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ABSTRACT
Mechanism design is now a standard tool in computer sci-
ence for aligning the incentives of self-interested agents with
the objectives of a system designer. There is, however, a
fundamental disconnect between the traditional application
domains of mechanism design (such as auctions) and those
arising in computer science (such as networks): while mon-
etary transfers (i.e., payments) are essential for most of the
known positive results in mechanism design, they are unde-
sirable or even technologically infeasible in many computer
systems. Classical impossibility results imply that the reach
of mechanisms without transfers is severely limited.

Computer systems typically do have the ability to re-
duce service quality—routing systems can drop or delay traf-
fic, scheduling protocols can delay the release of jobs, and
computational payment schemes can require computational
payments from users (e.g., in spam-fighting systems). Ser-
vice degradation is tantamount to requiring that users burn
money, and such “payments” can be used to influence the
preferences of the agents at a cost of degrading the social
surplus.

We develop a framework for the design and analysis of
money-burning mechanisms to maximize the residual surplus—
the total value of the chosen outcome minus the payments
required. Our primary contributions are the following.

• We define a general template for prior-free optimal
mechanism design that explicitly connects Bayesian
optimal mechanism design, the dominant paradigm in
economics, with worst-case analysis. In particular, we
establish a general and principled way to identify ap-
propriate performance benchmarks in prior-free mech-
anism design.

• For general single-parameter agent settings, we char-
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acterize the Bayesian optimal money-burning mecha-
nism.

• For multi-unit auctions, we design a near-optimal prior-
free money-burning mechanism: for every valuation
profile, its expected residual surplus is within a con-
stant factor of our benchmark, the residual surplus of
the best Bayesian optimal mechanism for this profile.

• For multi-unit auctions, we quantify the benefit of
general transfers over money-burning: optimal money-
burning mechanisms always obtain a logarithmic frac-
tion of the full social surplus, and this bound is tight.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Algorithms, Economics, Theory

1. INTRODUCTION
Mechanism design is now a standard tool in computer

science for designing resource allocation protocols (a.k.a.
mechanisms) in computer systems used by agents with di-
verse and selfish interests. The goal of mechanism design
is to achieve non-trivial optimization even when the under-
lying data—the preferences of participants—are unknown
a priori. Fundamental for most positive results in mecha-
nism design are monetary transfers (i.e., payments) between
participants. For example, in the surplus-maximizing VCG
mechanism [35, 7, 20], such transfers enable the mechanism
designer to align fully the incentives of the agents with the
system’s objective.

Most computer systems differ from classical environments
for mechanism design, such as traditional markets and auc-
tions, in that monetary transfers are unpopular, undesirable,
or technologically infeasible. It is sometimes possible to de-
sign mechanisms that eschew transfers completely; see [33]
for classical results in economics and [15, 24] for recent ap-
plications in interdomain routing. Unfortunately, negative
results derived from Arrow’s Theorem [3, 17, 32] imply that
the reach of mechanisms without transfers is severely lim-
ited.

The following observation motivates our work: computer
systems typically have the ability to arbitrarily reduce ser-
vice quality. For example, routing systems can drop or delay
traffic (e.g. [8]), scheduling protocols can delay the release



of jobs (e.g. [6]), and computational payment schemes al-
low a mechanism to demand computational payments from
agents (e.g., in spam-fighting systems [11, 10, 25]).1 Such
service degradation can be used to align the preferences of
the agents with the social objective, at a cost: these “pay-
ments” also degrade the social surplus.

We develop a framework for the design and analysis of
money-burning mechanisms—mechanisms that can employ
arbitrary payments and seek to maximize the residual sur-
plus, defined as the total value to the participants of the
chosen outcome minus the sum of the (“burnt”) payments.2

Such mechanisms must trade off the social cost of imposing
payments with the ability to elicit private information from
participants and thereby enable accurate surplus-maximization.
For example, suppose we intend to award one of two partici-
pants access to a network. Assume that the two agents have
valuations (i.e., maximum willingness to pay) v1 and v2 ≤ v1

for acquiring access, and that these valuations are private
(i.e., unknown to the mechanism designer). The Vickrey
or second-price auction [35] would award access to agent 1,
charge a payment of v2, and thereby obtain residual surplus
v1 − v2. A lottery would award access to an agent chosen at
random, charge nothing, and achieve a (residual) surplus of
(v1 + v2)/2, a better result if and only if v1 < 3v2. Even in
this trivial scenario, it is not clear how to define (let alone
design) an optimal money-burning mechanism.3

Our goal is to rigorously answer the following two ques-
tions:

1. What is the optimal money-burning mechanism?

2. How much more powerful are mechanisms with mone-
tary transfers than money-burning mechanisms?

Our Results.
Our first contribution is to identify a general template

for prior-free (i.e., worst-case) optimal mechanism design.
The basic idea is to characterize the set of mechanisms that
are Bayesian optimal for some i.i.d. distribution on valua-
tions, and then define a prior-free performance benchmark
that corresponds to competing simultaneously with all of
these on a fixed (worst-case) valuation profile. The tem-
plate, which we detail below, is general and we expect it to
apply in many mechanism design settings beyond money-
burning mechanisms.

Second, we characterize Bayesian optimal money-burning
mechanisms—the incentive-compatible mechanisms with max-
imum-possible expected residual surplus. Our characteri-
zation applies to general single-parameter agents, meaning

1Computational payment schemes do not need the infras-
tructure required by micropayment schemes. One can in-
terpret our results as analyzing the power of computational
payments, which were first devised for spam-fighting, in a
general mechanism design setting.
2We assume that valuations and burnt payments are mea-
sured in the same units. In other words, there is a known
mapping between decreased service quality (e.g., additional
delay) and lost value (e.g., dollars). This mapping can be
different for different participants, but it must be publicly
known and map onto [0,∞). See Section 6 for further dis-
cussion.
3Indeed, it follows from our results that in some settings
lotteries are optimal (i.e., money-burning is useless); in oth-
ers, Vickrey auctions are optimal; and sometimes, neither is
optimal.

that the preferences of each agent is naturally summarized
by a single real-valued valuation, with independent but not
necessarily identically distributed valuations. The charac-
terization unifies results in the economics literature [5, 26]
and also extends them in two important directions. First,
the results in [5, 26] concern only multi-unit auctions, where
k identical units of an item can be allocated to agents who
each desire at most one unit. Our characterization applies to
the general, possibly asymmetric, setting of single-parameter
agents; for example, agents could be seeking disjoint paths
in a multicommodity network.4 In addition, for multi-unit
auctions, we give a simple description of the optimal mech-
anism even when the “hazard rate” of the valuation distri-
bution is not monotone in either direction. This important
case is the most technically interesting and challenging one,
and it has not been considered in detail in the literature.

