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ABSTRACT

We study the classic mathematical economics problem of Bayesian

optimal mechanism design where a principal aims to optimize ex-
pected revenue when allocating resources to self-interested agents
with preferences drawn from a known distribution. In single pa-
rameter settings (i.e., where each agent’s preference is given by a
single private value for being served and zero for not being served)
this problem is solved [20]. Unfortunately, these single parame-
ter optimal mechanisms are impractical and rarely employed [1],
and furthermore the underlying economic theory fails to generalize
to the important, relevant, and unsolved multi-dimensional setting
(i.e., where each agent’s preference is given by multiple values for
each of the multiple services available) [25].

In contrast to the theory of optimal mechanisms we develop a
theory of sequential posted price mechanisms, where agents in se-
quence are offered take-it-or-leave-it prices. We prove that these
mechanisms are approximately optimal in single-dimensional set-
tings. These posted-price mechanisms avoid many of the properties
of optimal mechanisms that make the latter impractical. Further-
more, these mechanisms generalize naturally to multi-dimensional
settings where they give the first known approximations to the elu-
sive optimal multi-dimensional mechanism design problem. In par-
ticular, we solve multi-dimensional multi-unit auction problems
and generalizations to matroid feasibility constraints. The constant
approximations we obtain range from 1.5 to 8. For all but one case,
our posted price sequences can be computed in polynomial time.

This work can be viewed as an extension and improvement of the
single-agent algorithmic pricing work of [9] to the setting of mul-
tiple agents where the designer has combinatorial feasibility con-
straints on which agents can simultaneously obtain each service.

∗This author was supported in part by NSF award number CCF-
0830494 and in part by a Sloan Foundation fellowship.
†This author was supported in part by NSF award number CCF-
0830773.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

Categories and Subject Descriptors

J.4 [Social and Behavioral Sciences]: Economics; F.2.0 [Analysis

of Algorithms and Problem Complexity]: General

General Terms

Algorithms, Economics, Theory

Keywords

Bayesian mechanism design

1. INTRODUCTION
Suppose that the local organizers for a prominent symposium on

computer science need to arrange for suitable hotel accommoda-
tions in the Boston area for the attendees of the conference. There
are a number of hotel rooms available with different features and
attendees have preferences over the rooms. The organizers need a
mechanism for soliciting preferences, assigning rooms, and calcu-
lating payments. Fortunately, they have distributional knowledge
over the participants’ preferences (e.g., from similar conferences).
This is a stereotypical multi-dimensional setting for mechanism de-
sign that, for instance, also arises in most resource allocation prob-
lems in the Internet. What mechanism should the organizers em-
ploy to maximize their objective (e.g., revenue)?

The economic theory of optimal mechanism design is elegant
and predictive in single-dimensional settings. Here Myerson’s the-
ory of virtual valuations and characterizations of incentive con-
straints via monotonicity guide the design of optimal incentive-
compatible mechanisms [20] with practical (often non-incentive-
compatible) implementations [1]. The challenge posed by multi-
dimensional settings (e.g., in the likely case that conference atten-
dees, i.e., agents, have different values for different hotel rooms) is
two-fold. First, multi-dimensional settings are unlikely to permit
succinct descriptions of optimal mechanisms [19, 22, 25]. Second,
in multi-dimensional settings optimal mechanisms are unlikely to
have practical implementations – even asking agents to report their
true types across the many possible outcomes of the mechanism
may be impractical. In summary, theory and practical consider-
ations from optimal mechanism design in single-dimensional set-
tings fail to generalize to multi-dimensional settings.

This paper approaches these issues through the lens of approxi-
mation. Our main results are simple, practical, approximately op-
timal mechanisms for a large class of multi-dimensional settings.



We consider the multi-dimensional setting through a single dimen-
sional analogy wherein each multi-dimensional agent is represented
by many independent single-dimensional agents (e.g., one for each
hotel room). The optimal revenue for this single-dimensional set-
ting is well understood and, due to increased competition among
agents, upper-bounds that of the original multi-dimensional set-
ting. We describe a “sequential posted price” mechanism for the
single-dimensional setting that is practical and approximately opti-
mal and, in contrast to the optimal single-dimensional mechanism,
achieves its approximation without inter-agent competition. This
gives a robustness to deviations in modeling assumptions and, for
instance, the same mechanism continues to be approximately opti-
mal in the original multi-dimensional setting. Therefore, our theory
for approximately optimal single-dimensional mechanisms gener-
alizes to multi-dimensional settings.

In the context of computer science literature this work is an ex-
tension of algorithmic pricing (e.g., [13]) to settings with multiple
agents; it is unrelated to the standard computational questions of al-

gorithmic mechanism design (e.g., [18, 21]). The central problem
in algorithmic pricing can be viewed (for the most part) as Bayesian
revenue maximization in a single agent setting (e.g., [13]). Algo-
rithmic pricing is hard to approximate when the agent’s values for
different outcomes are generally correlated [7]; however, when the
values are independent there is a 3-approximation [9]. In this con-
text, our results improve and extend the independent case to settings
with multiple agents and combinatorial feasibility constraints. No-
tice that the challenge in these problems is one imposed by the
multi-dimensional incentive constraints and not one from an inher-
ent complexity of an underlying non-game-theoretic optimization
problem. (E.g., in the hotel example the underlying optimization
problem is simply maximum weighted matching.) In contrast, most
work in algorithmic mechanism design addresses settings where
economic incentives are well understood but the underlying opti-
mization problem is computationally intractable (e.g., combinato-
rial auctions [18]).

While our exposition focuses on revenue maximization, all of
our techniques and results apply equally well to social welfare. So-
cial welfare is unique among objectives in that designing optimal
mechanisms in multi-dimensional settings is solved (by the VCG
mechanism). Therefore, the interesting implication of our work on
social welfare maximization is that sequential posted pricing ap-
proximates the welfare of the VCG mechanism and may be more
practical.

Sequential Posted Pricing. Consider a single-parameter set-
ting where each agent has a private value for service and there is a
combinatorial feasibility constraint on the set of agents that can be
simultaneously served. For this setting a sequential posted pricing

(SPM) is a mechanism defined by a price for each agent, a sequence
on agents, and the semantics that each agent is offered their corre-
sponding price in sequence as a take-it-or-leave-it while-supplies-
last offer. Meaning: if it is possible to serve the agent given the set
of agents already being served then the agent is offered the price.
A rational agent will accept if and only if the price is no more than
their private value for service. That prices are associated with the
agents and not the sequence reflects the possibility that agents may
play asymmetric roles for a given feasibility constraint or value dis-
tribution.

