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We consider the study of a class of optimization problems with applications towards profit

maximization. One feature of the classical treatment of optimization problems is that

the space over which the optimization is being performed, i.e., the input description of

the problem, is assumed to be publicly known to the optimizer. This assumption does

not always accurately represent the situation in practical applications. Recently, with the

advent of the Internet as one of the most important arenas for resource sharing between

parties with diverse and selfish interests, this distinction has become more readily apparent.

The inputs to many optimizations being performed are not publicly known in advance.

Instead they must be solicited from companies, computerized agents, individuals, etc. that

may act selfishly to promote their own self-interests. In particular, they may lie about their

values or may not adhere to specified protocols if it benefits them.

An auction is one of the simplest applications where the classical (a.k.a. public value)

optimization approach fails to work as expected in the presence of selfish agents with private

data. We consider casting profit optimization problems into the game theoretic framework

of mechanism design and consider the design of auction mechanisms to maximize the profit

of the auctioneer. We show how a competitive analysis can be used to gauge the performance

of profit maximizing mechanisms. We develop a number of techniques for designing auctions

and show how they can be extend to more complex profit maximization problems.
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The Basic Auction Problem
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Chapter 1

INTRODUCTION

In classic algorithm design, the standard unspoken assumption is that the algorithm,

before processing, is actually given its input. This assumption does not hold for many

practical applications of algorithms. Consider, as an example, the following problem. A

real estate agency is selling houses to a set of home buyers. Each house can only be sold to

one home buyer and each home buyer only wishes to purchase one house. In general, the

houses may be different and thus each home buyer may have a different valuation for the

worth of each house. The real estate agency has the problem of selling the houses to the

home buyers so as to maximize the agency’s profit.

An instance of this problem can be modeled as a weighted bipartite graph with home

buyers on one side and houses on the other. The weight on the edge between a home buyer

and a house corresponds to the valuation that that home buyer has for the worth of the

house. The classical algorithmic approach gives us the natural solution of the real estate

agency’s problem as that of computing the maximum weighted matching in the aforemen-

tioned weighted bipartite graph. A fundamental flaw in this solution is the assumption that

the real estate agency can obtain the home buyers’ true valuations so as to be able to run

the maximum weighted matching algorithm on the correct input. As a trivial example, if

there is one home buyer and one house a natural strategy for the home buyer is to report a

valuation of one cent for the house. The maximum weighted matching, of course, allocates

the house to this buyer at a price of one cent. In general, understanding how the buyers

should report their values requires a game theoretic analysis.

In this thesis, we consider a game theoretic approach to algorithm design whereby we

look for algorithms for optimization problems such as the one above that have provably good

performance even in the presence of potential gaming of the participants. Recently, with

the advent of the Internet as one of the most important arenas for resource sharing between
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parties with diverse and selfish interests and as a platform for electronic commerce, the

need for a game theoretic treatment of algorithms has become more readily apparent. The

inputs to many optimizations being performed are not publicly known in advance. Instead

they must be solicited from companies, computerized agents, individuals, etc. that may act

selfishly to promote their own self-interests. In particular, they may lie about their values

or may not adhere to specified protocols if it benefits them.

We will be referring to the classical algorithmic case where the input is readily available

to the algorithm as the public value model and the case where the algorithms input must be

obtained from selfish agents as the private value model. In general, it is possible to recast

many traditional public value optimization problems into the private value model. Our goal

is to get an understanding for optimization in the private value model and develop new

design and analysis techniques for this type of optimization problem.

In general the optimal strategy of a player in a game depends on the game being played

and the strategies of the other players involved. To prove bounds on the performance of

the mechanism (game/algorithm) it is necessary to have a model for the strategies of the

agents (players). A popular approach to this problem is to design mechanisms that are

truthful. In a truthful mechanism there is no incentive for any agent to falsely report their

true valuations. In a truthful mechanism it is assumed that all agents do in fact play by

their optimal strategy of reporting their true valuation. It is easy to see that the maximum

bipartite matching problem does not result in a truthful mechanism for the real estate

problem.

We assume that each agent has a utility function that represents the agent’s value for

any outcome of the mechanism in monetary units. Reasoning about how agents determine

their utility function is a very interesting area of research that is orthogonal to that of this

thesis. For our purposes, we will assume that the agents each know their utility function.

An easy way to think about this is to consider the example where the agent is attempting

to buy a house; however, they intend on immediately reselling it for some amount, e.g., a

million dollars. If the outcome of the house selling mechanism is to allocate the house to

this agent then their utility is a million dollars. Otherwise, their utility for the outcome is

zero. Typically, if the selling mechanism allocates an item to an agent it also requires that
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the agent make some payment. We assume that the agents goal is to maximize their profit,

the difference between their utility of the outcome and the payment they are required to

make.

An interesting class of mechanisms is one where the mechanism also has a utility function

over possible outcomes and it is attempting to maximize its own profit, the sum of its utility

function for the chosen outcome and the payments that it receives from the agents. This is

the class of problems we will focus on in this thesis.

Prior to this work, profit maximization in mechanism design was considered in a Bayesian

framework. In such a framework, it is assumed that the agents’ valuations are drawn from

some probability distribution. It is then assumed that the mechanism designer has knowl-

edge of this prior distribution. The goal is to design the Bayesian optimal mechanism for

the given prior distribution. The obvious drawback of this approach is that the mechanism

designer must know this prior distribution. This is exactly the problem we were hoping to

solve: that of performing well without knowing what the input is in advance. In particular

our goal is a single mechanism that works well for all inputs and does not have to be tuned

to reflect changes in the preferences of the agents.

Our mechanism design problem is the problem of designing the truthful mechanism that

maximizes its profit for the case where nothing is known about the agents private values

in advance. This is made difficult by the fact that for any non-trivial profit maximization

problem there is no truthful mechanism that obtains the highest possible profit on all inputs.

In particular, for any truthful mechanism, M, there exists an input, I, and alternative

mechanism,M′, such thatM′ on I obtains a higher profit than that ofM on I. This type

of problem usually arises when an obstacle prevents a perfect optimization. The obstacle

we are faced with is that we do not know the true values of the agents in advance of running

the mechanism.

The fields of approximation algorithms and online algorithms overcome similar obsta-

cles. Approximation algorithms are useful for obtaining polynomial time algorithms for

problems that are impossible to solve exactly in polynomial time. The performance of such

an algorithm is gauged by measuring either the additive or multiplicative approximation

factor that the algorithm obtains in comparison to that of the true optimal on the worst
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possible input. An online algorithm is one that responds to input as it is received and must

make performance affecting decisions without knowledge of what future inputs it might

receive. In online algorithms the obstacle the algorithm faces is that of not knowing the

future inputs. To gauge performance of an online algorithm, its performance is compared

to the optimal offline algorithm’s performance, i.e., the performance of an algorithm that

is endowed with knowledge of all the inputs in advance. In the field of online algorithms,

this technique is known as competitive analysis. The algorithm design goal in a competitive

analysis framework is to obtain the algorithm with the best competitive ratio.

We adopt this general approach as our means for evaluating profit maximizing mecha-

nisms for private value problems. In this analysis we are interested in finding the mechanism

that obtains a profit within the best multiplicative ratio of an “optimal” mechanism that

is endowed with perfect knowledge of the private values of the agents. We refer to such

a mechanism interchangeably as the optimal omniscient mechanism or the optimal public

value mechanism.

1.1 Problems Studied

The approach we will take to understand optimization in the private value model will be to

consider a simple mechanism design problem and obtain results that we can then extend to

more complex problems. The simple mechanism design problem we will consider throughout

the majority of this thesis is the basic auction problem. The basic auction problem is a special

case of the aforementioned house selling problem where all houses are identical and there is

an unlimited supply of these houses. By unlimited supply, we mean that there are as many

houses as there are buyers. Such a scenario may be relevant for the sale of a digital good

as all copies are identical to the original, the seller can potentially make a copy for each

consumer, and each consumer only has use for one copy. We will show later that the limited

supply version of the problem, when there are only a fixed number of identical items for

sale, reduces to the unlimited supply version. As such, this is perhaps the simplest problem

where the fact that the agents’ valuations are private is an important obstacle for profit

maximization.
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One generalization of the basic auction problem is to the case where there are multiple

items in unlimited supply available for sale, yet each consumer desires at most one of these

items. This multi-item auction problem is essentially, the unlimited supply variant of the

real estate problem discussed previously. Like in the real estate example, bidders may have

different valuations for the different items. As an example application, consider an airplane

flight where passengers have individual movie screens and can choose to view one out of

a dozen movies that are broadcast simultaneously. The flight is only long enough for one

movie to be seen. The airline wants to price movies to maximize its profit.

Another generalization of the basic auction problem is the multicast pricing problem

of Feigenbaum et al. [18]. In this problem a content provider is attempting to sell and

distribute a digital good via multicast over a computer network such as the Internet. It is

assumed that the consumers are located at various places in the network and that there is

an implicit cost to the content provider for sending the good across a network link. The

link costs are assumed to be publicly available. The content provider collects payments

from consumers selected to receive the good but must pay for each link in a tree connecting

themselves to all of these consumers.1 We further generalize the multicast pricing problem

in two ways. First we assume that the bidders are divided into markets. The auction

mechanism may distinguish bidders in different markets and differential pricing based on

the markets segmentation is possible. Second we assume that there is a cost to the seller that

is a function of to which markets the good is supplied. In the multicast pricing problem the

markets correspond to nodes in the multicast tree. Of course the basic auction is a special

case of this problem where there is only a single market containing all bidders and the cost

function is identical zero.

Finally, we consider the generalization where the auctioneer is actually a broker mediat-

ing the exchange of items between buyers and sellers. In this exchange the auctioneer can

pocket the the difference between what is paid by the buyers and what is paid to the sellers.