Third, for multi-unit auctions, we design a mechanism
that is approximately optimal in the worst case. We de-
rive our benchmark using our characterization of Bayesian
optimal mechanisms restricted to i.i.d. valuations and sym-
metric mechanisms. We prove that such mechanisms are
always well approximated by a k-unit p-lottery, defined as
follows: order the agents randomly, sequentially make each
agent a take-it-or-leave-it offer of p, and stop after either k
items have been allocated or all agents have been considered.
This result reduces the design of a constant-approximation
prior-free money-burning mechanism to the problem of ap-
proximating the residual surplus achieved by the optimal k-
unit p-lottery. Our prior-free mechanism obtains a constant
approximation of this benchmark using random sampling to
select a good value of p. Surprisingly, we accomplish this
even when k is very small (e.g., k = 1). Our benchmark def-
inition ensures that such a guarantee is strong: for example,
if valuations are drawn from some unknown i.i.d. distribu-
tion F, our mechanism obtains a constant fraction of the
expected residual surplus of an optimal mechanism tailored
specifically for F.

Finally, for multi-unit auctions, we provide a price-of-
anarchy-type analysis that measures the social cost of burnt
payments. Recall that the full surplus is achievable with
monetary transfers using the Vickrey-Clarke-Groves (VCG)
mechanism. We prove that the largest-possible relative loss
in surplus due to money-burning is precisely logarithmic in
the number of participants, in both the Bayesian and worst-
case settings. Indeed, our near-optimal money-burning mech-
anism always obtains residual surplus within a logarithmic
factor of the full surplus. This result suggests that the cost
of implementing money-burning (e.g., computational pay-
ments) rather than general transfers (e.g., micropayments)
in a system is relatively modest. Further, our positive re-
sult contrasts with the linear lower bound that we prove on
the fraction of the full surplus obtainable by mechanisms
without any kind of payments.

A Template for Prior-Free Auction Design.
The following template forges an explicit connection be-

tween the Bayesian analysis of Bayesian optimal mechanism
design, the dominant approach in economics, and the worst-
case analysis of prior-free optimal mechanism design, the

4Multi-unit auctions model symmetric situations, as when
each agent seeks a path from a common source s to a com-
mon destination t; here, the number k of units equals the
number of edges in a minimum s-t cut.



ubiquitous approach in theoretical computer science. Its
goal is to fill a fundamental gap in prior-free optimal mech-
anism design methodology: the selection of an appropriate
performance benchmark.

1. Characterize the Bayesian optimal mechanism for ev-
ery i.i.d. valuation distribution.

2. Interpret the behavior of the symmetric, ex post in-
centive compatible, Bayesian optimal mechanism for
every i.i.d. distribution on an arbitrary valuation pro-
file to give a distribution-independent benchmark.

3. Design a single ex post incentive compatible mecha-
nism that approximates the above benchmark on ev-
ery valuation profile; the performance ratio of such a
mechanism provides an upper bound on that of the
optimal prior-free mechanism.

4. Obtain lower bounds on the best performance ratio
possible in this framework by exhibiting a distribution
over valuations such that the ratio between the ex-
pected value of the benchmark and the performance of
the Bayesian optimal mechanism for the given distri-
bution is large.

In hindsight, this approach has been employed implicitly
in the context of (profit-maximizing) digital good auctions
[19, 18]. However, the simplicity of the digital good auction
problem obscures the importance of the first two steps, as
the Bayesian optimal digital good auction is trivial: offer a
posted price. For money-burning mechanisms, the bench-
mark we identify in Step 2 is not a priori obvious.

Further Related Work.
McAfee and McMillan study collusion among bidders in

multi-unit auctions [26]. In a weak cartel, where the agents
wish to maximize the cartel’s total utility but are not able to
make side payments amongst themselves, payments made to
the auctioneer are effectively burnt. The optimization and
incentive problem faced by the grand coalition in a multi-
unit auction is similar to the auctioneer’s problem in our
money-burning setting; therefore, results for weak cartels
follow from similar analyses to ours [26, 9].

Our characterization of Bayesian optimal money-burning
mechanisms builds on analysis tools developed for profit
maximization in Bayesian settings (see Myerson [28] and Ri-
ley and Samuelson [30]) that apply in general single param-
eter settings (see, e.g., [22]). Independently from our work,
Chakravarty and Kaplan [5] describe the optimal Bayesian
auction in multi-unit money-burning settings. Our work ex-
tends this analysis to general single-parameter agent set-
tings with explicit focus on the case where the hazard rate
is not monotone in either direction. Our paper is the first to
study the relative power of money-burning mechanisms and
mechanisms with or without transfers. It is also the first to
consider prior-free money-burning mechanisms.

Our results that quantify the benefit of transfers have
analogs in the price of anarchy literature, specifically in the
standard (nonatomic) model of selfish routing (e.g. [31]).
Namely, full efficiency is achievable in this model with gen-
eral transfers, in the form of “congestion prices”; without
transfers the outcome is a Nash equilibrium, with ineffi-
ciency measured by the price of anarchy; and with burnt

transfers (“speed bumps” or other artificial delays) it is gen-
erally possible to recover some but not all of the efficiency
loss at equilibrium [8].

There are several other studies that view transfers to an
auctioneer as undesirable; however, these works are tech-
nically unrelated to ours. We already noted recent work
on incentive-compatible interdomain routing without pay-
ments [15, 24]. Moulin [27] and Guo and Conitzer [21] inde-
pendently studied how to redistribute the payments of the
VCG mechanism in a multi-unit auction among the partic-
ipants (using general transfers) to minimize the total pay-
ment to the auctioneer. Finally, as already mentioned, our
prior-free techniques are related to recent work on profit
maximization (e.g., [19, 16, 4]) and there is a related liter-
ature on the problem of cost minimization, a.k.a. frugality
(e.g., [2, 34, 12, 23]).

2. BAYESIAN OPTIMAL MONEY BURNING
In this section we study optimal money-burning mecha-

nism design from a standard economics viewpoint, where
agent valuations are drawn from a known prior distribution.
This will complete the first step of our template for prior-free
optimal mechanism design.