Consider the following hotel rooms example with one room, two
attendees, and attendee values independently and identically dis-
tributed uniformly between $100 and $200. The optimal mecha-
nism is the Vickrey auction and its expected revenue is $133. The
optimal sequential posted pricing is for the organizers to offer the

room to attendee 1 at a price of $150. If the attendee accepts, then
the room is sold, otherwise it is offered to attendee 2 for $100. The
expected revenue of this SPM is $125.

We are interested in comparing the optimal mechanism to the
optimal posted pricing in general settings. A special class of SPMs
is one where mechanisms have provable performance guarantees
for any sequence of the agents. These order-oblivious posted pric-

ings (OPM) are mechanisms defined by a price for each agent and
the semantics that each agent is offered their corresponding price in
some arbitrary sequence as a take-it-or-leave-it while-supplies-last
offer.

In single-dimensional settings, the advantages of sequential post-
ed pricings speak to the many reasons optimal auctions are rarely
seen in practice [1], and explain why posted pricings are ubiqui-
tous [15]. First, take-it-or-leave-it offers result in trivial game dy-
namics: truthful responding is a dominant strategy. Second, SPMs
satisfy strong notions of collusion resistance, e.g., group strate-

gyproofness (see [12]): the only way in which an agent can “help”
another agent is to decline an offer that he could have accepted,
thereby hurting his own utility. Third, agents do not need to pre-
cisely know or report their value, they must only be able to evaluate
their offer; therefore, they risk minimal exposure of their private in-
formation. Fourth, agents learn immediately whether they will be
served or not. In conclusion, the robustness of SPMs in single-
dimensional settings makes their approximation of optimal mecha-
nisms independently worthy of study.

The final robustness property of SPMs, which is of paramount
importance to our study of the multi-dimensional setting, is that
they minimize the role of agent competition, implying that single-
dimensional SPMs can be used “as-is” in multi-dimensional set-
tings with only a constant factor loss in performance. In our trans-
lation from the multi-dimensional setting to the single-dimensional
setting, each multi-dimensional agent has many single-dimensional
representatives. A good OPM for the single-dimensional setting
can be viewed as an OPM for the multi-dimensional setting by
grouping all representatives of an agent together and making their
offers simultaneously to the agent. The agent will of course accept
the offer that maximizes their utility. The resulting mechanism is
incentive compatible and achieves the same performance guaran-
tee as the single-parameter OPM. For SPMs where we are not free
to group each multi-dimensional agent’s single-dimensional repre-
sentatives together, an agent possibly faces a strategic dilemma of
whether to accept an offer (e.g., for one hotel room) early on or wait
for a later offer (e.g., another hotel room) which may or may not
still be available. Our guarantee is robust to the actions of any agent
with such a strategic option; if all agents with dominant strategies
follow said strategies then our performance is a constant fraction of
the original SPM’s performance. (This is a non-standard notion of
dominant strategy implementation.) Given the advantages of SPMs
over standard dominant strategy mechanisms, these partially dom-
inant strategy mechanisms may be more practically relevant.

Finally, we note that most of our results for posted pricings are
constructive and there are efficient algorithms for them. A posted
price mechanism has two components where computation is nec-
essary: an offline computation of the prices to post (and for SPMs,
the sequence of agents) and an online while-supplies-last offering
of said prices.1 The agents are only present for the online part
where the mechanism is trivial. All of the computational burden
for an SPM is in the offline part. The offline computation of our

1This is similar, for example, to nearest neighbor algorithms, where
one distinguishes the time taken to construct a database, and the
time taken to compute nearest neighbors over that database given a
query.



posted price mechanisms is based on a subroutine that repeatedly
samples the distribution of agent values and simulates Myerson’s
mechanism on the sample. This clearly requires more computa-
tion than just running Myerson’s mechanism on the real agents in
the first place; however, we benefit from the robustness that comes
from the trivial online implementation of posted pricings.

Related work.
See [25] and references therein for work in economics on opti-

mal multi-dimensional mechanism design. See [9] and references
therein for work in computer science on multi-dimensional pricing
for a single agent. We extend the setting from [9] to multiple agents
and improve their approximation for a single agent from 3 to 2.

Sequential posted price mechanisms have been considered pre-
viously in single-dimensional settings. Sandholm and Gilpin [24]
show experimentally that these mechanisms compare favorably to
Myerson’s optimal mechanisms. Blumrosen and Holenstein [6]
show how to compute the optimal posted prices in the special case
where agents’ values are distributed identically, and also show that
in this case the revenue of these mechanisms approaches the op-
timal revenue asymptotically. Several papers study revenue maxi-
mization through online posted pricings in the context of adversar-
ial values, albeit in the simpler context of multi-unit auctions [5,
16, 4].

The question of whether simple mechanisms can achieve near-
optimal revenue was considered recently by Hartline and Rough-
garden [14]. Except for their result on single-item auctions with
anonymous reserve prices, their VCG based mechanisms are likely
to suffer the same impracticality criticisms as the optimal mech-
anism. The essay “The Lovely but Lonely Vickrey Auction” by
Ausubel and Milgrom [1] discusses why this is the case. As a con-
sequence of the near-optimality of sequential posted prices, we an-
swer one of their open questions in the positive, namely, that the
gap between the revenue optimal mechanism and a VCG mecha-
nism with appropriate reserve prices is a constant (i.e., 2) in ma-
troid settings but with arbitrary valuation distributions. This bound
matches their result for regular distributions.

Our setting of sequential posted pricing with a matroid constraint
is very closely related to the so-called matroid secretary problem [2,
3, 17], but there are two important differences: (a) they assume that
agents’ values are adversarial, whereas in our setting they are drawn
from known distributions, and (b) in their setting agents arrive in
random order, whereas we consider optimized and adversarial or-
derings. Some of our results are reminiscent of that work, but our
techniques are necessarily different.

Finally, our results for OPMs in the multi-unit auction setting
are based on work on prophet inequalities from optimal stopping
theory. While that work applies directly to the analysis of OPMs
in the single-item auction setting, we show that it extends to k-unit
auctions with no loss in approximation factor.

2. PRELIMINARIES

2.1 Bayesian settings for mechanism design
The Bayesian multi-parameter unit-demand mechanism design

problem (BMUMD for short) is an abstraction of the setting where
a seller can provide a number of services to agents where each agent
desires at most one service. An agent’s value for each service may
be different, but is drawn independently from known distributions.
Formally we denote an instance of this problem as (J,S ,Π,F)
given as follows:

• J = [m] is a set of m services.

• Π = (J1, . . . , Jn) is a partitioning of the services among
the n agents.2 The services in Ji are the ones being targeted
at agent i. These agents are unit demand in that they each
desire at most one service from their partition.

• S ⊂ 2J is a feasibility constraint. It specifies the sets of
services the seller can simultaneously provide. We assume
S is downward closed, i.e., for S ∈ S all subsets S′ ⊂ S
are in S . We assume S respects the partitioning Π and the
unit-demand constraint, i.e., S ∈ S and i ∈ [n] satisfies
|S ∩ Ji| ≤ 1.