In this double auction problem the goal is to design the auction mechanism to maximize the

auctioneer’s profit. We assume that each buyer only desires one item and that each seller

1this is a private value version of a prize collecting Steiner tree problem [28]. The prizes at nodes in the
Steiner tree problem correspond to private values of bidders in the multicast problem.
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only has one item to sell. Naturally, the basic auction is a special case of the double auction

problem in which all sellers are willing to sell their items for price zero.

1.2 Related Work

There is an extensive amount of Economics literature on auctions. For a survey, see [30].

Unlike the approach taken in this thesis, the standard approach to profit maximization

is to look for the Bayesian optimal mechanism. This approach assumes that the private

values come from some known probability distribution. The goal then is to design the

mechanism that obtains the highest expected profit on said input distribution. For i.i.d.

prior distribution’s the Bayesian optimal auction is given in [38, 11, 42]. We will discuss these

results more in Chapter 2. For arbitrarily correlated prior distributions, Ronen considers

the computational issues of implementing the Bayesian optimal auction for selling a single

item. Ronen shows that it is computational infeasible (i.e., NP-hard) to implement the

optimal auction but instead an approximately optimal solution can be implemented [43]. In

[34], the Bayesian approach to the optimal auction was extended to the multicast pricing

problem that we discuss in Chapter 10.

Recently, Segal has considered the uninformed auction problem in a setting similar to

the Bayesian setting [48]. He shows that auction mechanisms related to the ones presented

later in this thesis are asymptotically optimal when the bidders valuations are drawn inde-

pendently from an unknown or partially unknown prior distribution.

A problem related to the basic auction is the online auction problem. In the online

auction problem, it is assumed that bidders arrive one at a time and that the auction must

compute a price for them before seeing the next bidder’s bid. The analysis framework that

we have developed in this thesis was originally extended to this problem by Bar-Yossef et

al. [9]. An improved solution to the online auction problem, based on online learning, was

given by Blum et al. [10]. This improvement also includes analysis of the online posted price

problem where the mechanism must offer each consumer a price and the consumer may

choose to accept or reject the offered price. The mechanism does not learn anything about

the bidder’s value except whether it was above or below the price the mechanism offered.
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This problem was further studied by Klienberg and Leighton [29]; however, additive loss is

considered instead of a multiplicative competitive ratio. Finally, Awerbuch et al. consider

a general approach for adding incentive properties to online algorithms. They show how to

convert an online algorithm into a truthful online mechanism with only logarithmic additive

loss to the competitive ratio [6].

There has been substantial recent interest private value problems in Computer Science.

This work has been primarily focused in two directions, (a) looking at the computational

complexity and communication complexity of implementing traditional economic objec-

tives, and (b) looking at designing mechanisms for objectives not previously considered by

economists.

In the first direction, the most notable example is work looking at the intractability

and approximation of the common welfare maximization objective for the combinatorial

auction problem (See, e.g., [40, 32, 2]). The fundamental observation made is that the

Vickrey-Clarke-Groves (VCG) [51, 13, 27] mechanism that implements common welfare

maximization, when applied to the combinatorial auction problem, is required to solve an

NP-hard optimization problem. Further, use of an approximately optimal solution in place

of the true optimal solution causes the VCG mechanism to lose important properties [40].

In a network design setting, Feigenbaum et al.’s consider the communication complexity of

the distributed implementation of the multicast pricing problem both with the objective

of budget-balanced, i.e., zero profit and zero deficit, and the objective of common welfare

maximization. Finally, looking beyond these traditional objectives, [39, 3] consider the

private value scheduling problem where the objective is to minimize the makespan (the

completion time of the last job).

One interesting observation about the objective of common welfare maximization is that

the profit or loss of the mechanism is not at all optimized. As an example, the basic auction

(n items and n bidders) with the goal of common welfare maximization would result in

a mechanism that sells an item to each bidder at price zero. Further, in the multicast

pricing problem with the goal of common welfare maximization, the mechanism profit is

always non-positive. Archer and Tardos have studied the private value shortest path problem

where the goal is to design a mechanism to buy the cheapest path [4]. They note that for
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this problem the VCG mechanism, the mechanism that maximizes the common welfare,

may end up spending a lot more than the cost of the cheapest path. It turns out that all

mechanisms for the private value shortest path share this problem [4, 17]. In contrast, for

matriod optimization problems, e.g., minimum spanning tree, the VCG mechanism does

find a solution at close to the cost of the optimal solution [50]. We note that using the VCG

mechanism for the shortest path and minimum spanning tree problems was first proposed

by Nisan and Ronen [39].

Other notable work in the intersection of Computer Science, Game Theory, and Eco-

nomics includes the study of the price of anarchy [31] and market equilibria [14]. The price

of anarchy considers the difference between the social welfare of an optimal allocation of

resources and the social welfare of a allocation obtained when a Nash equilibrium is found

by selfish agents competing for the resources. Along these lines, Roughgardin et al. have

studied the problem of routing traffic in a communication network [46, 45]. The market

equilibrium question looks at taking a market with agents and goods and computing prices

for the goods such that they can be reallocated among the agents in an optimal way such

that there is neither a surplus or a shortage of any good [14, 16].

1.3 Contributions

The work presented in this thesis is the result of collaborations between the author and Yossi

Azar, Kostub Deshmukh, Amos Fiat, Andrew Goldberg, Anna Karlin, Claire Kenyon, Mike

Saks, and Andrew Wright. Many of the results presented have been published with subsets

of the above as coauthors [26, 22, 20, 15, 23, 24] and some are in manuscript form as of this

writing [25, 8].

One main contribution of this work is the introduction of competitive analysis to eco-

nomic mechanisms [26, 20, 24]. This type of analysis allows for design and analysis of profit

maximizing mechanisms that have no prior knowledge about the nature of their input. Be-

fore this work, profit maximizing mechanisms were only studied in a Bayesian setting where

the mechanism was assumed to be endowed with knowledge of the distribution from which

the agents valuations are drawn.
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This work can also be viewed as introducing game theoretic considerations into standard

profit optimization problems studied in Computer Science. Prior work in Computer Science

for profit maximization assumes the public value model. As already argued, this model is

not appropriate for many interesting and potentially practical optimization problems. We

show how techniques from game theory, mechanism design, and economics can be combined

with a standard computer science approach to design and analysis of algorithms.

For the basic auction problem, we develop a number of auctions with worst case per-

formance guarantees [26, 20] the best of which achieves a worst case competitive ratio of

3.39 [23]. Further, we show that no mechanism can achieve a competitive ratio better than

2.42 [25]. This worst case arises on inputs where the optimal auction only sells a small

number of items. Intuitively, if the sale of some item gives a large portion of the profit of

the mechanism then it is much harder to perform well in worst case.2 There is less margin

for error and if a mistake is made for one bidder it could affect the auction performance by a

large amount. If, on the other hand, we are willing to assume that the number of items sold

by an optimal auction is large, i.e., each item’s sale only contributes a small amount to the

profit of the mechanism, then it is possible to develop auctions that are (1 + ε)-competitive

with an optimal omniscient mechanism [25, 24].

An unfortunate property of the competitive auctions we develop is that they all fail the

following natural fairness criteria: the outcome of the basic auction should be a single sale

price such that all bidders bidding above this price are allocated the good. In other words,

these auctions are not envy-free in the sense that some bidder might prefer the outcome

of another bidder. We show that there is no basic auction that simultaneously is envy-

free and truthful and also performs well in worst case. Faced with this impossibility we

consider an alternative solution concept to truthful mechanism design, that of truthfulness

with with high probability, and give an envy-free auction that performs well in worst case

and is truthful with high probability [24].

In our study of the basic auction we develop a number of techniques that can be used in

the solution of more complex profit maximizing mechanism design problems. We generalize

2In such markets, it would be better to use some sort of market analysis to determine how to price the
item instead of applying a worst case mechanism design approach.
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one natural technique, using random sampling to perform on-the-fly market analysis as the

auction is being run, to give a solution to the multi-item auction problem [22]. This is a

natural approach and it is likely be useful in other profit optimization problems.

As a building block for the design of profit maximizing mechanisms, we develop the

notion of a cancellable mechanism. A cancellable mechanism is one that remains truthful

even if its outcome can be cancelled if its profit does not meet some criterion. This gives a

reduction from the private value optimization problems to public value optimization prob-

lems [20]. As an example, consider the multicast pricing problem. If a cancellable auction

is run locally on the bidders in each market, this effectively allows us to replace the bidders’

private values with a single public value representing the revenue possible from each mar-

ket. The mechanism can then optimize which markets receive the good based on the cost

function and these public revenue values. In any markets that turn out to be unprofitable,

the local auction can be cancelled.

Finally, we give a reduction from the private value optimization problem to the private

value decision problem [23]. In classical optimization, an optimization problem attempts

to answer the question “find a feasible solution with the maximum value.” The decision

problem answers the question “find a feasible solution with value at least V if one exists.”

Likewise, we can define the decision problem version of a private value optimization problem.

We call a mechanism that solves the private value decision problem a profit extractor.

Such a mechanism given a target profit V should produce an outcome that achieves profit

at least V if such an outcome is possible. We show how to construct an approximately

optimal mechanism given a profit extractor for the same profit maximization problem. This

technique gives the best known competitive ratio for the basic auction problem. We further

demonstrate its usefulness by using it to solve the double auction problem as well [15].
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Chapter 2

DEFINITIONS

In this chapter we formalize the definition of the basic auction problem. In doing so, we

review the necessary game theoretic concepts including our bidder model and the solution

concept of truthful mechanism design. We present the prototypical truthful auction, the

Vickrey auction, as well as the truthful fixed price mechanism. We then describe the basic

auction decision problem and the mechanism from the literature that solves it.