Mechanism design basics. We consider mechanisms that
provide a good or service to a subset of n agents. The
outcome of such a mechanism is an allocation vector, x =
(x1, . . . , xn), where xi is 1 if agent i is served and 0 other-
wise, and a payment vector, p = (p1, . . . , pn). In this paper,
the payment pi is the amount of money that agent i must
“burn”. We allow the set of feasible allocation vectors, X , to
be constrained arbitrarily; for example, in a multi-unit auc-
tion with k identical units of an item, the feasible allocation
vectors are those x ∈ X with

P

i xi ≤ k.
We assume that each agent i is risk-neutral, has a privately

known valuation vi for receiving service, and aims to max-
imize their (quasi-linear) utility, defined as ui = vixi − pi.
We denote the valuation profile by v = (v1, . . . , vn).

Our mechanism design objective is to maximize the resid-
ual surplus, defined as

X

i
(vixi − pi)

for a valuation profile v, a feasible allocation x, and pay-
ments p. If the payments were transferred to the seller then
the resulting social surplus would be

P

i vixi; however, in
our setting the payments are burnt and the social surplus is
equal to the residual surplus.

Bayesian mechanism design basics. In this section, we
assume that the agent valuations are drawn i.i.d. from a pub-
licly known distribution with cumulative distribution func-
tion F (z) and probability density function f(z). We let F
denote the joint (product) distribution of agent values. See
Section 6 for a generalization to general product distribu-
tions.

We consider the problem of implementation in Bayes-Nash
equilibrium. Agent i’s strategy is a mapping from their pri-
vate value vi to a course of actions in the mechanism. The
distribution on valuations F and a strategy profile induce
a distribution on agent actions. These agent actions are in
Bayes-Nash equilibrium if no agent, given their own valua-
tion and the distribution on other agents’ actions, can im-



prove its expected payoff via alternative actions. By the rev-
elation principle [28], we can restrict our attention to single
round, sealed bid, direct mechanisms in which truthtelling,
i.e., submitting a bid bi equal to the private value vi, is a
Bayes-Nash equilibrium. It will turn out that there is always
an optimal mechanism that is not only Bayesian incentive
compatible but also dominant strategy incentive compatible,
meaning truthtelling is an optimal agent strategy for every
strategy profile of the other agents.

An allocation rule, x(v), is the mapping (in the truthtelling
equilibrium) from agent valuations to the outcome of the
mechanism. Similarly the payment rule, p(v), is the map-
ping from valuations to payments. Given an allocation rule
x(v), let xi(vi) be the probability that agent i is allocated
when its valuation is vi (over the probability distribution on
the other agents’ valuations): xi(vi) = Ev−i

[xi(vi, v−i)] .
Similarly define pi(vi). Positive transfers from the mecha-
nism to the agents are not allowed and we require interim in-
dividual rationality (i.e., that non-participation in the mech-
anism is an allowable agent strategy). The following lemma
is the standard characterization of the allocation rules im-
plementable by Bayesian incentive-compatible mechanisms
and the accompanying (uniquely defined) payment rule.

Lemma 2.1. [28] Every Bayesian incentive compatible
mechanism satisfies:

1. Allocation monotonicity: for all i and vi > vi
′, xi(vi) ≥

xi(vi
′).

2. Payment identity: for all i and vi, pi(vi) = vixi(vi) −
R vi

0
xi(v)dv.

Virtual valuations. Assume for simplicity that the distri-
bution F has support [a, b] and positive density throughout
this interval. Myerson [28] defined “virtual valuations” and
showed that they characterize the expected payment of an
agent in a Bayesian incentive compatible mechanism.

Definition 2.2 (virtual valuation for payment).
If agent i’s valuation is distributed according to F , then its

virtual valuation for payment is ϕ(vi) = vi −
1−F (vi)

f(vi)
.

Lemma 2.3. [28] In a Bayesian incentive-compatible mech-
anism with allocation rule x(·), the expected payment of agent i
satisfies Ev[pi(v)] = Ev[ϕ(vi)xi(v)] .

Myerson uses this correspondence to design optimal mech-
anisms for profit-maximization. The optimal mechanism for
a given distribution is the one that maximizes the virtual
surplus (for payment).

Definition 2.4 (virtual surplus). For virtual valu-
ation function ϕ(·) and valuations v, the virtual surplus of
allocation x is

P

i ϕ(vi)xi.

Our objective is to maximize the residual surplus,
P

i(vixi(v)−
pi(v)), which we can do quite easily using virtual valuations.
To justify our terminology, below, notice that an agent’s
utility is ui(v) = vixi(v)−pi(v), and our objective of resid-
ual surplus maximization is simply that of maximizing the
expected utility of the agents, Ev

ˆP

i ui(v)
˜

. We define a
virtual valuation for utility by simply plugging in the virtual
valuation for payments into the equation that defines utility.

Definition 2.5 (virtual valuation for utility). If
agent i’s valuation is distributed according to F , then its vir-

tual valuation for utility is ϑ(vi) = 1−F (vi)
f(vi)

.

This quantity is also known as the “information rent” or
“inverse hazard rate function”. Treating it as a virtual val-
uation of sorts, we generalize the theory of optimization by
virtual valuations, beginning with the following lemma.

Lemma 2.6. In a Bayesian incentive-compatible mecha-
nism with allocation rule x(·), the expected utility of agent i
satisfies Ev[ui(v)] = Ev[ϑ(vi)xi(v)] .

We can conclude from this that the Bayesian optimal
mechanisms for residual surplus are precisely those that max-
imize the expected virtual surplus (for utility) subject to
feasibility and monotonicity of the allocation rule. In other
words, we should choose a feasible allocation vector x(v) to
maximize

P

i ϑ(vi)xi(v) for each v, subject to monotonic-
ity of xi(vi). It is easy to see that if ϑ(·) is monotone non-
decreasing in vi, then choosing x(v) ∈ argmax

x′∈X

P

i ϑ(vi)xi
′

results in a monotone allocation rule. Unfortunately ϑ(·) is
often not monotone non-decreasing; indeed, under the stan-
dard “monotone hazard rate” assumption, discussed further
below, ϑ(·) is monotone in the wrong direction.

Ironing. We next generalize an “ironing” procedure of My-
erson [28] that transforms a possibly non-monotone virtual
valuation function into an ironed virtual valuation function
that is monotone; the optimization approach of the previ-
ous paragraph can then be applied to these ironed functions
to obtain a monotone allocation rule. Further, the ironing
procedure preserves the target objective, so that an optimal
allocation for the ironed virtual valuations is equal to the
optimal monotone allocation for the original virtual valua-
tions.