• F = F1×· · ·×Fm is the joint product distribution on agent
values over the m services. I.e., vj is drawn from distribution
Fj with density function fj .

The Bayesian single-parameter setting (BSMD for short) is an
abstraction of the setting where each agent has a single private
value for any “good outcome” of the mechanism. In this setting the
mechanism can produce a good outcome for agent i in which case
their valuation is vi or a bad outcome in which case their valuation
is zero. This can be represented as the special case of the multi-
dimensional setting where there is exactly one service available to
each agent, i.e., n = m and Ji = {i}. We denote an instance of
BSMD by the tuple (J,S ,F).

Examples. In the multi-parameter hotel rooms example the set J
of services is the set of edges in a bipartite graph between attendees
and hotel rooms, Ji are the edges incident on attendee i, and S is
the set of all matchings in the graph. In the single-parameter hotel
rooms example, where each attendee has a set of desired rooms and
the same valuation for each, the set J corresponds to attendees and
the feasible sets S are sets of attendees that can be simultaneously
matched, i.e., S is the set of all independent sets of the transversal
matroid corresponding to matchings in the bipartite graph between
attendees and their desired hotel rooms.

2.2 Posted-price mechanisms
We will consider sequential posted-price mechanisms based on

the following high-level protocol that is parameterized by p, a vec-
tor of prices, one for each service, and σ, an ordering over the ser-
vices.

The generic sequential posted pricing protocol for (p, σ) is as
follows:

1. Initialize A← ∅.

2. For j = 1 through m, do:

(a) If A ∪ {σ(j)} ∈ S , offer service σ(j) at price pj .

(b) If the agent accepts, A← A ∪ {σ(j)}.

3. Provide the services in A to the corresponding agents.

We denote the revenue of this mechanism on valuation profile v

byR(p,σ)
(J,S,Π,F)(v). In the strategically-simple single-parameter set-

ting this revenue can be calculated with the assumption that service
j is accepted by the agent when offered if vj ≥ pj . We defer the
discussion of incentives in the more complicated multi-parameter
setting to Section 2.3.

It is clear that it is always better from the designer’s point of view
to be able to choose the ordering σ. Unfortunately, this may not
always be possible. We therefore distinguish between the following
two kinds of posted-price mechanisms.

2This partitioning is for notational convenience only. Since we al-
low for an arbitrary feasibility constraint over the set J , the assump-
tion that the sets Ji are disjoint is without loss of generality.



Sequenced Posted-Price Mechanisms. An SPM is given
by (p, σ). Its expected revenue is:

R(p,σ)
(J,S,F) = Ev∼F[R(p,σ)

(J,S,F)(v)]

Order-oblivious Posted-pricing Mechanisms. An OPM
is given simply by the pricing p where we allow the order over the
services to be picked adversarially after the valuations of the agents
are drawn. This pessimistically bounds the worst possible revenue
for a given pricing. Formally:

Rp

(J,S,F) = Ev∼F[minσR
(p,σ)

(J,S,F)
(v)]

When it is clear from the context we will omit the subscript
(J,S ,Π,F) or (J,S ,F).

In some settings we consider randomized versions of SPMs and
OPMs where the pricing p is picked randomly. In this case, we
assume that the prices are drawn first and then the order σ is deter-
mined based on the prices (adversarially or by the designer).

2.3 Incentives
Most of the literature on mechanism design (especially in com-

puter science) focuses on sealed-bid single-round direct-revelation
mechanisms. These are mechanism that consist of two steps: first
agents report bids, to be interpreted as their preferences over pos-
sible outcomes of the mechanisms, and second the mechanism se-
lects an outcome and agent payments. In this context a mechanism
is incentive compatible if each agent has a (weakly) dominant strat-
egy of truthful reporting. It is assumed that agents report their true
preferences in an incentive compatible mechanism.

Our posted price mechanisms do not take this general single-
round form. Instead our mechanism will offer each agent a se-
quence of prices (and these offers may be arbitrarily interleaved
among agents). Strategically, a bidder i when offered price pj for
j ∈ Ji has two options. They can accept or reject the offer. An
agent with value vj for service j is sincere if they accept offers
pj ≤ vj and reject offers pj > vj .

Sincere bidding is a dominant strategy for an agent only when
the ordering σ respects the agent’s incentives. Formally, we say
that an ordering σ is Ji-respecting if for all j1, j2 ∈ Ji, vj1 −
pj1 > vj2 − pj2 ≥ 0 implies σ−1(j1) < σ−1(j2). That is, the
offers made to agent i are ordered by decreasing utility for the agent
(although they may be interleaved arbitrarily with offers for other
agents). An ordering is Π-respecting if it is Ji-respecting for all
i. The following lemma formalizes the connection between sincere
bidding and Π-respecting orderings.

LEMMA 1. For vJi
(the values of agent i) sincere bidding is a

(weakly) dominant strategy for i in sequential posted pricing (p, σ)
if and only if σ is Ji-respecting.

It is easy to see that if the condition on σ is met then an agent
will have no reason not to respond sincerely. If the condition is not
met, an agent may strategize in the following way. When offered
item j′ at a desirable price pj′ , the agent might reject the offer in
hopes of later being offered item j for which the agent has even
higher utility.

The condition of the lemma is met in three special cases of inter-
est:

1. When the agent is single dimensional, i.e., |Ji| = 1.

2. When the agent has positive utility for at most one service,
i.e., |{j ∈ Ji : vj − pj > 0}| ≤ 1

3. When the agent can choose the relative order of σ on Ji.

Given the last point, for an OPM in the multi-parameter setting
we assume that orderings of interest are Π-respecting and define
the worst-case revenue of the mechanism accordingly:

Rp

(J,S,Π,F) = Ev∼F

h

minσ:σ is Π-respectingR
(p,σ)

(J,S,Π,F)
(v)
i

In SPMs in multi-parameter settings, the ordering is not neces-
sarily Π-respecting. We assume that all bidders for whom sincere
bidding is a (weakly) dominant strategy indeed bid sincerely. We
derive robust bounds on our mechanism performance in the pres-
ence of arbitrary manipulations of agents that do not have dominant
strategies. This is a weaker form of implementation in dominant
strategies, that we call partial dominant strategy implementation.

DEFINITION 1. A mechanism is a partial dominant-strategy (PDS)
implementation of a desired objective if that objective is met when-

ever every agent with a (weakly) dominant strategy plays that strat-

egy (with other agents behaving arbitrarily).

A mechanism is an α-approximation in partial dominant-strategy
equilibrium (PDSE) of a desired objective if it obtains an α approx-

imation to the objective in expectation whenever every agent with

a (weakly) dominant strategy plays that strategy.