2.1 The Basic Auction Problem

Motivated by the problem of selling digital goods, such as music, video, and software; we

consider the problem of a monopolistic seller attempting to maximize their profit in the

sale a single good available in unlimited supply. In the digital good setting, it is natural to

assume that the seller has enough copies of the good for sale to potentially sell one to each

customer. Furthermore, in the digital good setting it is safe to assume that each consumer

only desires one copy of the good, a.k.a, the unit demand case. We will assume that the

seller knows nothing about the consumers preferences or willingness to pay in advance. We

will be looking for solutions to this problem in the form of dynamic pricing mechanisms

that adjust the sale prices of the good based on information received from the consumers

in the form of bids, i.e., auctions.

As we will show later in this thesis, this auction problem is a special case of many

interesting optimization problems. In fact in Chapter 5 we show that the limited supply

case, when there are only a fixed number of identical items for sale, actually reduces to

the unlimited supply case. We refer to the unlimited supply auction problem as the basic

auction problem.

Definition 2.1 (The Basic Auction Problem) Given:
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• n identical items for sale and

• n bidders,

design an auction to maximize profit of the sale.

2.2 The Game Theoretic Model and Truthful Mechanism Design

An auction outcome consists of a vector of prices, p, with pi the price for bidder i, and an

allocation vector, x, with x1 = 1 if bidder i is allocated the good and xi = 0 otherwise.

Definition 2.2 (Bidder Model) We assume the following private value model for the

bidders:

• Bidder i has a private value, ui, representing the monetary value that the bidder

associates with their possession of the item.

• Bidder i bids to maximize their profit defined as: uixi − pi. In particular this implies

that there are no externalities, i.e., no bidder cares whether other bidders win or lose

nor do they care what price other bidders might pay for the good.

• Bidders are rational.

• Bidders do not collude.

A huge issue in the design and analysis of auctions is reasoning about how bidders will

bid in the auction. As the bids dictate the profit that the auctioneer obtains it is impossible

to analyze the auction profit without a model of how the bidders will bid. Since we have

assumed that bidders will bid to try to maximize their own profit and their own profit is

determined by the auction mechanism and the values of the other bidders’ bids, a bidder’s

bid will be a function of the auction mechanism and what the bidder believes the other

bidders are bidding. This is a daunting problem.

One solution from Economics is to look for a Bayesian Nash equilibrium of the mecha-

nism. This approach assumes that the bidders’ valuations are drawn from some probability
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distribution and that all bidders know what this distribution is. It then looks for a Nash

equilibrium, bids for each bidder such that no bidder can obtain a higher expected profit

by changing their bid. To be useful in practice, this solution relies on two things. First, it

requires that the bidders know the probability distribution from which their valuations are

drawn. Second, it assumes that they can actually find the Nash equilibrium. While these

assumptions may be valid in some situations, we believe that there are many interesting

situations in which they are not.

We adopt a different solution solution concept from Economics and game theory and

alleviate the problem of having to have a model for the bidders’ speculation by restricting

our attention to mechanisms with dominant strategies.

Definition 2.3 (Dominant Strategy Mechanism) A bidder’s strategy is dominant if

the strategy maximizes the bidder’s profit for any possible strategies the other bidders may

follow. A mechanism is a dominant strategy mechanism if all bidders have dominant strate-

gies.

Definition 2.4 A single-round, sealed-bid auction, A, is one where:

1. Each bidder submits a bid, representing the maximum amount they are willing to pay

for an item. We denote by b the vector of all submitted bids, i.e., the input. The i-th

component of b is bi, the bid submitted by bidder i. We denote by n the number of

bidders.

2. Given the bid vector b, the auctioneer computes an output consisting of an allocation,

x = (x1, . . . , xn), and prices, p = (p1, . . . , pn). The allocation xi is an indicator for

bidder i’s receipt of the item (1 if bidder i receives the item and 0 otherwise). If

xi = 1, we say that bidder i wins. Otherwise, bidder i loses, or is rejected. The price,

pi, is what bidder i pays the auctioneer. We assume that 0 ≤ pi ≤ bi for all winning

bidders and that pi = 0 for all losing bidders (these are the standard assumptions of

no positive transfers and voluntary participation. See, e.g., [37]).

3. The profit of the auction (or auctioneer) is A(b) =
∑

i pi.
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An auction is deterministic if the allocation and prices are a deterministic function of the

bid vector. An auction is randomized if the procedure by which the auctioneer computes

the allocation and prices is randomized. Note that if the auction is randomized, the profit

of the auction, the output prices, and the allocation are random variables.

The revelation principle says that any dominant strategy single or multi-round mech-

anism can be converted into a single round truthful mechanism, one where each bidders

dominant strategy is to bid identically their valuation [38]. The proof of this principle is

straightforward, given a dominant strategy mechanismM, construct a truthful mechanism

M′ that simulates each bidders dominant strategy inM assuming that the bidder actually

bid their true valuation.

Definition 2.5 (Truthful Mechanism) We say that a deterministic auction is truthful

if bidder i’s dominant strategy is to bid their valuation, setting bi = ui. A randomized

auction is truthful if it is a probability distribution over truthful deterministic auctions.

We adopt the solution concept of truthful mechanism design and consider single-round,

sealed-bid truthful auctions for the basic auction problem.

2.3 The Vickrey Auction

A 1-item auction is one that sells at most one item. The classic truthful auction from the

Economics literature is the 1-item Vickrey auction. The Vickrey auction is also known as

the second price auction because it sells the item to the highest bidder at a price equal

to the second highest bid value. It is interesting to note that the Vickrey auction can be

derived by considering applying the revelation principle to the standard English auction.

The English Auction for one item is a standard multi-round auction mechanism. It is

well known for being used in estate and art sales. It is an open outcry auction and typically

bidders yell out their bids effectively raising the price of the item for sale until a price is

reached at that nobody is willing to out bid. At the point the bidder that placed the highest

bid obtains the item at their bid value.

In the English auction, a rational bidder’s strategy would be to bid by raising the high

bid placed by other bidders by the minimum increment until the high bid is above their



16

valuation at which point they would cease bidding in the auction. The result of bidders

in an English auction playing by this rational strategy is that the bidder with the highest

utility will in fact win the item and the price they will pay will be approximately the second

highest utility value. Applying the revelation principle we arrive at the Vickrey auction as

the single round, sealed bid truthful equivalent of the multi-round English Auction.

It will be useful for later discussion to have a more direct proof that the Vickrey auction

is truthful.

Lemma 2.1 The Vickrey Auction is truthful.

Proof: For a particular bidder i, fix the bids of all other bidders. Let p = maxj 6=i bj.

Note that if bidder i bids bi > p then bidder i wins the auction and pays price p. This is

because bidder i would be the highest bidder and p would be the second highest bid value.

In this case, the bidder’s profit is ui − p. If bidder i bids below p then bidder i loses and

pays nothing. Their profit is zero. Given this, we can consider the profit of bidder i with

utility value ui for any possible bid they might make. There are two cases of interest.

Case 1 (ui < p): If the bidder bids above p, their profit is ui − p which is negative. Thus

bidding below p and obtaining zero profit is preferable. Thus, any losing bid is an

optimal strategy for bidder i, including bidding bi = ui.

Case 2 (ui > p): If the bidder bids above p, their profit ui−p is positive. The is preferable

to losing by biding below p. Thus, any bid greater than p is an optimal strategy for

bidder i, including bidding bi = ui.

The third case is when ui = p. Note that in this case the bidder cares not whether they

win at price p or lose as both outcomes give zero profit. 2

2.4 Bid-Independent Auctions

Throughout the remainder of this thesis, we will be developing truthful auctions. To get

a better understanding of what makes a mechanism truthful we present an algorithmic

characterization of truthful auctions. First observe that the fundamental property of the
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Vickrey auction that made it truthful was that the price p that bidder i is compared to is

not a function of that bidders bid value. In the Vickrey auction p is the maximum of all the

other bids. However, the auction would still be truthful if p were the value of any function

of all of the bids except for bidder i’s bid.

Bid-independent auctions formalize this observation and give a characterization of truth-

ful auctions. Related formulations to the one we give here have appeared in numerous places

in recent literature (e.g., [3, 48, 25, 32]). To the best of our knowledge, the earliest dates

back to the 1970s [35].

Definition 2.6 Let b−i denote the vector of bids b with bi removed, i.e.,

b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn).

We call such a vector masked.

Definition 2.7 (Bid-independent Auction, BIf) Let f be a function from masked vec-

tors to prices (non-negative real numbers). The deterministic bid-independent auction de-

fined by f , BIf , works as follows. For each bidder i:

1. ti ← f(b−i).

2. If ti < bi, set xi ← 1 and pi ← ti (Bidder i wins).

3. If ti > bi set xi = pi = 0 (Bidder i loses).

4. Otherwise, if ti = bi the auction can either accept the bid at price ti or reject it.

For example, by setting f = max for all i and breaking ties arbitrarily, we obtain the

1-item Vickrey auction, i.e., the highest bidder wins at the second highest price.

Theorem 2.2 A deterministic auction is truthful if and only if it is equivalent to a deter-

ministic bid-independent auction.

The theorem follows from the following two lemmas.
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Lemma 2.3 Any deterministic bid-independent auction is truthful.

We omit this proof because it is identical to the proof that Vickrey is truthful. The

following result completes the proof of equivalence of truthfulness and bid-independence for

deterministic auctions.

Lemma 2.4 A truthful deterministic auction is truthful if and only if it is equivalent to a

deterministic bid-independent auction.

Proof: Given any truthful deterministic A we can determine an f such that the bid-

independent implementation, BIf , is identical to A. Let bx
i = (b1, . . . , bi−1, x, bi+1, . . . , bn),

the bid vector obtained by replacing bi with x. If there is some value x∗ such that in A(bx∗

i )

bidder i wins and pays p (note this requires p ≤ x∗) then define f(b−i) to be p. To break

ties, i.e., if bi = p, consider whether bidder i wins in A on input bp
i .

Give this value of p, we now show for any x the outcome of A on bx
i is such that:

1. If bidder i wins, they pay p.

2. Bidder i wins by bidding any value x > p (and possibly by bidding x = p).

To see 1, assume to the contrary that there is some other bid value y such that running

A(by
i ) results in bidder i winning and paying q 6= p. Without loss of generality q > p

so a bidder with utility y would have a higher profit by bidding x∗. This contradicts A’s

truthfulness.