Definition 2.7 (ironed virtual valuations [28]).
Given a distribution function F (·) with virtual valuation (for
utility) function ϑ(·), the ironed virtual valuation function,
ϑ̄(·), is constructed as follows:

1. For q ∈ [0, 1], define h(q) = ϑ(F−1(q)).

2. Define H(q) =
R q

0
h(r)dr.

3. Define G as the convex hull of H — the largest convex
function bounded above by H for all q ∈ [0, 1].

4. Define g(q) as the derivative of G(q), where defined,
and extend to all of [0, 1] by right-continuity.

5. Finally, ϑ̄(z) = g(F (z)).

Step 4 of Definition 2.7 makes sense because G is convex
function. Convexity of G also implies that g, and hence ϑ̄,
is a monotone non-decreasing function.

The proof Myerson gives for ironing virtual valuations for
payments extends simply to any other kind of virtual valua-
tion including our virtual valuations for utility. We summa-
rize this in Lemma 2.8, with the proof deferred to the full
version.

Lemma 2.8. Let F be a distribution function with virtual
valuation function ϑ(·) and x(v) a monotone allocation rule.
Define G, H, and ϑ̄ as in Definition 2.7. Then

Ev[ϑ(vi)xi(v)] ≤ Ev

ˆ

ϑ̄(vi)xi(v)
˜

, (1)



with equality holding if and only if d
dv

xi(v) = 0 whenever
G(F (v)) < H(F (v)).

Our main theorem now follows easily.

Theorem 2.9. Let F be a distribution function with vir-
tual valuation function ϑ(·). Define G, H, and ϑ̄ as in Defi-
nition 2.7. For valuation profiles drawn from distribution F,
the mechanisms that maximize the expected residual surplus
are precisely those satisfying

1. x(v) ∈ argmax
x′∈X

P

i ϑ̄(vi)xi
′ for every v; and

2. for all i, d
dv

xi(v) = 0 whenever G(F (v)) < H(F (v)).

Proof. First, there exists a mechanism that satisfies both
of the desired properties. To see this, consider an allocation
rule that maximizes

P

i ϑ̄(vi)xi(v) for every v. Such a rule
can without loss of generality be a function only of ϑ̄(vi) and
not of vi directly. At points v where G(F (v)) < H(F (v)), G
is locally linear (since it is the convex hull of H) and hence
ϑ̄(v) is locally constant. Thus such an allocation rule will
satisfy d

dv
xi(v) = 0 at all such points (for all i).

A mechanism that meets both conditions simultaneously
maximizes the right-hand side of (1) while satisfying the in-
equality with equality. Lemmas 2.6 and 2.8 imply that such
a mechanism maximizes the expected residual surplus and,
conversely, that all optimal mechanisms must meet both
conditions.

Theorem 2.9 shows that maximizing the ironed virtual
surplus (for utility) is equivalent to maximizing expected
residual surplus subject to incentive-compatibility. Different
tie-breaking rules can yield different optimal mechanisms.
With symmetric participants (that is, i.i.d. valuations) and
a symmetric feasible region (e.g., k-item auctions), it is nat-
ural to consider symmetric mechanisms, and these will play
a crucial role in our benchmark for prior-free money-burning
mechanisms (see Definition 3.1).

Interpretations. To interpret Theorem 2.9, recall that the

hazard rate of distribution F at v is defined as f(v)
1−F (v)

. The

monotone hazard rate (MHR) assumption is that the hazard
rate is monotone non-decreasing and is a standard assump-
tion in mechanism design (e.g. [28]). We will analyze this
standard setting (MHR), the setting in which the hazard
rate is monotone in the opposite sense (anti-MHR), and the
setting where it is neither monotone increasing nor decreas-
ing (non-MHR). Notice that the hazard rate function is pre-
cisely the reciprocal virtual valuation (for utility) function.

When the valuation distribution satisfies the MHR con-
dition (Figure 1), the ironed virtual valuations (for utility)
have a special form: they are constant with value equal to
their expectation (proof omitted).

Lemma 2.10. For every distribution F that satisfies the
monotone hazard rate condition, the ironed virtual valuation
(for utility) function is constant with ϑ̄(z) = µ, where µ
denotes the expected value of the distribution.

Therefore, under MHR the mechanism that maximizes the
ironed virtual surplus is the one that maximizes the ex ante
expected surplus, without asking for bids and without any
transfers. For example, in a multi-unit auction with i.i.d.
bidders, all agents are equal ex ante, and thus any allocation
rule that ignores the bids and always allocates all k units
(charging nothing) is optimal.

ϑ̄(v)

Figure 1: MHR (e.g., uniform): Lottery is optimal.

Corollary 2.11. For agents with i.i.d. valuations satis-
fying the MHR condition, an optimal (symmetric) money-
burning mechanism for allocating k units is a k-unit lottery.

Suppose the distribution satisfies the anti-MHR condition
(Figure 2) which implies that the virtual valuation (for util-
ity) functions are monotone non-decreasing. The ironed vir-
tual valuation function is then identical to the virtual valu-
ation function. The i.i.d. assumption implies that all agents
have the same virtual valuation function, so the agents with
the highest virtual valuations are also the agents with the
highest valuations. Therefore, an optimal money-burning
mechanism for allocating k units assigns the units to the k
agents with the highest valuations. This is precisely the al-
location rule used by the k-unit Vickrey auction [35], so the
truthtelling payment rule is that all winners pay the k + 1st
highest valuation.

Corollary 2.12. For agents with i.i.d. valuations satis-
fying the anti-MHR condition, an optimal (symmetric) money-
burning mechanism for allocating k units is a k-unit Vickrey
auction.

ϑ̄(v)

Figure 2: Anti-MHR (e.g., super-exponential):
Vickrey is optimal.

To optimally allocate k units of an item in the non-MHR
case (Figure 3), we simply award the items to the agents with
the largest ironed virtual valuations (for utility). Skipping
technical details, we have the following corollary.

Corollary 2.13. For agents with i.i.d. non-MHR valu-
ations, an optimal (symmetric) money-burning mechanism
for allocating k units is an indirect k-unit Vickrey auction:
for valuations in the range R = [a, b] and subrange R′ ⊂ R
on which ϑ̄(v) has positive slope, it is the indirect mechanism
where agents bid bi ∈ R′ and the k agents with the highest
bids win, with ties broken uniformly at random.