As is standard in mechanism design, we assume that the agents
understand the mechanism. As our mechanisms are parameterized
by prices p, it is assumed that agents know these prices in advance.
This assumption is only necessary for SPMs in multi-parameter set-
tings where an agent i must know whether there is a future offer pj

for j ∈ Ji such that vj − pj > 0.

2.4 Myerson’s optimal mechanism
Myerson [20] describes the revenue maximizing mechanism for

the Bayesian single-parameter mechanism design problem. Virtual

valuations are given by the formula φ(v) = v − 1−F (v)
f(v)

. When

the value distributions Fi are regular, i.e., virtual valuations are
monotone in valuations, the optimal mechanism first computes vir-
tual values for each agent, and then allocates to a feasible subset
of agents that maximizes the “virtual surplus”—the sum of the vir-
tual values of agents in the set minus the cost of serving that set of
agents [20].

When the distributions Fi are irregular, that is, virtual valuations
are not monotone in valuations, Myerson’s mechanism as described
above will no longer be truthful. Myerson addressed this case by
“ironing” the virtual valuation function and converting it into a
monotone non-decreasing function called the ironed virtual value
function denoted by φ̄(v). We skip the description of this proce-
dure; the reader is referred to [8, 9] for details.

We useRM
I to denote the expected revenue of Myerson’s mech-

anism on a single-parameter instance I. For our analyses, we pri-
marily require the following three characterizations of the expected
revenue of any incentive compatible mechanism. See the appendix
for a proof of Lemma 4.

PROPOSITION 2. [20] When the distributions Fi are regular,

the expected revenue of any incentive compatible single-parameter

mechanism M is equal to its expected virtual surplus.

PROPOSITION 3. [20] The expected revenue of any incentive

compatible single-parameter mechanism M is no more than its

expected ironed virtual surplus. If the probability with which the

mechanism serves agent i, as a function of vi, is constant over any

valuation range in which the ironed virtual value of i is constant,

the expected revenue is equal to expected ironed virtual surplus.



LEMMA 4. If Fi is regular for each i, the revenue of any incen-

tive compatible mechanism M over the n agents is bounded from

above by
P

i
pM

i qM
i where qM

i is the probability (over v1, · · · , vn)

with which M allocates to agent i and pM
i = Fi

−1(1− qM
i ).

Furthermore for every i (with a regular or non-regular value

distribution), there exist two prices pi and pi with corresponding

probabilities qi and qi, and a number xi ≤ 1, such that xiqi +

(1− xi)qi = qM
i , and the expected revenue of M is no more than

P

i
xipiqi + (1− xi)piqi.

2.5 Matroids and related set systems
Many of our techniques work for feasibility constraints S that

are matroids or close to matroids. We define these set systems here.
The set system (X,S) over a universe X is called a matroid if it
satisfies the following conditions:

1. (heredity) For every A ∈ S , B ⊂ A implies B ∈ S .

2. (augmentation) For every A, B ∈ S with |A| > |B|, there
exists e ∈ A \ B such that B ∪ {e} ∈ S .

Sets in S are called independent, and maximal independent sets
are called bases. A simple consequence of the above properties
is that all bases are equal in size. The rank of a set S ⊆ X is
defined to be the size of any maximal independent subset of S. The
span of a set S ⊆ X, sp(S), is the maximal set T ⊇ S with
rank(T ) = rank(S).

A k-uniform matroid on the universe X is a matroid where every
subset of X of size at most k is independent. A partition matroid
(X,S) is a union of two or more uniform matroids {(Xi,Mi)}i,
where {Xi}i is a partition of X and S = {∪iAi : Ai ∈ Mi ∀i}.

A set system (X,S) is called a matroid intersection if there are
two (or more) matroids (X,M1) and (X,M2), such that S =
M1 ∩M2. An example of a matroid intersection is a matching in
a bipartite graph.

Throughout this paper, the universe X is the set J of all services.

2.6 Computing the posted prices
For all but one of the approximately-optimal posted-price mech-

anisms that we present, prices and orderings can be computed effi-
ciently in a computational model where we have black box access
to the distribution F. Please see the full version of this paper [11]
for details.

3. REDUCING BMUMD TO BSMD
We now present a general reduction from the multi-parameter

unit-demand mechanism design problem to the single-parameter
problem. Using this reduction we can argue that if there exists an
approximately optimal sequential posted-price mechanism in the
single-parameter setting, there also exists one in the original multi-
parameter setting. Understanding the properties of optimal mecha-
nisms in multi-parameter settings is tricky so our approach is based
on upper and lower bounds for single-parameter settings.

There are four main steps to give and instantiate our reduction.
They are:

1. (Analogy) Define a single-parameter analog for any multi-
parameter setting.

2. (Lower bound) Show that the revenue of the optimal single-
dimensional analog is at least the revenue of the optimal
multi-dimensional mechanism.

3. (Reduction) Show that if we had a sequential posted pric-
ing for the single-dimensional analog, we can convert it into

a posted pricing for the multi-dimensional setting without
much loss in performance.

4. (Instantiation) Show for a given multi-dimensional setting
that there exist sequential pricings that approximate the opti-
mal mechanism for the single-parameter analog.

We give the analogy and lower bound here, as well as a reduction
for OPMs. Section 4 instantiates this reduction in various settings
of interest. While we do not obtain a general purpose reduction
from SPMs, as we do for OPMs, in Section 5 we describe SPMs
that obtain approximate optimality in PDSE in many single as well
as multi-parameter settings.

The analogy

The main concept behind our reduction is a single-parameter anal-
ogy. Consider an instance I = (J,S ,Π,F) of the BMUMD with
n = |Π| agents and m = |J | services. The single-parameter ana-

log is the setting we get when we assume that each service is de-
manded by a distinct agent, i.e., Ireps = (J,S ,F). Formulaically,
this analogy is trivial; intuitively, it replaces each agent i with |Ji|
distinct agents (called representatives or “reps” hereafter). Each rep
is interested in a single service j ∈ Ji and behaves independently
of (and potentially to the detriment of) other reps. Notice that Ireps

has m = |J | agents and services.

Lower bound

Notice that Ireps is similar to I except that it involves more com-
petition (among different reps of the same multi-parameter agent).
Therefore it is natural to expect that a seller can obtain more rev-
enue in the instance Ireps than in I. The following lemma formal-
izes this (see the appendix for a proof).

LEMMA 5. Let A be any individually rational and incentive

compatible deterministic mechanism for instance I of the BMUMD.

Then the expected revenue of A,RA, is no more than the expected

revenue of Myerson’s mechanism for the single-parameter instance

Ireps .

A reduction for OPMs

The main advantage of a seller in the single-parameter analog is in-
creased competition. Intuitively, if we can design mechanisms for
the single-parameter setting that do not exploit competition, then it
is reasonable to expect them to obtain similar performance in the
multi-dimensional setting. Here, sequential posted pricings are ex-
actly what is needed (see the appendix for a proof of the following).