To see 2, assume to the contrary that there is some bid value y ∈ (p,∞) such that bidder

i does not win by bidding y. Notice that a bidder with utility y would have a higher profit

by bidding x∗. Again this contradicts the A’s truthfulness and gives the lemma. 2

Definition 2.8 A randomized bid-independent auction is a probability distribution over

bid-independent auctions. For these auctions, f(b−i) is a non-negative real-valued random

variable.

Note that the random variables f(b−i) and f(b−j) need not be independent. It follows

immediately from Definition 2.8 and Theorem 2.2 that:
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Corollary 2.5 A randomized auction is truthful if and only if it is equivalent to a random-

ized bid-independent auction.

We note briefly that this definition of randomized truthful auctions is identical to re-

quiring the probability distribution of a bidders profit when they bid their true value to

dominate1 the probability distribution of their profit bidding any other value.

2.5 More Truthful Auctions

In this section we review several other classical truthful auctions.

The Fixed Pricing Mechanism

While the fixed pricing mechanism is not technically an auction because it does not require

any bids be submitted by the bidders, it will be useful for us to consider it as a truthful

mechanism. The fixed pricing mechanism with sale price r sells to all bidders that bid at least

r at price r. Clearly, this is truthful as it is implemented by the constant bid-independent

function f(·) = r.

The k-item Vickrey Auction

We define the notation b(i) to denote the ith largest bid value. If necessary, we break ties

arbitrarily.

The k-item Vickrey auction is the natural extension of the Vickrey auction to sell k

items instead of only one.

Definition 2.9 (k-item Vickrey Auction, Vk) The k-item Vickrey Auction, Vk, sells to

the highest k bidders at the k + 1st bid value, i.e., b(k+1). All other bidders are rejected.

It is easy to see that the k-item Vickrey auction is truthful. It is implemented by the bid

independent function that returns the kth largest bid value (and breaks ties arbitrarily).

1The random variable X dominates Y if for all v, Pr[X > v] ≥ Pr[Y > v].
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The k-item Vickrey Auction with Reservation Price

A standard variant of k-Vickrey is parameterized by an a reservation price, r. This variant

sells at most k items total to the highest k bidders that bid at least r. It uses a sale price of

the larger of r and the k + 1st highest bid, i.e., max(r, b(k+1)). This is easily implemented

by the bid independent function that returns the maximum of the kth largest bid value and

r. This is a natural combination of the fixed price mechanism and k-Vickrey.

Mechanisms with Prior Knowledge

As a brief aside, the standard approach to profit maximization in Economics is via the

Bayesian optimal auction. The significant difference between this and the problem we solve

in this thesis is that the Bayesian optimal auction is endowed with prior knowledge of the a

probability distribution from which the bidders valuations are drawn. The Bayesian optimal

auction problem is, given the prior distribution from which the bidders valuations are drawn,

to come up with the auction that maximizes the expected profit. This expectation is taken

over randomness in the bidders’ valuations. For the case where the bidders’ values are

independent and identically distributed, the Bayesian optimal auction is just the k-item

Vickrey with a reservation price judiciously chosen based on the prior distribution [38].

Note, that in the unlimited supply case this k, the number of items available, is n and this

Bayesian optimal auction simplifies to the fixed price mechanism with the optimally chosen

price, r.

An an interesting exercise we can consider using the fixed pricing mechanism by a seller

with perfect information, i.e., knowledge of all bidders’ exact valuations. Such a seller can

simply pick the value of r that maximizes their profit. We denote this optimal omniscient

mechanism by F and discuss it in more detail in Chapter 3.

2.6 Profit Extraction and the Basic Auction Decision Problem

In classical optimization theory, an optimization problem is to find a feasible solution with

the maximum (or minimum) value. The corresponding decision problem is, given some

prespecified value V , to find a feasible solution with value at least V if such a solution exists
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(or at most V for minimization problems). In classical optimization, the decision problem

solution is useful in finding a solution to the optimization problem because the optimal

value can be searched for by repeatedly solving the decision problem for different values of

V , for example, by binary search.

Our basic auction problem is a private value optimization problem. One of the main

result of this thesis is the development of a technique for using the solution to the decision

problem version of the basic auction to solve the profit maximizing auctions.

Definition 2.10 (Basic Auction Decision Problem) Given:

• n identical items for sale.

• n bidders, bidder i willing to pay at most ui for an item.

• Target profit R.

Design an auction mechanism that obtains profit R if R is less than the profit of F , the

fixed pricing mechanism with optimal price.2

We call a mechanism that solves the basic auction decision problem a profit extractor

because it extracts the specified amount of profit whenever it is possible. It turns out that

a special case of the general cost sharing mechanism of Moulin and Shenker [37] is a profit

extractor for the basic auction problem.

Definition 2.11 (ProfitExtractR) Given bids b find the largest k such that the highest

k bidders can equally split R, i.e., for i ≤ k, b(k) ≥ R/k. Charge each of these bidders R/k.

Observation 1 ProfitExtractR obtains profit R if and only if F(b) ≥ R.

To see this, let k∗ be the number of winners in F . If F(b) = k∗b(k∗) ≥ R then these k∗

winners can equally split the cost R/k∗. On the other hand if F(b) < R then no k bidders

can equally split R.

For completeness, we now give a proof of the fact that ProfitExtractR is truthful, but

first a lemma. A more general result is given by Moulin and Shenker in [37].

2F is described in detail in Chapter 3.
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Lemma 2.6 The number of winners in ProfitExtractR is a non-increasing function of any

one bidder’s bid.

Proof: ProfitExtractR finds the largest set of bidders that can split R. If the highest k′

bidders cannot equally split R then they certainly still cannot if some bidder lowers their

bid. 2

Theorem 2.7 [37] ProfitExtractR is truthful.

Proof: Pick any bidder i. We will show that ProfitExtractR is bid-independent. That is,

there is a value p that is a function of b−i and if bidder i bids at least p, i wins at price p

and otherwise i loses. For the remainder of this argument fix b−i.

Assume bidder i bids ∞. Of course, i must win at price p ≤ R, because at the very

least, no other bidders bid above R and i can pay R. Let k be the number of winners in

ProfitExtractR when i bids ∞. If bidder i were to lower their bid to any value at least p,

bidder i would still win at price p: the same k winning bidders can still split the R, and by

Lemma 2.6, no larger set of bidders can win.

To see that bidder i would lose if they were to lower their bid to any value strictly less

than p, note that the top k bidders can no longer split R evenly as bidder i cannot pay

p = R/k. Furthermore, by Lemma 2.6, no larger set of bidders can split R either. 2

There are some other nice properties of ProfitExtractR such as the fact that it always

produces a fair outcome in the sense that there is a single sale price which all winners pay

and all losers would not prefer to win the item at this price.3 Also ProfitExtractR is group

strategyproof meaning that it is not possible for any bidders to collude for positive benefit

without a loss being incurred by some member of the coalition (See [37] for proof).

3In Chapter 6 we formalize this fairness criterion as envy-free.
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Chapter 3

ANALYSIS FRAMEWORK

The goal of the analysis of auctions, like the goal of analysis of algorithms, is to be able

to consider a particular auction and determine whether it is good or not. We also might

like to compare two auctions to determine which was is better, or even in what sense one

auction is better than the other. The analysis framework we present here, that which we

will be using for analyzing auctions, will give us a way to determine whether a particular

auction is good and whether it is better or worse than another particular auction.

As mentioned in the introduction, the analysis of auctions is complicated by the fact that

there is no auction that is the best on all inputs. For any truthful auction, A, there exists

an input, b, and another truthful auction, A′, such that the profit of A′ on b is higher than

that of A. The fundamental obstacle that an auctioneer faces that prevents the auctioneer

from obtaining a high profit is their lack of prior knowledge of the bidders’ valuations.

The areas of approximation algorithms and online algorithms share similar obstacles.

Approximation algorithms are useful for obtaining polynomial time algorithms for prob-

lems that are impossible to solve exactly in polynomial time. The performance of such an

algorithm is gauged by measuring either the additive or multiplicative approximation factor

that the algorithm obtains in comparison to that of the true optimal. In online algorithms

the impossibility the algorithm faces is with knowing the future input. To gauge perfor-

mance of an online algorithm, it it compared to the optimal offline algorithm’s performance.

The goal of this competitive analysis is to obtain the algorithm with the best competitive

ratio.

We adopt this general approach as our means for evaluating profit maximizing mecha-

nisms for private value problems. In this analysis we are interested in finding the algorithm

that obtains a profit within the best multiplicative ratio of an “optimal” mechanism that is

endowed with perfect prior knowledge of the private values of the bidders. We refer to such
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an optimal mechanism that knows the private values in advance as the optimal omniscient

mechanism or the optimal public value mechanism, interchangeably.

In general, our goal is to get the strongest results we can, and thus we will try to

compare our truthful auctions against the best possible metric that we can feasibly compete

with. Once the optimal auction is defined, the best competitive auction is the one that

minimizes the competitive ratio, the worst case ratio between the optimal auction profit and

its profit. A fundamental goal of this research is to determine good metrics for comparison,

the corresponding best competitive ratio, and the auction mechanism that achieves it.

3.1 Competitive Auction Framework

A key part of setting up a competitive framework for analyzing solutions to any problem is

coming up with the right metric for comparison. As a starting point, we would like to take

the strongest possible benchmark for comparison that we can: the profit of an auctioneer

that is perfectly informed about the bidder’s values. This leads us to consider as the two

most natural metrics for comparison the optimal omniscient multi-price and single-price

auctions, T and F .

Recall that we use the notation b(i) to represent the ith largest bid value in b. Where

necessary we break ties arbitrarily.