ϑ̄(v)

Figure 3: Non-MHR (e.g., bimodal): indirect Vick-
rey is optimal.

3. PRIOR-FREE MONEY-BURNING MECH-
ANISM DESIGN

We now depart from the Bayesian setting and design near-
optimal prior-free mechanisms for multi-unit auctions. Sec-
tion 3.1 corresponds to the second step in our prior-free
mechanism design template and leverages our characteri-
zation of Bayesian optimal mechanisms to identify a sim-
ple, tight, and distribution-independent performance bench-
mark. Section 3.3 gives a prior-free mechanism that, for
every valuation profile, obtains expected residual surplus
within a constant factor of this benchmark. This mechanism
implements the third step of our design template. We con-
sider lower bounds on the approximation ratio of all prior-
free mechanisms (the final step of the template) in Section 4.

For ease of discussion the payment rules we describe in
this section are for mechanism implementations that are
dominant strategy incentive compatible for agents that are
risk-neutral with respect to randomization in the mecha-
nism, i.e., mechanisms that are truthful in expectation. All
of these mechanisms have natural implementations with pay-
ment rules that make them dominant strategy incentive com-
patible for any fixed outcome of the mechanism’s random
decisions, i.e., mechanisms that are truthful all the time. In
the computer science literature, discussion of these distinc-
tions can be found in [1].

3.1 A Performance Benchmark for Prior-Free
Mechanisms

Intuitively, our performance benchmark for a valuation
profile is the maximum residual surplus achieved by a sym-
metric mechanism that is optimal for some i.i.d. distribution.
The next definition formalizes the class of mechanisms that
define the benchmark.

Definition 3.1 (Opt
F
). For an i.i.d. distribution F with

ironed virtual valuation (for utility) function ϑ̄, the mecha-
nism Opt

F
is defined as follows.

1. Given v, choose a feasible allocation maximizing
P

i ϑ̄(vi)xi.
If there are multiple such allocations, choose one uni-
formly at random.

2. Let x denote the corresponding allocation rule, with
xi(v) denoting the probability that player i receives an
item given the valuation profile v. Let p denote the
(unique) payment rule dictated by Lemma 2.1.

3. Given valuations v and the random choice of alloca-
tion in the first step, charge each winner i the price
pi(v)/xi(v) and each loser 0.

By Theorem 2.9, Opt
F

maximizes the expected residual sur-
plus for valuations drawn from F. Using Lemma 2.1, it is

also incentive-compatible and ex post individually rational.
It is symmetric provided the set of feasible allocations is
symmetric (i.e., is a k-item auction). In this case, the first
step awards the k items to the bidders with the top k ironed
virtual valuations (for utility) with respect to the distribu-
tion F, breaking ties uniformly at random.

Our benchmark is then:

G(v) = sup
F

Opt
F
(v), (2)

where Opt
F
(v) denotes the expected residual surplus (over

the choice of random allocation) obtained by the mecha-
nism Opt

F
on the valuation profile v. This benchmark is,

by definition, distribution-independent. As such, it provides
a yardstick by which we can measure prior-free mechanisms:
we say that a (randomized) mechanism β-approximates the
benchmark G if, for every valuation profile v, its expected
residual surplus is at least G(v)/β. Note the strength of this
guarantee: for example, if a mechanism β-approximates the
benchmark G, then on any i.i.d. distribution it achieves at
least a β fraction of the expected residual surplus of every
mechanism. Naturally, no prior-free mechanism is better
than 1-approximate; we give stronger lower bounds in Sec-
tion 4.
Remark: Restricting attention in Definition 3.1 to optimal
mechanisms that use symmetric tie-breaking rules is crucial
for obtaining a tractable benchmark. For example, when
F is an i.i.d. distribution satisfying the MHR assumption,
Theorem 2.9 implies that every constant allocation rule that
allocates all items (with zero payments) is optimal (recall
Corollary 2.11). For a single-item auction and a valuation
profile v, say with the first bidder having the highest valua-
tion, the mechanism that always awards the good to the first
bidder and charges nothing achieves the full surplus. (Of
course, this mechanism has extremely poor performance on
many other valuation profiles.) As no incentive-compatible
money-burning mechanism always achieves a constant frac-
tion of the full surplus (see Proposition 5.1), allowing arbi-
trary asymmetric optimal mechanisms to participate in (2)
would yield an unachievable benchmark.

3.2 Multi-Unit Auctions and Two-Price Lot-
teries

The definition of G in (2) is meaningful in general single-
parameter settings, but appears to be analytically tractable
only in problems with additional structure, symmetry in par-
ticular. We next give a simple description of this benchmark,
and an even simpler approximation of it, for multi-unit auc-
tions.

What does Opt
F

look like for such problems? When the
distribution on valuations satisfies the MHR assumption,
Opt

F
is a k-unit lottery (cf., Corollary 2.11). Under the

anti-MHR assumption, Opt
F

is a k-unit Vickrey auction (cf.,
Corollary 2.12). We can view the k-unit Vickrey auction, ex
post, as a k-unit v(k+1)-lottery, where v(k+1) is the k + 1st
highest valuation, in the following sense.

Definition 3.2 (k-unit p-lottery). The k-unit p-lottery,
denoted Lotp, allocates to agents with value at least p at price
p. If there are more than k such agents, the winning agents
are selected uniformly at random.

One natural conjecture is that, ex post, the outcome of
every mechanism of the form Opt

F
on a valuation profile v

looks like a k-unit p-lottery for some value of p. For non-



MHR distributions F, however, Opt
F

can assume the more
complex form of a two-price lottery, ex post.

Definition 3.3 (k-unit (p, q)-lottery). A k-unit (p, q)-
lottery, denoted Lotp,q, is the following mechanism. Let s
and t denote the number of agents with bid in the range
(p,∞) and (q, p], respectively.

1. If s ≥ k, run a k-unit p-lottery on the top s agents.

2. If s + t ≤ k, sell to the top s + t agents at price q.

3. Otherwise, run a (k − s)-unit q-lottery on the agents
with bid in (q, p] and allocate each of the top s agents
a good at the price dictated by Lemma 2.1: k−s+1

t+1
q +

s+t−k
t+1

p.

We now prove that for every i.i.d. distribution F and ev-
ery valuation profile v, the mechanism Opt

F
results in an

outcome and payments that, ex post, are identical to those
of a k-unit (p, q)-lottery.