THEOREM 6. If OPM p is an α-approximation to the optimal

mechanism for the single-parameter setting Ireps then it is an α-

approximation in PDSE to the optimal mechanism for the multi-

parameter setting I.

4. APPROXIMATION THROUGH OPMS
In this section we instantiate the reduction described in Section 3

for several different settings. We begin by discussing the hotel
rooms assignment setting described in Section 1 and giving a sim-
ple 6.75 approximation for this setting. We then describe a (tight)
2-approximation for a simpler “k item auction” setting. We con-
clude this section by listing approximation factors for other settings
of interest.

4.1 Intersections of partition matroids
Consider the instance (J,S ,F) of the BSMD, where S is an

intersection of two partition matroids ({Xa},S1) and ({Yb},S2),



with {Xa} and {Yb} being partitions of the ground set [m]. Note
that such an instance arises as the single-parameter analog Ireps of
the hotel rooms assignment example discussed in the introduction;
here the matroid S1 corresponds to the unit-demand constraint over
the agents (i.e. any feasible allocation must contain at most one el-
ement in Ji for all i) and the matroid S2 corresponds to the supply
constraints over hotel rooms (i.e. any feasible allocation must allo-
cate any hotel room at most once).

THEOREM 7. Let I = (J,S ,F) be an instance of the BSMD

with S being an intersection of two partition matroids. Then, there

exists a set of prices p such thatRp

I ≥
1

6.75
RM

I .

PROOF. We first consider the setting where the distributions Fj

are regular. Recall from Lemma 4 that in this case the revenue of
the optimal truthful mechanism for I is bounded by

P

j
pM

j qM
j ,

where qM
j is the probability with which the optimal mechanism al-

locates service j and pM
j = Fj

−1(1 − qM
j ). We now describe the

prices that achieve the claimed approximation. Let qj = qM
j /3.

Our approximately optimal pricing is given by p, where pi =
Fj

−1(1− qj). Note that pj ≥ pM
j .

Consider any ordering σ over the services, and let cj denote the
probability that service j gets offered under this ordering. We claim
that cj ≥ 4/9 for all j ∈ [m]. Then, the expected revenue of the
OPM p is given by

Rp

I =
X

j

cjpjqj ≥
X

j

(4/9)pM
j (qM

j /3) ≥
X

j

(1/6.75)pM
j qM

j .

This along with Lemma 4 implies the theorem.
To prove the claim, let S1 and S2 be the two partition matroids

with S = S1 ∩ S2. Let j belong to the partition Xa ⊂ [m] in
S1 and the partition Yb ⊂ [m] in S2. Let ka (resp. kb) denote the
maximum number of elements of Xa (resp. Yb) that can be present
in an independent set in S1 (resp. S2). Then, service j is offered if
and only if the number of services in Xa that are offered prior to j
in σ and are accepted is at most ka − 1 and the number of services
in Yb that are offered prior to j in σ and are accepted is at most
kb − 1.

Note that by the feasibility of the allocation made by the optimal
mechanismM, we have

X

j∈Xa

qj = 1/3 ·
X

j∈Xa

qM
j ≤ ka/3

X

j∈Yb

qj = 1/3 ·
X

j∈Yb

qM
j ≤ kb/3

Therefore, using Markov’s inequality, with probability at least 2/3,
at most ka− 1 services in Xa are accepted if offered, and the same
for Yb. Using Baye’s rule and noting that the two events are pos-
itively correlated, the probability that both the events happen is at
least 4/9, and so the claim holds.

When the distributions Fj are non-regular, we pick the prices
pj randomly as suggested by Lemma 4, such that the probability
that service j is accepted if offered a randomized price is exactly
qM

j /3, andRM
I is bounded from above by 3

P

j
E pjqj . To bound

the expected revenue that the OPM obtains from allocating service
j, we note that in any instantiation of the prices (and correspond-
ing “worst” ordering over services), we can pessimistically defer
offering service j until all other services have been offered. Then,
following the above analysis, the probability that j is offered is
at least cj ≥ 4/9. Then, the expected revenue from j is at least
4/9 E pjqj , which is 4/27-th of the revenue that this service con-
tributes toRM. Therefore, the claimed approximation holds.

4.2 k-uniform matroids
Next we present an improved (and tight) 2-approximation in the

case where S is a k-uniform matroid. Our analysis follows an ap-
proach developed in the context of prophet inequalities in [23].

Recall from Section 2.4 that the expected revenue of any mech-
anism is equal to the expected virtual surplus from its allocation.
Therefore, the optimal mechanism in this case allocates the k ser-
vices with the largest virtual values. Let O denote this (random)
set of services.

For a random variable X, let (X)+ denote the positive portion
of X, i.e. (X)+ = max(0, X).

Our approximately optimal OPM chooses a virtual value r and
sets pi = φ−1

i (r). The value r is chosen as the unique solution

to kr = E[
P

i∈O (φi(vi)− r)+]. When the distributions Fj are
non-regular, we use the same approach, except with ironed virtual
valuations instead of virtual valuations. For the rest of this section,
we assume that the distributions are regular.

THEOREM 8. For any instance I = (J,S ,F) with a k-uniform

matroid feasibility constraint, the OPM p described above achieves

a 2-approximation to the optimal revenue, i.e.,Rp

I ≥ 1/2RM
I .

PROOF. Let σ be the worst-case ordering for the pricing p. In
particular, this corresponds to the order of increasing prices. With-
out loss of generality, we assume that σ(i) = i. Let S denote the
(random) set of services allocated.

We upper bound the optimal revenue as

E

"

X

i∈O

φi

#

≤ E

"

X

i∈O

r + (φi − r)+
#

≤ kr + E

"

X

i∈O

(φi − r)+
#

= 2kr,

and lower bound the revenue of the OPM as

E

"

X

i∈S

φi

#

= kr Pr[|S| = k] + E

"

X

i∈S

φi − r

#

.

Let χi be the indicator random variable associated with the event
|S∩{1, 2, . . . , i}| < k. We may then lower bound the second term
above as

E

"

X

i∈S

φi − r

#

=
n
X

i=1

E[(φi − r)+ · χi−1]

≥
n
X

i=1

E[(φi − r)+] · Pr[|S| < k]

≥ kr · Pr[|S| < k].

Thus, we get

E

"

X

i∈S

φi

#

≥ kr · Pr[|S| = k] + kr · Pr[|S| < k] = kr,

which implies the desired result.