Definition 3.1 The optimal single price omniscient auction, F , on input, b, determines

the value k such that kb(k) is maximized. All bidders with bi ≥ b(k) win at price b(k); all

remaining bidders lose. The profit of F on input b is thus

F(b) = max
1≤k≤n

kb(k).

Definition 3.2 The optimal multiple price omniscient auction, T , is the auction that sells

to each bidder at their bid value. Thus, the profit of T on input b is

T (b) =
∑

1≤i≤n

bi.

We first compare the performance of F relative to T . Specifically, we observe that in

the worst case, the maximum ratio of T to F is logarithmic in n, the number of bidders.
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Lemma 3.1 There exist bid vectors b for which

F(b) = Θ(T (b)/ ln n).

Moreover, for all bid vectors b

F(b) ≥ T (b)/ ln n.

Proof: For the first part, let b be the bid vector such that bi = n/i. Then F(b) = n and

T (b) = n(ln(n) + Θ(1)).

For the second part, suppose that F(b) = maxi ib(i) = kb(k). Then for all i,

ib(i) ≤ kb(k).

Thus,

T (b) =

n∑

i=1

b(i) ≤
n∑

i=1

kb(k)

i
≤ F(b)

n∑

j=1

1

j
= F(b)(ln n + O(1)).

2

Now we show that no truthful auction can be competitive against F (and hence it can

not be competitive against T ).

Lemma 3.2 For any truthful auction A and any β ≥ 1, there is a bid vector b such that

the expected profit of A on b is less than F(b)/β.

Proof: Consider a bid-independent randomized auction on two bids, 1 and x ≥ 1. Let

f be the function that gives the bid-independent definition of A.1 Let h be the smallest

value greater or equal to 1 such that Pr[f(1) ≥ h] ≤ 1
2β . Then the expected profit on input

vector b = (1,H) with H = 4βh is at most

H

2β
+ h(1− 1

2β
) + 1 < 4h =

H

β
=
F(b)

β
.

2

Lemma 3.2 shows that we cannot expect to come close to matching the performance of

the optimal single price omniscient auction in the case where the optimal profit is generated

1We assume f is symmetric, thus, f(b, ?) = f(?, b) = f(b). By Lemma 7.1 this assumption is without loss
of generality.
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from the single highest bid. Thus, we must set our sights slightly lower. Later in the paper

we will present auctions that are competitive with F (2), the optimal single price auction that

sells at least two items. Such auctions perform comparably to F (2) in that they achieve a

constant fraction of the revenue of F (2) on all inputs.

Definition 3.3 The optimal single price omniscient auction that sells at least two items,

F (2), is defined as follows: Auction F (2) on input b determines the value k such that k ≥ 2

and kb(k) is maximized. All bidders with bi ≥ b(k) win at price b(k); all remaining bidders

lose. The profit of F (2) on input b is thus

F (2)(b) = max
2≤k≤n

kb(k).

Note that for b where F elects to sell two or more items, F (2)(b) = F(b). Thus, if we

exclude bid vectors where only the highest bidder wins in the optimal auction, comparing

auction performance to F (2) is identical to comparing it to F .

Next we generalize the definition of F (2) to define F (m), as the optimal single price

omniscient auction that sells at least m items.

Definition 3.4 The optimal single price omniscient auction with at least m winners, F (m)

is defined as follows: Auction F (m) on input b determines the value k such that k ≥ m and

kb(k) is maximized. All bidders with bi ≥ b(k) win at price b(k); all remaining bidders lose.

The profit of F (m) on input b is thus

F (m)(b) = max
m≤k≤n

kb(k).

Finally, we formalize the notion of a competitive auction.

Definition 3.5 We say that auction A is β-competitive against F (m) if for all bid vectors

b, the expected profit of A on b satisfies

E[A(b)] ≥ F
(m)(b)

β
.

We say that an auction is competitive against F (m) if the auction is β-competitive against

F (m) for a constant β. We refer to β as the competitive ratio of A.
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The statement that an auction is competitive against F (m) implies that, restricted to

inputs b such that there are at least m items sold by the optimal auction, i.e., F (m)(b) =

F(b), our auctions are competitive against F . For m = 2, this restriction precisely excludes

the case where it is not possible to be competitive – when there is one bidder with very

large utility.

Observe that since the profit of F (m) decreases as m increases, as we compete against

F (m) for larger values of m, we are demanding less and less of the truthful auction. We will

thus single out the case of competition against m = 2, as F (2) is the strongest omniscient

auction that we will be able to feasibly compete with.

Definition 3.6 We say an auction is β-competitive if it is β-competitive against F (2). In

cases where we do not wish to specify the constant β, we simply say that the auction is

competitive.

By considering competitiveness against F (m) for different values of m, we obtain results

that are relevant to a wider range of applications. For example, in situations in which the

auctioneer does not have prior distributions on bidders’ bid values but does know that their

profit will be maximized by selling at least m items, they can use an auction tailored to

such a situation and obtain much stronger guarantees on the competitive ratio. One natural

example of such a scenario is when there are a large number of bidders and the auctioneer

is safe in assuming that all bid values come from a bounded range.

3.2 Mass Markets

We will demonstrate in Chapter 7 that no auction can achieve a worst case competitive ratio

with F (2) that is better than 2.42. In that we are attempting to design practical selling

mechanisms, this is a rather discouraging result. It turns out that this competitive ratio

comes from requiring the auction to perform well on inputs where only a small number of

items are sold. Intuitively, if there are only small number of items sold, the contribution

of the sale of each item to the total profit is large. Thus, small pricing mistakes made by

the auction have a relatively large effect on the total profit. On the other hand, one of the
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original motivations of this work is on sales where the number of items sold is large, i.e.,

the mass market case.

Also in Chapter 7 provide some evidence supporting the conjecture that no auction

that is constant competitive in worst case is almost optimal on mass markets (i.e., (1 + ε)-

competitive as m, the number of winners, gets large). We show a weaker result that for this

is true for a restricted class of auctions. For mass markets, it would be preferable to give

up good worst case behavior when only a few items are sold to obtain better performance

asymptotically. As such, we are motivated to look at a promise version of the competitive

framework. In such a framework we look for auctions that perform well on certain classes

of inputs, but allow them to perform poorly on other inputs. This motivates defining a

version of the competitive ratio that is parameterized by m, the optimal number of items

sold. We look for auctions that perform well on the restricted set of inputs in which the

optimal number of items sold is at least m.

Definition 3.7 We say that auction, A, is β(m)-competitive for mass-markets if, for all

bid vectors b such that F sells at least m items, we have

E[A(b)] ≥ F
(2)(b)

β(m)
.

This parameterized competitive framework is more expressive than the worst case frame-

work discussed earlier. Here β(1) is the worst case competitive ratio. Note that we have

defined this competitiveness notion in terms of F (2), it is possible to do this analysis with

F (m′) for any m′. Note, however, that for bid vectors with m ≥ m′ winners in F , F (m′) = F .

Another variant of promise problem that we will consider is restricting the bids to be

from a bounded range, i.e., [1, h] and looking at auctions that perform well in the limit as

the number of bidders increases. Note that for bids in a bounded range, as the number of

bidders increases, the number of items sold also must increase.

3.3 Concentration

We have defined our notion of competitive analysis in terms of expected profit. However,

often times it is necessary to have concentration results that show that with high probability
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the profit is close to its expectation.

These sorts of results are easy to obtain for all of the auctions that we design here. As

we have defined them, a randomized auction is a randomization over deterministic auctions,

i.e., first we flip some coins to pick a deterministic auction, second we run the deterministic

auction on all the inputs. The total profit of the auctioneer is
∑

i pi, the sum of the prices

charged to the bidders. Note that by linearity of expectation, the auctions expected profit

is
∑

i E[pi]. Given any auction, we can design an auction that achieves the same expected

profit but also has simple to prove tail bounds on the profit we can just rerandomize the

auction for each bidder. I.e., for each bidder i: flip some coins to pick a deterministic

auction, simulate this auction on the entire input, and use the outcome pi and xi for this

bidder. Note that the pi are now independent random variables and therefore it is possible

to apply a Chernoff bound to show that for the case the number of winners is large, that

the auction profit is close to its expectation.

We note that this rerandomization may come at the expense of other auction properties,

such as single pricedness as in Chapter 6. As well, this rerandomization is not possible

when there is a cost function over the outcome allocation as in Chapter 10 or infeasible

allocations as in the double auction problem in Chapter 11.
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Chapter 4

COMPETITIVE AUCTIONS

In this chapter we develop a number of new techniques for designing profit maximizing

auctions. First we discuss the use of both the fixed pricing mechanism with price r and

the k-item Vickrey auction in obtaining auctions that perform well in worst case. We show

that with deterministic choice of k or r neither mechanism gives an auction which is n-

competitive in worst case. We then give a natural randomized technique for choosing k and

p to give auctions that are Θ(log n)-competitive. To within constant factors this is the best

possible using these methods. To obtain constant-competitive mechanisms we turn to more

sophisticated techniques.

We first present a deterministic auction mechanism. While this mechanism can perform

well in average case (e.g., when the bid values are chosen from independently from a bounded

support probability distribution), it does not perform well in worst case. We prove this in

general by showing that no symmetric1 deterministic auction performs well in worst case

[26].

We then discuss a number of techniques for designing auctions that perform well in worst

case. Because of the deterministic impossibility, these techniques are all based on random-

ization procedures. The simplest of these randomization procedures is random sampling.

Random sampling is a natural, well accepted technique in both algorithms and economics,

in fact our use of random sampling in auctions is essentially performing market analysis

dynamically as the auction is being run. A more sophisticated randomization technique is

the randomized consensus procedure that we will develop later in this chapter.

We will show how these randomization procedures can be combined with existing mech-

anisms to get a profit maximizing auction. In particular we will utilize the simple selling

mechanism of fixed pricing [26, 25] as well as the basic auction profit extraction mechanism

1A symmetric auction is one where the outcome is independent of the order in which the bids are input.
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[20, 23].