Lemma 3.4. For every valuation profile v, there is a k-
unit (p, q)-lottery with expected residual surplus G(v).

Proof. By definition (2), we only need to show that, for
every i.i.d. distribution F and valuation profile v, Opt

F
(v)

has the same outcome as a k-unit (p, q)-lottery.
Fix F and v, and assume that v1 ≥ · · · ≥ vn. Thus,

ϑ̄(v1) ≥ · · · ≥ ϑ̄(vn). Recall by Definition 3.1 that Opt
F

maximizes
P

i ϑ̄(vi)xi and breaks ties randomly. Define S =
{i : ϑ̄(vi) > ϑ̄(vk+1)}, T = {i : ϑ̄(vi) = ϑ̄(vk+1)}, s =
|S|, and t = |T |. Assume we are in the more technical
case that 0 < s < k < s + t (the other cases follow from
similar arguments). It is easy to see that Opt

F
assigns a

unit to each bidder in S and allocates the remaining k − s
units randomly to bidders in T . Let q = inf{v : ϑ̄(v) =
ϑ̄(vk+1)} and p = inf{v : ϑ̄(v) > ϑ̄(vk+1)}. The allocation
is thus identical to a k-unit (p, q)-lottery. A straightforward
argument (omitted) then shows that the payments are also
correct.

As we have seen, mechanisms of the form Opt
F

can pro-
duce outcomes not equivalent to that of a single-price lot-
tery. Our next lemma shows that k-unit p-lotteries give
2-approximations to k-unit (p, q)-lotteries. This allows us to
relate the performance of single-price lotteries to our bench-
mark (Corollary 3.6), which will be useful in our construc-
tion of an approximately optimal prior-free mechanism in
the next section.

Lemma 3.5. For every valuation profile v and parame-
ters k, p, and q, there is a p′ such that the k-unit p′-lottery
obtains at least half of the expected residual surplus of the
k-unit (p, q)-lottery.

Proof. We prove the lemma by showing that Lotp,q(v) ≤
Lotp(v) + Lotq(v). We argue the stronger statement that
each agent enjoys at least as large a combined expected util-
ity in Lotp(v) and Lotq(v) as in Lotp,q(v).

Let S and T denote the agents with values in the ranges
(p,∞) and (q, p], respectively. Let s = |S| and t = |T |.
Assume that 0 < s < k < s+ t as otherwise the k-unit (p, q)
lottery is a single-price lottery. Each agent in T participates
in a k-unit q-lottery in Lotq and only a (k−s)-unit q-lottery
in Lotp,q; its expected utility can only be smaller in the

second case. Now consider i ∈ S. Writing r = (k − s +
1)/(t + 1), we can upper bound the utility of an agent i in
Lotp,q by

vi−rq−(1−r)p = (1−r)(vi−p)+r(vi−q) ≤ (vi−p)+ k
s+t

·(vi−q),

which is the combined expected utility that the agent ob-
tains from participating in both a k-unit p-lottery (with
s < k) and a k-unit q-lottery.

Corollary 3.6. For every valuation profile v, there is a
k-unit p-lottery with expected residual surplus at least G(v)/2.

3.3 A Near-Optimal Prior-Free Money-Burning
Mechanism

We now give a prior-free mechanism that O(1)-approximates
the benchmark G. This mechanism is motivated by the fol-
lowing observations. First, by Corollary 3.6, our mechanism
only needs to compete with k-unit p-lotteries. Second, if
many agents make significant contributions to the optimal
residual surplus, then we can use random sampling tech-
niques to approximate the optimal k-unit p-lottery. Third,
if a few agents are single-handedly responsible for the resid-
ual surplus obtained by the optimal k-unit p-lottery, then
the k-unit Vickrey auction obtains a constant fraction of
the optimal residual surplus. The precise mechanism is as
follows.

Definition 3.7 (Random Sampling Optimal Lottery).
With a set S = {1, . . . , n} of n agents and a supply of k
identical units of an item, the Random Sampling Optimal
Lottery (RSOL) is the following mechanism.

1. Choose a subset S1 ⊂ S of the agents uniformly at
random, and let S2 denote the rest of the agents. Let
p2 denote the price charged by the optimal k-unit p-
lottery for S2.

2. With 50% probability, run a k-unit p2-lottery on S1.

3. Otherwise, run a k-unit Vickrey auction on S1.

We have deliberately avoided optimizing this mechanism
in order to keep its description and analysis as simple as
possible.

Theorem 3.8. RSOL O(1)-approximates the benchmark G.

In our proof of Theorem 3.8, we use the following “Bal-
anced Sampling Lemma” of Feige et al. [13] to control the
similarity between the random sample S1 chosen by RSOL
and its complement S2.

Lemma 3.9 (Balanced Sampling Lemma [13]). Let S
be a random subset of {1, 2, . . . , n}. Let ni denote |S ∩
{1, 2, . . . , i}|. Then

Pr
ˆ

ni ≤
3
4
i for all i ∈ {1, 2, . . . , n}

˛

˛ n1 = 0
˜

≥ 9
10

.

Proof. (of Theorem 3.8). Fix a valuation profile v with
v1 ≥ · · · ≥ vn and a supply k ≥ 1. For clarity, we make no
attempt to optimize the constants in the following analysis.

We analyze the performance of RSOL only when cer-
tain sampling events occur. For i = 1, 2, let Ei denote
the event that agent i is included in the set Si. Clearly,
Pr[E1 ∩ E2] = 1/4. Conditioning on E1 ∩ E2, let E3 denote
the event that the Balanced Sampling Lemma holds for the



sample S1\{1} when viewed as a subset of {2, 3, . . . , n}. Sim-
ilarly, let E4 denote the event that the Balanced Sampling
Lemma holds for the sample S2\{2} when viewed as a sub-
set of {1, 3, . . . , n}. By the Principle of Deferred Decisions
and the Union Bound, Pr[E3 ∩ E4|E1 ∩ E2] ≥ 4/5. Hence,
Pr

ˆ

∩4
i=1Ei

˜

≥ 1/5. We prove a bound on the approximation

ratio conditioned on the event ∩4
i=1Ei; since the mechanism

always has nonnegative residual surplus, its unconditional
approximation ratio is at most 5 times as large.

