64

EFO(v(2)), and our theorem follows by multiplying the
ratio with the probabilities.
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