4.1 Existing Methods

In this section we will discuss the use of existing methods to try to obtain profit maximizing

mechanisms.

Profit Maximization via the Fixed Price Mechanism

Consider the fixed price mechanism with price r. The performance of the fixed price mech-

anism relies on a good choice of price. Given our assumption that the auctioneer knows

nothing about the bidders’ valuations in advance, there is no way that the auctioneer can

intelligently set the price. For any price r, there is a very bad input b with all bi < r on

which the fixed price mechanism with price r obtains no profit. Even if we were to assume

that the auctioneer had some bound on the range of bids, say between 1 and h, it would

still be impossible to choose r. For any choice of r > 1 the all ones input would result in

the auction obtaining zero profit. Furthermore, for r = 1 the input with all bids at value

h would result in the auction obtaining profit n, but the best possible is F = T = hn and

thus, the auction would only be h-competitive.

As one might expect it is possible to randomize this technique to obtain an auction that

performs significantly better in expectation. Given that the bids are all in the interval [1, h],

we can chose p to be a random power of two between [1, h], that is r = 2i for i uniformly

distributed from {0, . . . , blog hc}. Note that the expected profit from bid bi is Θ(bi/ log h)

thus, by linearity of expectation, the expected profit of the mechanism of Θ(T / log h), that

is, the mechanism is obtains a profit that is a Θ(log h) fraction of T on all inputs (which

implies that it is Θ(log h)-competitive with T , F , and F (2)). These bounds are tight.

If the upper bound on the bid values, h, is not known, but the lower bound is of 1 is,

Yossi Azar has observed that we can still get close to log h-competitive [7]. This result is

obtained by using the classify and select technique [33] (and a good description can be found

in [6]).
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Profit Maximization via k-Vickrey

Now we consider obtaining a profit maximizing auction via the k-Vickrey mechanism. Again,

for any fixed k that is not a function of any of the bid values (though possibly a function

of n), there is a bad input. Suppose k ≥ 2. On the input b with exactly k bids at h

and the remaining bids at value 1, the k-Vickrey uses the k + 1st bid, i.e. value 1, as the

sale price for the highest k bidders. Thus, its profit is k, yet the optimal fixed price profit

F = F (2) = kh, thus k-Vickrey is only h-competitive. As h is a free variable, the competitive

ratio is unbounded for the k ≥ 2 case. For the case that k = 1, we can consider the all ones

input. On this input, 1-Vickrey obtains profit 1; however, F (2) = F = n. Thus, 1-Vickrey

is only n-competitive.

Again using standard techniques we can randomly choose k. One advantage of this

technique over using fixed pricing with random r is that we do not need to know either

upper or lower bounds on the range of bids.

Definition 4.1 (Randomized Vickrey) The Randomized Vickrey auction picks i uni-

formly from {0, . . . , blog nc} and runs the 2i-item Vickrey auction.

Lemma 4.1 Randomized Vickrey is 2 log n-competitive with F (2).

Proof: The worst-case competitive ratio for this auction occurs on b with n − m bids

at value 0 and m bids at value v for any positive v. If there are m winners in F (2), the

2i-Vickrey auction gets revenue 2iv if 2i < m and zero otherwise. Since we choose each

auction with probability 1/ log n, our expected revenue on b is at least:

E[R] = v
log n

dlog me−1
∑

i=0

2i = v
log n

(

2dlog me − 1
)

≥ v
log n(m− 1) ≥ m−1

m log nF(b) ≥ F(2)(b)
2 log n .

2

Theorem 6.2 implies that up to a O(log log n) factor, the randomized Vickrey auction is

the best possible randomization over k-Vickrey auctions.

We note in passing that k-Vickrey requires tie breaking to occur if there the kth and

k + 1st highest bids are equal, i.e., b(k) = b(k+1), This is necessary to enforce that exactly



33

k items are sold. Note that in the unlimited supply case it is not necessary to enforce

that k-Vickrey sell only k items. It is possible to use a variant of k-Vickrey that does not

break ties in place of k-Vickrey in the above Randomized Vickrey auction; however, this

modification does not help the worst case competitive ratio.

None of these above techniques are all that satisfying as our goal is to obtain a mecha-

nism that achieves close to the optimal revenue. As such, we must consider designing new

mechanisms.

4.2 The Bid-independent Optimal Price Auction

The next auction we consider is motivated by the comparison between optimal fixed pricing

and the bid-independent auction framework. Optimal fixed pricing uses the best single sale

price for the input bids, opt(b), and sells to all bidders above that price.

Definition 4.2 For bids, b, opt(b) is the sale price that obtains the highest profit when

used in the fixed pricing mechanism. I.e.,

opt(b) = b(i∗) : i∗ = argmaxi ib(i).

In the optimal fixed pricing mechanism, F , bidder i is offered price opt(b). When we

are restricted to designing bid-independent mechanisms, an approach that seems like it

might perform similarly to optimal fixed pricing is to offer bidder i price opt(b−i) instead

of opt(b). The auction we have just described is BIopt:

Definition 4.3 (Bid-independent Optimal Price Auction, BIopt) The bid-independent

optimal price auction is the bid-independent auction defined by function opt(·). I.e., for each

bidder i:

1. ti ← opt(b−i).

2. If ti ≤ bi, set xi ← 1 and pi ← ti (Bidder i wins).

3. If ti > bi set xi = pi = 0 (Bidder i loses).



34

The hope is that opt(b−i) is similar to opt(b). Unfortunately, as the following lemma

shows, this is not the case.

Lemma 4.2 The Bid-independent Optimal Price auction is not competitive.

Proof: Consider n bidders where n/h of them bid h � 1 and the remaining bidders bid

1. Running BIopt on this bid vector will result in the following: For a bid at value h, we

remove it and compute opt(·) of the remaining bids. Of the n− 1 bids remaining n/h− 1 of

them are at h. Thus, opt(·) outputs 1 as n− 1 bids at price 1 gives a higher revenue than

n/h− 1 bids at price h. Similarly for a bid at value 1, we remove it and compute opt(·) of

the remaining bids. Of the n− 1 of them, there are n/h of them at h, the rest at 1. Thus,

opt(·) chooses to output h because n/h bids at price h gives a higher revenue than n − 1

bids at price 1. Thus, all bids at value 1 are rejected and all bids at value h win the auction

and only have to pay 1. BIopt’s profit is thus n/h (the number of bids at h) whereas the

optimal single price profit is n. For h = n/2, BIopt’s profit is 2, while F (2) = 2h = n. Thus,

n/2 is a lower bound on the competitive ratio of BIopt. 2

We note that any input on which the single price omniscient auction finds two different

bid values that give approximately the same revenue will lead to a similar worst case. We

extend this result in below by showing that all symmetric deterministic auctions suffer from

this type of problem.

Despite the fact that BIopt is not competitive in worst case, it nonetheless has some desir-

able features. It does performs well in expectation over a large class of natural randomized

inputs. Another interesting and useful property of BIopt is that it produces outcomes with

the following structure. There is a single sale price p and a threshold t with p ≤ t such that

the outcome of BIopt sells the item at price p to all bidders bidding at least t. All other

bidders are rejected. This is formally stated and proved in Section 8.3.1.

4.3 Deterministic Impossibility

In this section, we show that no symmetric deterministic auction can be competitive. An

auction is symmetric if the outcome is independent of the order of the bids. More precisely,
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we say that A is symmetric if for all bid vectors b and permutations π of the bidders, the

output of A on input π(b) is price vector π(p) and allocation π(x) (given that the output

of A on b is p and x).

We now show that no symmetric deterministic auction is competitive. In contrast, later

in this chapter, we will show that there are competitive (symmetric) randomized auctions.

Theorem 4.3 Let BIf be any symmetric deterministic auction defined by bid-independent

function f . Then BIf is not competitive: For any 1 ≤ m ≤ n there exists a bid vector b of

length n such that the profit of BIf on b is at most F (m)(b)m
n .

Proof: Fix n and m and the symmetric bid-independent auction BIf . Consider the set of

bid vectors whose bids are either n or 1. Note that for a symmetric auction, the location

of the ‘?’ in the masked vector b−i cannot affect the value of f(b−i), therefore, f(·) is a

function only of how many of the remaining n−1 bids are at value h or 1. For 0 ≤ j ≤ n−1,

write f(j) for the price the auction assigns to a masked vector with exactly j bids at n and

n− 1− j bids at 1. Note that if f(0) > 1 then if all bids are 1, the auction has profit 0 and

the conclusion of the theorem holds trivially. So assume f(0) ≤ 1 and let k be the largest

integer in {0, . . . , n − 1} such that f(k) ≤ 1. Thus, f(k) ≤ 1 and f(k + 1) > 1. Let b be

the the bid vector with k + 1 bids at n and n − k − 1 bids at 1. The profit of BIf on b is

(k + 1)f(k) ≤ k + 1 since the only winners are those who bid n. If k ≤ m − 1 then F (m)

has profit n. If k ≥ m then F (m) has profit at least (k + 1)n. In either case the profit is at

most F (m)(b)m
n . 2

The following observation is due to Amos Fiat [19]. On inputs with bids only at either

of two values, i.e., 1 and h, there exists an asymmetric deterministic auction that is 2-

competitive. To show this we will give a function f and show that BIf is competitive. This

auction will accept about half the h bids at h and half of all the bids at 1. To do this, we

make sure that we get every other h. Fix a particular bidder i. Given b−i, define d/ to

be the number of consecutive ones to the left of the ith position in b−i and d. to be the

number to the right. Let #h be the number of hs to the left of the ith position in bid vector
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b−i.

f(b−i) =







h #h even and d. odd

1 #h even and d. even

1 #h odd and d/ odd

h #h odd and d/ even

We omit a formal proof; however, it is simple to verify that from the left this pairs hs

together such that exactly one of each pair will be charged h. Furthermore, of the 1s

between two hs, half of them (rounded up if odd) will be accepted at price 1. We leave the

problem of whether there exist competitive asymmetric deterministic auctions as an open

question.