Let ni and n̄i denote |S1∩{1, 2, . . . , i}| and |S2∩{1, 2, . . . , i}|,
respectively. Since the event ∩4

i=1Ei holds, we have

ni, n̄i ∈
ˆ

1
6
i, 5

6
i
˜

(3)

for every i ∈ {2, 3, . . . , n}, and also n1 = 1 and n̄1 = 0.
By Corollary 3.6, we only need to show that the expected

residual surplus of the mechanism is at least a constant frac-
tion of that of the optimal k-unit p-lottery for v. For a sub-
set T of agents and a price p, let W (T, p) denote the resid-
ual surplus of the k-unit p-lottery for T . Letting nT

i denote
|T ∩{1, 2, . . . , i}| and di denote vi −vi+1 for i ∈ {1, 2, . . . , n}
(interpreting vn+1 = 0), for every ℓ we obtain the following
useful identity:

W (T, vℓ+1) =
min{k, nT

ℓ }

nT
ℓ

0

@

X

i∈T∩{1,...,ℓ}

vi

1

A − (4)

min{k, nT
ℓ } · vℓ+1 =

min{k, nT
ℓ }

nT
ℓ

ℓ
X

i=1

nT
i di.

Let vℓ∗+1 denote the optimal price for a k-unit p-lottery
for v, and note that ℓ∗ ≥ k. By (5), the residual surplus of
this optimal lottery is

W (S, vℓ∗+1) =
k

ℓ∗

ℓ
X

i=1

idi.

To analyze the expected residual surplus of RSOL, first sup-
pose that it executes a k-unit p2-lottery where p2 = vm+1

for some m. We then have

W (S2, p2) ≥ W (S2, vℓ∗+1) =
min{k, n̄ℓ∗}

n̄ℓ∗

ℓ∗
X

i=1

n̄idi

≥
k

ℓ∗

ℓ∗
X

i=2

i

6
di ≥

W (S, vℓ∗+1)

6
− d1,

where the first inequality follows from the optimality of p2

for S2, the first equality follows from (5), and the second in-
equality follows from (3). On the other hand, inequality (3)
and a similar derivation shows that the price p2 is nearly as
effective for S1:

W (S1, p2) =
min{k, nm}

nm

m
X

i=1

nidi

≥

„

1

5
·
min{k, n̄m}

n̄m

« m
X

i=1

n̄i

5
di

=
W (S2, p2)

25
≥

W (S, vℓ∗+1)

150
− d1.

Finally, if the mechanism executes a k-unit Vickrey auction
for S1, then it obtains residual surplus at least v1 − v2 = d1

(since the first agent is in S1). Averaging the residual surplus

from the two cases proves that RSOL O(1)-approximates
G.

We can improve the approximation factor in Theorem 3.8
by more than an order of magnitude by modifying RSOL and
optimizing the proof. Obtaining an approximation factor
less than 10, say, appears to require a different approach.

4. LOWER BOUNDS FOR PRIOR-FREE
MONEY-BURNING MECHANISMS

This section establishes a lower bound of 4/3 on the ap-
proximation ratio of every prior-free money-burning mech-
anism. This implements the fourth step of the prior-free
mechanism design template outlined in the Introduction.
Our proof follows from showing that there is a i.i.d. distribu-
tion F for which the expected value of our benchmark G is
a constant factor larger than the expected residual surplus
of an optimal mechanism for the distribution, such as Opt

F
.

This shows an inherent gap in the prior-free analysis frame-
work that will manifest itself in the approximation factor of
every prior-free mechanism.

Proposition 4.1. No prior-free money-burning mecha-
nism has approximation ratio better than 4/3 with respect
to the benchmark G, even for the special case of two agents
and one unit of an item.

We prove Proposition 4.1 by considering two agents with
valuations drawn i.i.d. from a standard exponential distri-
bution with density f(x) = e−x on [0,∞), and a single unit
of an item. This distribution has constant hazard rate, so a
lottery is an optimal mechanism, and it has expected (resid-
ual) surplus of this mechanism is 1. A calculation shows that
the expected value of G(v) is 4/3, which proves the claimed
lower bound.

For the special case of two agents and a single good, an
appropriate mixture of a lottery and the Vickrey auction is
a 3/2-approximation of the benchmark G(v). Determining
the best-possible approximation ratio is an open question,
even in the two agent, one unit special case.

Proposition 4.2. For two bidders and a single unit of an
item, there is a prior-free mechanism that 3/2-approximates
the benchmark G.

Proof. Consider a valuation profile with v1 ≥ v2. If we
run a Vickrey auction with probability 1/3 and a lottery
with probability 2/3, then the expected residual surplus is

1
3

(v1 − v2)+ 2
3

`

v1+v2

2

´

≥ 2
3

max
˘

v1+v2

2
, v1 − v2

2

¯

= 2
3
G(v).

5. QUANTIFYING THE POWER OF TRANS-
FERS AND MONEY-BURNING

For the objective of surplus maximization, mechanisms
with general transfers are clearly as powerful as money-
burning mechanisms, which in turn are as powerful as mech-
anisms without money. This section quantifies the distance
between the levels of this hierarchy by studying surplus ap-
proximation in multi-unit auctions. Precisely, we call a class
of mechanisms α-surplus maximizers if, for every multi-unit



auction problem, there is a mechanism in the class that ob-
tains at least a 1/α fraction of the full surplus for every val-
uation profile. For example, mechanisms with transfers are
1-surplus maximizers, because the VCG mechanism achieves
full surplus in every multi-unit auction problem. Mecha-
nisms without transfers are (n/k)-surplus maximizers, since
the expected surplus of a k-unit lottery is k/n times the full
surplus. One can show (details omitted) that mechanisms
without transfers are not significantly better than Θ(n/k)-
surplus maximizers.

The interesting question is to identify the exact location
of money-burning mechanisms between these two extremes:
what is the potential benefit of implementing monetary trans-
fers in a system that initially only supports money burning?
We give a lower bound (proof omitted) and a matching up-
per bound, for all k and n.

Proposition 5.1. Money-burning mechanisms are Ω(1+
log n

k
)-surplus maximizers in k-unit auctions.

Theorem 5.2. Money-burning mechanisms are O(1+log n
k
)-

surplus maximizers in k-unit auctions.

Proof. Fix k and a valuation profile v with v1 ≥ · · · ≥
vn. Assume for simplicity that both k and n are powers
of 2. Our simple mechanism is as follows. First, choose a
nonnegative integer j uniformly at random, subject to k ≤
2j ≤ n. Note that there are 1 + log2(n/k) possible choices
for j. Second, run a k-unit v2j+1-lottery, where we interpret
vn+1 as zero.