A lower bound of 2.
We now show that OPMs cannot approximate the optimal rev-

enue to within a factor better than 2 even in the single-item setting.
Consider a seller with one item and two agents. The first agent has
a fixed value of 1. The second has a value of 1/ǫ with probability



ǫ and 0 otherwise, for some small constant ǫ > 0. Then, the op-
timal mechanism can obtain a revenue of 2 − ǫ by first offering a
price of 1/ǫ to the second agent, and then a price of 1 to the first if
the second declines the item. On the other hand, if the mechanism
is forced to offer the item to the first agent first, then it has two
choices: (1) offer the item at price 1 to agent 1; the agent always
accepts, and (2) skip agent 1 and offer the item at price 1/ǫ to agent
2; the agent accepts with probability ǫ. In either case, the expected
revenue of the mechanism is 1.

4.3 Graphical matroids
While we do not know how to obtain constant factor approxima-

tions through OPMs for general matroid feasibility constraints, we
now demonstrate that OPMs are constant factor optimal for a large
class of matroids, namely graphical matroids. The ground set for a
graphical matroid is the set of all edges of an undirected graph; A
subset of edges is independent if it forms a forest (that is, it contains
no cycles).

In order to obtain an approximation, however, we need to ex-
tend our definition of OPMs to allow the mechanism to be more re-
strictive in enforcing feasibility. Specifically, a constrained order-

oblivious posted-price mechanism (COPM, for short) is given by
the tuple (p,S ′) where S ′ ⊆ S , and (as for OPMs) we allow the or-
der σ over the agents to be picked adversarially, after the valuations
of the agents are drawn. The selling protocol for a COPM offers a
service j if the service along with previously allocated services is
feasible in the set system S ′, and not merely in S .

For graphical matroids, Babaioff et al. [3] and Korula and Pál
[17] develop approaches for reducing this case to a partition ma-
troid that in our setting yield a 8-approximation to the optimal rev-
enue; we use a similar approach but exploit the connection be-
tween prophet inequalities and partition matroids to obtain a 3-
approximation.

THEOREM 9. Let I be an instance of the BSMD with a graph-

ical matroid feasibility constraint. Then there is a COPM (p,S ′),

where S ′ is a partition matroid, that 3-approximates RM for I.

PROOF. Our technique here is to partition the elements of the
matroid such that we may treat each part as a 1-uniform matroid
yet still respect the original feasibility constraint, and achieve good
revenue while doing so.

Let G = (V, J) be the graph defining our matroid constraint,
where J is the set of services/edges. As before, let qM

j denote the
probability with which edge (service) j is allocated by the optimal
mechanism. Let δ(v) denote the set of edges incident on a vertex
v, and for each v ∈ V define qv =

P

j∈δ(v) qM
j . Now, we can see

that
X

v∈V

qv =
X

j∈E

2qM
j ≤ 2(|V | − 1),

This implies that there exists a v for which qv ≤ 2; Let δ(v) be one
of our partitions. Note that the edge set δ(v) forms a cut in G, and
so given an independent set of edges from J \δ(v) we may add any
single edge from δ(v) while retaining independence. We apply this
argument recursively to (V \ {v}, J \ δ(v)) to form the rest of our
partition. At the end, we have a partition of J such that each part
has total mass no more than 2 and any collection of edges using no
more than one edge from each part is independent.

We first note how to obtain a simple 8-approximation and then
describe the changes needed to obtain a 3-approximation. We de-
fine S ′ to be the union of 1-uniform matroids, each over the differ-
ent parts of J defined above. The prices p for the 8-approximation
are defined as follows: qj = qM

j /4 and pj = Fj
−1(1− qj). Then,

the optimal revenue is at most 4
P

j
pjqj , whereas, our mechanism

offers each service with probability at least 1/2, and therefore, ob-
tains a revenue of 1/2

P

j
pjqj .

To obtain a 3-approximation, we use the same constraint S ′ as
before, but modify the prices employing the approach developed in
the proof of Theorem 8. Let us focus on a single part, say X ⊂
J , in the partition of J defined above. Recall that

P

j∈X
qj ≤

2. Let pM
j = Fj

−1(1 − qM
j ), and r be defined such that r =

P

j∈X
qM

j

`

pM
j − r

´+
. Let pj = pM

j if pM
j ≥ r and∞ otherwise.

Our COPM is given by (p,S ′).
Then the optimal revenue over X can be bounded as

X

j∈X

pM
j qM

j ≤
X

j∈X

qM
j (r+

“

pM
j − r

”+

) = r(1+
X

j∈X

qM
j ) ≤ 3r.

On the other hand, following the proof of Theorem 8, the revenue
of the COPM can be bounded as

r Pr[at least one service in X is allocated]

+

 

X

j∈X

qM
j (pM

j − r)+
!

Pr[no service in X is allocated]

= r

4.4 Non-matroids constraints
We now show that the approximations described above cannot

extend to general non-matroid set systems. In particular, the exam-
ple below describes a family of instances with i. i. d. agents and a
symmetric non-matroid constraint for which the ratio between the
expected revenue of Myerson’s mechanism and that of the optimal
OPM is Ω(log n/ log log n) where n is the number of agents. In
fact the same lower bounds holds even for SPMs, that is, when we
are able to choose the best ordering over offers.

EXAMPLE 1. For a given k, set n = kk+1. Partition [n] into

kk groups G1, · · · , Gkk of size k each, with Gi ∩ Gj = ∅ for all

i 6= j. The set system S contains all subsets of the groups Gi, that

is, S = ∪i2
Gi Each agent has a value of 1 with probability 1−1/k

and k with probability 1/k.

For any given valuation profile, let us call the agents with a value

of k to be good agents and the rest to be bad agents. The probability

that a group contains k good agents is k−k. Therefore in expecta-

tion one group has k good agents and Myerson’s mechanism can

obtain revenue k2 from such a group: RM = Ω(k2).

Next consider any SPM. Once the mechanism commits to serving

an agent, it can only serve agents within the same group in the

future. These have a total expected value less than 2k. Therefore,

the revenue of any SPM is at most k from the first agent it serves

and 2k in expectation from subsequent agents, for a total of 3k. We

get a gap of Ω(k) = Ω(log n/ log log n).

4.5 Other feasibility constraints
Table 1 outlines the approximation factors we can achieve with

OPMs, as well as lower bounds on achievable factors. Please see
the full version of this paper [11] for details.

5. APPROXIMATION THROUGH SPMS
In this section we consider settings for the BSMD where we

don’t know of good approximations through OPMs. We show that
we can achieve good approximations by picking the right ordering
σ over offers, that is, through sequenced posted-price mechanisms.



Feasibility constraint S
Gap from optimal

upper bound lower bound

Uniform matroid, Partition matroid 2 2

Graphical matroid 3 2

Intersection of two part. matroids 6.75 2

Graphical matroid ∩ partition matroid 10.66 2

General matroid O(log k) 2

Non-matroid downward closed - Ω( log n
log log n

)

Table 1: A summary of approximation factors for the BSMD

achievable through OPMs. Here k is the rank of S .