The deterministic impossibility result motivates the consideration of randomized mech-

anisms. As a randomized mechanism is just a randomization over deterministic auctions, it

is still the case that a randomized auction can perform poorly on unlucky outcomes of our

random coin flips. However, the auction can be designed such that these unlucky outcomes

are very improbable. We note that this use of randomness in the mechanism is very different

from assuming the bids come from a random distribution. The latter is making an external

assumption on our inputs, while internal randomness in the mechanism is guaranteed and

completely under the control of the mechanism. As we will show with our development of

randomized auctions that are competitive on worst case inputs, there is no need to make the

assumption that the bids are randomly generated when we can randomize the mechanism

instead.

4.4 Random Sampling Auctions

We now discuss a number of ways to obtain competitive auctions via random sampling.

Intuitively, the random sampling technique that we present here can be viewed as doing

market analysis dynamically as the auction is being run.
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4.4.1 Random Sampling Optimal Price Auction

The first auction mechanism we will discuss is the combination of the random sampling

technique with the fixed price mechanism. This mechanism selects a random sample of the

bids, computes the optimal sale price for this sample, and runs the fixed price mechanism

with this optimal sale price on the bidders that were not sampled.

The Random Sampling Optimal Price (RSOP) auction is guaranteed in expectation to

achieve a constant fraction of the profit of F (2), the optimal single-price omniscient auction

which sells at least two items, on all inputs. More importantly, on a large class of interesting

and practical bid vectors, RSOP is guaranteed in expectation to get very close the profit of

F , the optimal single-price omniscient auction.

As a first attempt at designing the RSOP auction we consider a variant of it, RSOP′:

Definition 4.4 (RSOP′) The RSOP′ auction works as follows:

1. Partition bids b uniformly at random into two sets: for each bid, with probability 1/2

put the bid in b′ and otherwise b′′.

2. Let p′ = opt(b′) the optimal fixed price for b′ (See Definition 4.2).

3. Run the fixed pricing mechanism with price p′ on bids b′′. I.e., all bids in b′′ of value

below p′ are rejected; all remaining bids win at price p′.

4. Reject all bidders in b′.

There are a number of observations that can be made about RSOP′. First, it is single-

priced: all winners pay the same price. Second, it is not fair in the sense that some bidders

willing to pay this sale price will be rejected (i.e., the bidders in b′ that bid above p′).2 As

well, Step 4 could be modified to give the item to each bidder in b′ for free. This would not

affect the auction revenue and can be interpreted as winning a lottery.

2In chapter 6 we generalize this notion of fairness as the envy-free property and discuss designing auctions
that are simultaneously envy-free, truthful, and maximized the expected profit of the auctioneer.
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We note that in this auction there is a tradeoff between the accuracy of the sample and

the loss in profit of the auction due to rejecting all bidders in the sample. This tradeoff can

be adjusted by choosing a larger or smaller sample size. Alternatively, this tradeoff can be

eliminated by considering a version of the auction that treats b′ and b′′ symmetrically. We

do so and obtain RSOP.

Definition 4.5 (Random Sampling Optimal Price Auction, RSOP) The Random Sam-

pling Optimal Price Auction works as follows:

1. Partition bids b uniformly at random into two sets: for each bid, with probability 1/2

put the bid in b′ and otherwise b′′.

2. Let p′ = opt(b′) and p′′ = opt(b′′), the optimal fixed price thresholds for b′ and b′′,

respectively.

3. Run the fixed pricing mechanism with price p′ on bids b′′. I.e., all bids in b′′ of value

below p′ are rejected; all remaining bids win at price p′.

4. Run the fixed pricing mechanism with price p′′ on bids b′.

It is readily apparent that RSOP can be implemented bid-independently and thus from

Corollary 2.5:

Observation 2 The Random Sampling Optimal Price auction is truthful.

We now discuss the performance of RSOP. Our first result is that on every input, RSOP

achieves a constant fraction of the profit of F (2).

Theorem 4.4 RSOP is constant competitive against F (2).

Proofs of this theorem and the rest of the theorems in this section are technical and thus

are deferred to the end of this chapter (Section 4.7).

The constant bound we obtain in this theorem is quite weak. However, there are a

number of interesting special cases in which RSOP’s performance is significantly better.

One such special case is presented in the following theorem.
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Theorem 4.5 Let b be any bounded-range bid vector, i.e., any bid vector of n bids with

bi ∈ [1, h] for all i. Then

lim
n→∞

max
b

F(b)

RSOP(b)
= 1.

To prove this theorem, and generalizations thereof, we consider the RSOP` auction,

a parameterized version of the RSOP auction. To define RSOP`, we first generalize the

definition of opt(·) (Definition 4.2).

Definition 4.6 Let b be a vector of bids. Denote by opt`(b) the sale price for b that gives

the optimal profit among those sale prices that result in the sale of at least ` items, i.e.,

opt`(b) = b(i∗) : i∗ = argmaxi≥` ib(i).

If ` > n, we arbitrarily define opt`(b) = 0.

Definition 4.7 ( Parameterized Random Sampling Optimal Price Auction, RSOP`)

The RSOP` auction works as follows:

1. Partition bids b uniformly at random into two sets: for each bid, with probability 1/2

put the bid in b′ and otherwise b′′.

2. Let p′ = opt`(b
′) and p′′ = opt`(b

′′), the optimal fixed price thresholds that sell at

least ` items for b′ and b′′, respectively.

3. Use p′ as a threshold for all bids in b′′ (i.e., all bids in b′′ of value below p′ are rejected;

all remaining bids win at price p′).

4. Use p′′ as a threshold for all bids in b′.

Theorem 4.6 There is an absolute constant C, such that for any ε > 0, RSOPm
2 −εm is

(1 + ε)-competitive against F (m), with probability at least 1− e−Cε2m.

Thus, a parameterized version of RSOP asymptotically (as m gets large) matches the profit

of F (m). Recall that F (m), the optimal single-price auction that is required to have at
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least m winners, is the same as F when F chooses to sell at least m items. Thus F (m)

is the best auction when the auctioneer is required to use a single price and sell at least

m items. An immediate corollary of the above theorem is that on any bid vector b such

that (a) F(b) = F (m)(b) and (b) with high probability RSOP and RSOPm
2 −εm exhibit

the same behavior on b (i.e., for b partitioned into b′ and b′′, opt`(b
′) = opt(b′) and

opt`(b
′′) = opt(b′′), where ` = m

2 − εm), we can conclude that with high probability

RSOP(b) ≥ F(b)
(1+ε) .

It is easy to check that conditions (a) and (b) hold for the case of bids of bounded

support, as the number of bidders gets large, yielding Theorem 4.5 as an immediate corollary

of Theorem 4.6.

Thus, for a large class of inputs, RSOP achieves essentially optimal performance. For

worst-case inputs, however, the constant in the competitiveness of RSOP is weak. It is

quite clear from studying the proof of Theorem 4.4 (in Section 4.7) that the analysis given

there is not tight and the constant bound we obtain on RSOP’s competitiveness is very

weak. However, it is not hard to see that RSOP can not be better than 4-competitive. For

example, when b consist of two very high bids h and h+ ε, and all other bids are negligible,

the expected profit of RSOP = F (2)/4. In the next section, we present an auction which

achieves this bound: the RSPE auction that is 4-competitive.

4.4.2 The Random Sampling Profit Extraction Auction

We now show how the basic auction profit extractor can be used in combination with random

sampling to obtain a profit maximizing auction. The analysis of this auction is much simpler

than the previous sampling based auction and the result we obtain is a tight bound of four

on the worst case competitive ratio.

Definition 4.8 (Random Sampling Profit Extraction Auction, RSPE) The Random

Sampling Profit Extraction Auction works as follows:

1. Partition bids b uniformly at random into two sets, resulting in bid vectors b′ and b′′.

2. Compute F ′ = F(b′) and F ′′ = F(b′′), the optimal fixed price profits for b′ and b′′,
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respectively.

3. Compute the auction results by running ProfitExtractF ′′ on b′ and ProfitExtractF ′ on

b′′.

Because ProfitExtractF ′ and ProfitExtractF ′′ are truthful on their respective partitions,

we have,

Theorem 4.7 RSPE is truthful.

Next we show that RSPE is competitive.

Theorem 4.8 RSPE is 4-competitive, and this bound is tight.

Proof: In the special case that F ′ = F ′′ the auction profit is F ′ + F ′′ ≥ F(b) and we are

done. Otherwise, the auction profit is R = min(F ′, F ′′). To see this, suppose that F ′ < F ′′.

Then ProfitExtractF ′′ on b′ will reject all bids in b′. However, ProfitExtractF ′ on b′′ will

be able to achieve profit F ′.

By definition, F (2) on b sells to k ≥ 2 bidders at price p for a profit of F (2) = kp. These

k bidders, all with bid value at least p, are divided uniformly at random between b′ and

b′′. Let k′ be the number of them in b′ and k′′ the number in b′′. As such, F(b′) ≥ pk′

and F(b′′) ≥ pk′′. Therefore,

min(F(b′),F(b′′))

F (2)(b)
≤ min(pk′, pk′′)

pk
=

min(k′, k′′)

k
.

Thus, the ratio

E[R]

F (2)
= 1

k

k−1∑

i=1

min(i, k − i)
(k

i

)
2−k =

1

2
−
(k−1

b k
2c
)
2−k.

This ratio achieves its minimum of 1/4 for k = 2 and k = 3. Therefore RSPE is 4-

competitive. As k increases, the ratio approaches 1/2.

To see that the bound presented on the competitive ratio is tight, consider the case

where b consists of two very high bids h and h + ε, and all other bids are negligibly small.