Write V ∗ =
Pk

i=1 vi for the full surplus. For each j be-
tween log2 k and log2 n, let Rj denote the residual surplus
obtained by the mechanism for a given value of j. We claim
that

E[Rj | j is chosen] ≥



V ∗

2
− k

2
vk+1 if j = log2 k

k
2

`

v2j−1+1 − v2j+1

´

otherwise.

When j = log2 k, the residual surplus is exactly V ∗−kvk+1 ≥
(V ∗ − kvk+1)/2. To justify the second case, note that k
units will be randomly allocated amongst the top 2j bidders
at price v2j+1. Each of these goods is allocated to one of

the top 2j−1 of these bidders with 50% probability, and the
residual surplus contributed by such an allocation is at least
v2j−1 − v2j+1 ≥ v2j−1+1 − v2j+1.

Let R denote the residual surplus obtained by our mech-
anism. The following derivation completes the proof:

E[R] = 1
1+log

2
(n/k)

Xlog
2

n

j=log
2

k
E[Rj | j is chosen]

≥ V ∗

2(1+log
2
(n/k))

.

Since the mechanism in Theorem 5.2 is prior-free, we ob-
tain the same (tight) guarantee for every Bayesian optimal
mechanism.

Corollary 5.3. For every i.i.d. distribution F, the ex-
pected residual surplus of the Bayesian optimal mechanism
for F obtains an Ω(1/(1+log(n/k))) fraction of the expected
full surplus.

Theorem 5.2 and Corollary 5.3 suggest that the cost of
implementing money-burning payments instead of (possibly
expensive or infeasible) general transfers is relatively mod-
est, provided an optimal money-burning mechanism is used.

6. CONCLUSIONS
We phrased our analysis of the Bayesian setting in terms

of feasible allocations (e.g., x ∈ X if and only if
P

i xi ≤ k
for the k-unit auction problem); however, it applies more
generally to single-parameter agent problems where the ser-
vice provider must pay an arbitrary cost c(x) for the alloca-
tion x produced. Standard problems in this setting include
fixed cost services, non-excludable public goods, and multi-
cast auctions [14]. The solution to these problems is again
to maximize the ironed virtual surplus, which in this con-
text is the sum of the agents’ ironed virtual valuations less
the cost of providing the service,

P

i ϑ̄i(vi)xi − c(x). This
generalization also applies when the agents’ valuations are
independent but not identically distributed, i.e., agent i has
ironed virtual valuation function ϑ̄i(·).

Theorem 6.1. Given service cost c(·) and a valuation
profile, v, drawn from distribution F = F1 × · · · × Fn with
ironed virtual valuation (for utility) function ϑ̄i(·) for agent
i, every mechanism with allocation rule satisfying

1. x(v) ∈ argmax
x′

P

i ϑ̄i(vi)xi − c(x′) and

2. d
dvi

ϑ̄i(vi) = 0 ⇒ d
dvi

xi(vi) = 0

is optimal with respect to expected residual surplus.

Our results for the Bayesian problem also extend beyond
dominant strategy mechanisms. The well known revenue
equivalence result [28] is popularly stated as: first price, sec-
ond price (a.k.a., Vickrey), and all-pay auctions all achieve
the same profit. Of course this applies to money burning as
well. While this paper emphasized the dominant strategy
“second price” optimal auction, there are also first-price and
all-pay variants that achieve the same performance. The all-
pay variant is especially interesting because of its potential
usefulness for network problems. For example, in network
routing, all agents could attach a proof of a computational
payment to their packets. The routing protocol can then
route the appropriate packets (depending on the amount of
computational payment) and drop the rest. There is no need
for a round of bidding, a round of transmitting the packets
of winning agents, and a round of collecting payments.

One of our main results is in giving a benchmark based on
the optimal mechanism for the symmetric setting of i.i.d. agents
and k-unit auctions. Another main result is in approximat-
ing this benchmark with a prior-free mechanism. Can these
techniques be generalized beyond symmetric settings? In
particular, the notion that agents’ private valuations may be
paired with publicly observable attributes allowed for prior-
free mechanisms to approximate Bayesian mechanisms for
digital good auctions and non-identically distributed valu-
ations [4]. Further, there has been some limited success in
prior-free optimal mechanism design with structured costs
or feasible allocations (e.g., [16] for multicast auctions and
[23] for path auctions).

Our analyses and the prior-free template extend to k-
unit auction problems beyond our objective of residual sur-
plus. Imagine the k-unit auction in an i.i.d. Bayesian set-
ting where the optimal solution is characterized by optimiz-
ing an ironed virtual value for some quantity other than
utility. For example, the “virtual valuation for a 8% gov-
ernment sales tax”, to optimize the value of the agents and
mechanism less the tax deducted by government, would be



ϕ(v) = 0.92v−0.08 1−F (v)
f(v)

. The optimal k-unit (p, q)-lottery

is still the appropriate benchmark. Furthermore, as long
as the optimal (p, q)-lottery makes use of prices p and q
bounded above by the second highest bid, v(2), as in the
money-burning context, then it is likely that our prior-free
mechanism, RSOL, can be employed to approximate the
benchmark. Notice that when applying this technique to
“virtual valuations for payments”, which are the appropri-
ate notion of virtual valuations for the objective of profit
maximization, the optimal k-unit (p, q)-lottery is simply a
posted price at p. Furthermore, the optimal posted price
might satisfy p = v(1) ≫ v(2). As it is not possible to ap-
proximate such a benchmark to within any constant factor,
the prior-free digital goods auction literature excludes this
possibility by defining the benchmark to be the profit of the
optimal posted price p ≤ v(2).

In our work there was an implicit, publicly known, ex-
change rate for money burnt. In network settings, where
burnt payments correspond to degraded service quality or
computational payments, the designer may not know each
agent’s relative disutility for such payments. This motivates
considering the more general setting where agents have a pri-
vate value for burnt money in addition to their private value
for service. This moves the problem from a single-parameter
setting to the far more challenging multi-parameter setting
where there are few positive results.

There are additionally a few loose ends to tie up with the
particular question of money-burning. For k-unit auctions,
can we give tighter upper and lower bounds for prior-free
money-burning mechanisms with a small number of agents?
For general settings beyond i.i.d. distributions and k-unit
auctions, can we quantify the power of money burning?
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