While there is no direct reduction from SPMs in multi-parameter
settings to SPMs in single-parameter settings analogous to Theo-
rem 6, we show that for matroid and matroid intersection settings
our results carry over in an approximation preserving way to multi-
parameter instances as well.

We begin with a 2 approximation to single-parameter instances
with a general matroid feasibility constraint, and then describe an 8
approximation in PDSE to multi-parameter instances with a general
matroid intersection constraint. We conclude this section with a
table of approximation factors achievable through SPMs.

5.1 A 2-approximation for matroids
Consider the instance I = (J,S ,F) where S is a matroid with

rank k. Assume first that all the distributions Fj are regular. Let
qj = qM

j be the probability with which the optimal truthful mecha-

nism (Myerson’s mechanism) allocates service j. Let pj = pM
j =

Fj
−1(1 − qM

j ). Let σ be the order of decreasing prices pj over
the services. Our approximately optimal SPM is given by (p, σ).
When the distributions Fj are non-regular, we define the prices ran-
domly as suggested by Lemma 4, and for each instantiation of the
prices, pick the greedy ordering over services in order of decreasing
prices.

THEOREM 10. Let I be an instance of the BSMD with a ma-

troid feasibility constraint. Then, the mechanism (p, σ) described

above 2-approximates the revenue of Myerson’s mechanism for I.

PROOF. We show that the mechanism (p, σ) achieves an ex-
pected revenue of at least 1

2

P

i
piqi. Once again we start with the

assumption that all the distributions Fj are regular. Note that if
the mechanism ignored the feasibility constraint S , and offered the
prices p to all agents, serving any agent that accepted its offered
price, then its expected revenue would be exactly

P

i
piqi. So our

proof accounts for the total revenue lost due to agents “blocked”
from getting an offer by previously served agents.

Formally, let S = {i1 < i2 < · · · < iℓ} be the set of agents
served, and let Sj denote the first j elements of S. Define the sets
Bj = (sp(Sj) \ sp(Sj−1)) ∩ {i : i > ij}. Note that the sets
Bj partition the set of agents blocked by those previously served.
Moreover, pi ≤ pij

for all i ∈ Bj , since Bj ⊆ {i : i > ij}.

Denote the price offered to agent ij by pj . Then, the expected
revenue lost given that S is served is

ℓ
X

j=1

X

i∈Bj

piqi

≤ p1

0

@

X

i∈sp(S1)

qi

1

A+
ℓ
X

j=2

pj

0

@

X

i∈sp(Sj)

qi −
X

i∈sp(Sj−1)

qi

1

A

=
ℓ−1
X

j=1

0

@(pj − pj+1)
X

i∈sp(Sj)

qi

1

A+ pℓ

0

@

X

i∈sp(Sℓ)

qi

1

A

≤
ℓ−1
X

j=1

(pj − pj+1) · j + pℓ · ℓ =

ℓ−1
X

j=1

pj ,

which is the revenue obtained by serving S. Here we used the fact
that

P

i∈sp(Sj) qi ≤ rank(Sj) = |Sj | = j. Therefore,

E[revenue lost] ≤
X

S

X

j∈S

pj · Pr[S is served] = R(p,σ),

and so it follows that
P

i piqi ≤ 2R(p,σ).
Next consider the case of non-regular distributions. As men-

tioned earlier, we pick prices randomly as suggested by Lemma 4.
Let pj be the average price offered for service j if j is the first ser-
vice offered. Consider a hypothetical posted-price mechanism that
orders the services in decreasing order of pj , and then defers the
instantiation of the prices to be offered to just before the service
is offered. Then, the acceptance probabilities for the services are
exactly qj , and the previous analysis continues to work in this case.
Our SPM, that picks the greedy ordering for every instantiation of
prices performs no worse than this hypothetical mechanism and we
obtain the same approximation factor as before.

We note that this approximation factor is not known to be tight.
Blumrosen et al. [6] show that the gap between the optimal SPM
and Myerson’s mechanism can be as large as

p

π/2 ≈ 1.253 even
in the single item auction case with i. i. d. agents.

5.2 BMUMD with a matroid intersection con-
straint

Recall that Theorems 6 and 7 together show that we can achieve
a constant factor approximation through OPMs to instances of the
BMUMD with a feasibility constraint that is an intersection of two
partition matroids. We now extend this result to general matroid in-
tersections albeit through SPMs in a slightly weaker solution con-
cept — partial dominant-strategy implementation.

The prices and ordering in our approximately optimal SPM is
picked in a manner similar to the one employed in Section 5.1 for
matroids. Specifically, let I = (J,S ,Π,F) be the instance of
BMUMD that we are interested in. Assume, to begin with, that
all the distributions Fj are regular. Consider the instance Ireps =
(J,S ,F), and let qM

j be the probability with which the optimal
truthful mechanism (Myerson’s mechanism) allocates service j in
that setting. Let pM

j = Fj
−1(1 − qM

j ). We define qj to be qM
j /2

and pj = Fj
−1(1− qj). Let σ be the order of decreasing prices pj

over the services. Our approximately optimal SPM for I is (p, σ).

THEOREM 11. Given any instance I = (J,S ,Π,F) of the

BMUMD, if S is a matroid intersection set system, then the SPM

(p, σ) described above is an 8-approximation in PDSE to the rev-

enue of the optimal incentive compatible mechanism for I.

PROOF. Let the pricing p and ordering σ be as defined above.
Recall that Lemmas 4 and 5 together imply that the revenue of
any incentive compatible mechanism for I is bounded above by
P

j
pM

j qM
j ≤ 2

P

j
pjqj .

Now consider the SPM (p, σ). We say that an agent i desires
a service j ∈ Ji if vj > pj , and i uniquely desires j if j is the
only service in Ji with that property. As noted in Section 2.3,
for an agent that uniquely desires a service, sincere bidding is a
(weakly) dominant strategy. We first note that for every agent i,
with probability 1/2, i bids sincerely. This follows from Markov’s



Feasibility constraint S
Gap from optimal

upper bound lower bound

General matroid 2
p

π/2 ≈ 1.25
Uniform matroid, Partition matroid e/(e − 1) ≈ 1.58 1.25
Intersection of two matroids (BSMD) 3 1.25
Intersection of two matroids (BMUMD) 8 1.25
Non-matroid downward closed - Ω(log n/ log log n)

Table 2: A summary of approximation factors for the BSMD and the BMUMD achievable through SPMs.

inequality by noting that
P

j∈Ji
Pr[i desires j] =

P

j∈Ji
qj =

1/2
P

j∈Ji
qM

j ≤ 1/2.
Now divide the set of all services into three groups—S, the set

of sold services, B the set of services that are desired by their cor-
responding agents but “blocked” by services in S, and U the set of
services that are desired by their corresponding agents and not in
sets S or B. Note that these sets S, B, and U are random variables
depending on the instantiation of agents’ values. Then our observa-
tion above implies that services in U are not uniquely desired. Now,
the expected total price in the union of the sets S, B and U is ex-
actly

P

j pjqj . Moreover, every desired service is uniquely desired

with probability at least 1/2; therefore, the expected total price in
U is at most half the total price of all desired services, that is, at
most 1/2

P

j
pjqj . Finally, following the proof of Theorem 10, the

expected total price in B conditioned on S is at most the total price
contained in S. Therefore, putting everything together we get that
the expected total price obtained from S is at least 1/4

P

j
pjqj .

By our choice of p and q, this is an 8-approximation.

5.3 Other feasibility constraints
Table 2 outlines the approximation factors we can achieve with

SPMs, as well as lower bounds on achievable factors.

6. DISCUSSION
We presented constant factor approximations to revenue for sev-

eral classes of multi-parameter mechanism design problems by de-
signing approximately-optimal posted price mechanisms for single-
parameter settings. The approximation factors we obtain in both the
single-parameter and multi-parameter settings depend on the kind
of feasibility constraint that the seller faces. The exact constants
are summarized in Tables 1 and 2.

While these approximation factors are with respect to the optimal
deterministic incentive compatible mechanism, in [10] we show
that (slightly worse) constant-factor approximation guarantees can
be obtained against the optimal randomized incentive compatible
mechanism as well.

Our approach does not extend beyond matroid and matroid-like
settings. However, it is possible that there is some other class of
simple near-optimal mechanisms for non-matroid single-parameter
settings that do not exploit competition among agents. Such mech-
anisms may lead to approximately-optimal multi-parameter mech-
anisms for a broader class of feasibility constraints.

More generally, two important assumptions underlie our work:
(1) agents are unit-demand, and (2) their values for different ser-
vices are distributed independently. In the absence of either of these
assumptions the upper bound on the optimal revenue based on the
single-parameter setting with representatives does not remain valid.
An important open question is to design a reasonably tight upper
bound in those cases, and use it to approximate the optimal mecha-
nism. A partial result along these lines was obtained by [10] — they
show that for a class of positively-correlated distributions, called

the common base value model, the optimal revenue of the single-
parameter analog still bounds from above the optimal revenue of
the multi-parameter problem within a small constant factor.
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APPENDIX

In this section we prove Lemmas 4 and 5, as well as Theorem 6.

Proof of Lemma 4. We prove the regular case first. Consider the
revenue that M draws from serving agent i. This is clearly bounded
above by the optimal mechanism that sells to only i, but with prob-
ability at most qM

i . By Proposition 2, such a mechanism should
sell to agent i with probability 1 whenever the value of the agent is
above Fi

−1(1−qM
i ) and with probability 0 otherwise. The revenue

of the optimal such mechanism is therefore pM
i qM

i .
In the non-regular case, note that the value pM

i may fall in a
valuation range that has constant ironed virtual value. Let pi denote

the infimum inf{v : φ̄i(v) = φ̄i(p
M
i )} of this range and pi denote

the supremum sup{v : φ̄i(v) = φ̄i(p
M
i )}. Let qi = 1 − Fi(pi)

and qi = 1− Fi(pi). Then, qi ≤ qM
i ≤ qi, and there exists an xi

such that xiqi + (1 − xi)qi = qM
i . Now an easy consequence of

Proposition 3 is that the optimal mechanism with selling probability

qM
i sells to the agent with probability xi if the agent’s value is

between pi and pi, and with probability 1 if the value is above pi.
The revenue of this mechanism is exactly xiqipi + (1− xi)qipi.

Proof of Lemma 5. Truthful mechanisms in multi-parameter set-
tings satisfy the weak monotonicity condition defined below. For a
Mechanism M , and a value vector v, let Mj(v) denote the proba-
bility with which M provides service j at value vector v.

DEFINITION 2. A mechanism M satisfies weak monotonicity if

for any agent i and any two types v1 and v2 with v1
j = v2

j for all

j ∈ J \ Ji, the following holds:

X

j∈Ji

`

Mj(v
1)v1

j +Mj(v
2)v2

j

´

≥
X

j∈Ji

`

Mj(v
2)v1

j +Mj(v
1)v2

j

´

We show that we can construct a truthful mechanism Areps for
the instance Ireps with revenue no less than that of A. The lemma
then follows from the optimality of Myerson’s mechanism. Given
a vector of values v, the mechanism Areps allocates to the set that
A allocates to in I for the same value vector v. We first claim that
the allocation rule of Areps is monotone non-decreasing in any vj ,
implying that there exists a payment rule that makes the mecha-
nism truthful. To prove the claim, fix any agent i and j ∈ Ji, and
consider two value vectors v1 and v2 with v1

j = x, v2
j = y, and

v1
j′ = v2

j′ for j′ 6= j. Let αx and αy denote the probabilities of
serving agent i with service j under the two value vectors respec-
tively, and let βx and βy denote the total value that agent i obtains
from other services j′ ∈ Ji, j′ 6= j, in the two cases respectively.
Then the weak-monotonicity (Definition 2) of A implies that

(xαx + βx) + (yαy + βy) ≥ (xαy + βy) + (yαx + βx).

This is equivalent to (x−y)(αx−αy) ≥ 0 and so the claim holds.
It remains to prove that the expected revenue ofAreps given Ireps

is no less than the expected revenue of A given I. Note that any
deterministic multi-parameter mechanism can be interpreted as of-
fering a price menu with one price for each item or service to each
agent as a function of other agents’ bids [26]. The agent then
chooses the item or service that brings her the most utility. Given
this characterization, suppose that for a fixed set v of values, mech-
anismA offers a price menu with prices p to agent i. Then, it draws
a revenue of pj from i whenever service j is offered. On the other
hand, mechanism Areps charges the agent j the minimum amount it
needs to bid to be served, which is no less than pj , as A is individ-
ually rational.

Proof of Theorem 6. Let p be an α-approximate OPM for Ireps.
Consider its performance on I . For a fixed instantiation v of values
let σ be any Π-respecting ordering that minimizes the revenue of
the mechanism. Note that whenever the mechanism (p, σ) offers a
service to agent i it is a dominant strategy for the agent to accept
the service if and only if the agent gets non-negative value from the
service. This is because any future offers that the agent gets can
only bring him lower utility. Therefore, the sequence of offers and

outcome of (p, σ) is identical under I and Ireps, and,R(p,σ)
I (v) =

R(p,σ)
Ireps (v) ≥ R(p)

Ireps(v). Therefore, the revenue of p in the multi-
parameter setting is no less than its revenue in the single-parameter
setting. Then the result follows from Lemma 5.