In this case F = F (2) = 2h, whereas the expected profit of the RSPE auction is h ·
Pr[two high bids are split between b′ and b′′] = h/2 = F/4. 2

The RSPE auction, as described, gets no profit from one of the partitions, and therefore

it will lose at least half of the potential profit. An alternative is to pick a parameter γ < 1
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and run ProfitExtractγF ′ and ProfitExtractγF ′′ . The competitive ratio of the resulting

auction is 4/γ > 4. However, when there are many winners in F it would be possible to do

better than F/2 with an appropriate setting of γ.

4.4.3 Random Sampling and Truthfulness

It is natural to consider the generality of this random sampling technique for constructing

auctions. From the above example of RSOP and RSPE the following framework is apparent.

Definition 4.9 (General Random Sampling Auction) Given two auctions parameter-

ized by bid vector v, A′
v and A′′

v:

1. Partition the bids into b′ and b′′.

2. Run A′
b′′ on b′ and A′′

b′ on b.

Theorem 4.9 If for any v, A′′
v and A′

v are truthful then the general random sampling

auction based on A′′
v and A′

v is truthful.

In the auctions we considered above, RSOP and RSPE, both the parameterized auction

were the same, i.e., A′
v = A′′

v. Recall that in RSOP′ half of the bidders were rejects, i.e.,

A′
v was the auction that always output the empty allocation. There are other interesting

combinations of random sampling auctions we can consider. For example, recall that the

Bid-independent Optimal Price (BIopt) auction uses a single sale price (proof is given in

Section 8.3.1). Consider the sampling auction in which A′
v is BIopt and A′′

v is the mechanism

that simulates BIopt on v to compute its single sale price, p, and then does fixed price sale

with price p. The result is a single priced mechanism that does not lose half the revenue

due to a rejected sample.3 This mechanism is actually very similar to RSOP and the proof

of competitiveness of RSOP implies that it is also competitive.

We have seen that it is possible to use the fixed price mechanism and the profit extraction

mechanism to obtain auctions with provably good performance. It is also conceivable that

3Note that there may be bidders who bid above the sale price that lose as this is a possible outcome of
BIopt.
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k-Vickrey can be used in a similar fashion. In this auction A′
v would examine v to determine

how many items to sell in a k-Vickrey auction. It may do so by computing the number of

winners in F , F (2), or perhaps the k that gives the highest revenue in k-Vickrey on v. A

preliminary analysis reveals that these techniques do not yield an auction which is better

than either of the aforementioned RSOP or RSPE auctions. As such, we will not prove any

performance bounds on this auction here.

4.5 Randomized Consensus of Revenue Estimates

In this section we will consider another way of using the basic auction profit extractor to

obtain a profit maximizing auction. We first give an auction that is competitive for mass

markets and then show how to modify it to be competitive in worst case. To motivate the

idea behind these mechanisms, we start by considering several failed attempts. Consider

the mechanism that

1. Computes R = F(b), then

2. Runs ProfitExtractR on b.

Since R = F(b), this obtains the optimal revenue on b. However, because R is a function

of all of b, running ProfitExtractR is no longer truthful.

To remedy this we might consider the bid-independent version of this. Recall that the

truthfulness of ProfitExtractR implies that there is a bid-independent function, peR, such

that ProfitExtractR is identically BIpeR
. Now consider BIf with f defined as:

f(b−i) = peF(b−i)(b−i).

This is very subtly different from taking f(b−i) = peF(b)(b−i), however this latter auction

is actually identical to the non-truthful auction already dismissed above.

What BIf is doing is, for each bidder i, obtaining a bid-independent revenue estimate,

F(b−i), of the true optimal revenue, F(b), and trying to profit-extract it. Unfortunately,

since these revenue estimates are all different, the profit extraction procedure does not actu-

ally achieve the desired results. In fact, the proof that no deterministic and symmetric auc-

tion is competitive shows that BIf is not competitive. If we could instead bid-independently
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agree (i.e., have a consensus) on a revenue estimate at some value R, i.e., via a function

r(·) such that r(b−i) = R for all i, then the auction outcome would be identical to that of

ProfitExtractR. Thus, if R is less than but close to F(b) then we would obtain the near

optimal revenue R.

The reason we can hope to be able to obtain this bid-independent consensus estimate

for the mass market case is because we can bound F(b−i) close to F(b). I.e., there is some

constant ρ, F(b−i) ∈ [F (2)(b)/ρ,F (2)(b)]. Intuitively, this is because for mass markets,

each bidder only contributes to a small fraction of the total optimal auction profit. This

motivates the following consensus estimation problem.

4.5.1 The Consensus Estimate Problem

In this section we study the following consensus problem.

Definition 4.10 For a given ρ > 1 and v > 0, we say that a function g is a ρ-consensus

estimate of v if

1. g is a consensus: for any w such that v/ρ ≤ w ≤ v, we have g(w) = g(v).

2. g(v) is a nontrivial lower bound on v, i.e., 0 < g(v) ≤ v.

We call g(v) the consensus value.

Definition 4.11 The payoff, γg, for a function g is γg(v) = g(v) if g is a ρ-consensus

estimate on v and γg(v) = 0 otherwise.

Intuitively, we would like to find a good consensus estimate for v, where the higher the

consensus value, the higher the quality of the estimate.

It is easy to see that no deterministic function g is a ρ-consensus estimate for all v > 0.

First, a simple induction shows that for a deterministic g(v) to be a consensus for all positive

v it would have to be a constant function. The only constant values that are lower bounds

on any positive v are trivial, i.e., non-positive.



45

Definition 4.12 The consensus estimate problem is, for any ρ, to give a distribution G
on functions g such that for any v the expected payoff is large relative to v. That is, over

choices of v, the worst case value of E[γg(v)] /v is large.

4.5.2 Consensus Estimate Algorithm.

We describe a distribution Gc that works well in the following sense: for any v, with g from

Gc we have E[g(v)] = Ω(v), where the constant hidden by the Ω notation is a function of ρ.

Our solution uses an additional parameter c > ρ. The value of c is chosen as a function of

ρ to maximize the quality of the estimate. Consider the following function gc
u:

gc
u(v) = v rounded down to nearest cj+u for integer j.

Remark. The definition of gc
u implies that for any v, v

c ≤ gc
u(v) ≤ v. Thus if gc

u is a

consensus for v then it is a consensus estimate with value within a factor of c from v.

We define Gc as a distribution of functions of the form gc
U with U chosen uniformly on

[0, 1]. We repeatedly make use of the following result.

Lemma 4.10 For g from Gc, g(v) is distributed identically to cU ′

v/c for U ′ uniform on

[0, 1].

Proof: Consider a random variable Y = logc g(v) and let t = logc v−1. Then Pr[Y ≤ t + x] =

Pr[U ′ ≤ x] and therefore Y is uniformly distributed between t and t+1. Thus, g(v) is iden-

tical to cU ′

v/c. 2

For U uniform [0, 1], the random variable cU satisfies Pr
[
cU ≤ z

]
= Pr[U ≤ logc z] =

logc z = ln z
ln c . The probability density function for cU is π(x) = 1/(x ln c) for 1 ≤ x < c. To

see this, note that Pr
[
cU ≤ z

]
is
∫ z
1

1
(x ln c)dx = ln z

ln c .

Next we bound the probability that g is a consensus.

Lemma 4.11 For g from Gc, the probability that g is a consensus estimate is 1− logc ρ.

Proof: g is a consensus estimate for v if g(v) ≤ v
ρ . Using Lemma 4.10, we get

Pr
[

g(v) ≤ v
ρ

]

= Pr
[

cUv/c ≤ v
ρ

]

= Pr
[

cU ≤ c
ρ

]

= logc(c/ρ) = 1− logc ρ.



46

2

In the application to auctions, the value of ρ is fixed and we choose c to maximize the

expectation of γ. Lemma 4.11 implies E[γg(v)] ≥ v
c (1− logc ρ). The following theorem

gives a better bound.

Theorem 4.12 For g from Gc defined above, for all v, E[γg(v)] = v
ln c

(
1
ρ − 1

c

)

.

Proof: By Lemma 4.10, g(v) is distributed as cUv/c for U uniform on [0, 1]. Therefore,

E[γ(v)] =
v

c

∫ c/ρ

1
x · π(x)dx +

∫ c

c/ρ
0 · π(x)dx

=
v

c

∫ c/ρ

1

1

ln c
dx =

v

ln c

(
1

ρ
− 1

c

)

.

2

Note that for a fixed ρ, one can choose the value of c that maximizes E[γg(v)] /v.

4.5.3 Consensus Estimates with One Random Bit.

Given the above consensus estimate solution that uses a random real number chosen uni-

formly from [0, 1] and the fact that no purely deterministic consensus estimate exists, it

is natural to ask how much randomness is necessary. We show how to give a consensus

estimate with only one random bit. Choose a constant c′ > ρ and let c = c′2. Pick the

value of u from {0, 1/2} with equal probability and use function gc
u as defined above. Note

that for these values of u, we round the revenue estimates to even and odd powers of c′,

respectively. Since c′ > ρ, for any value of v, at most one of these values can be in the

interval [v/ρ, v] and therefore the revenue estimates agree with probability of at least 1/2

and the expected payoff is at least v/(2c′ρ). This gives the following lemma:

Lemma 4.13 The consensus estimate solution with g chosen from {gc
0, g

c
1
2

} with equal prob-

ability and c =
(

ρ + ε
2ρ

)2
gives E[γg(v)] = v/(2ρ2 + ε).

4.5.4 CORE Auctions

In the mass market case, removing a bid does not change F (2) much.
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Lemma 4.14 If F (2)(b) has k ≥ 3 winners, then for any i,

k−1
k F

(2)(b) ≤ F (2)(b−i) ≤ F (2)(b).

When the number of winners in F (2)(b) is k ≥ 3, Lemma 4.14 allows us to estimate F (2)(b)

from F (2)(b−i). In this case, we can use ρ = 3
2 ≥ k

k−1 in combination with our ρ-consensus

estimate solution from above as follows.

Definition 4.13 (COREc) Let g(·) be a function picked from Gc. Let r(·) be a function

from masked bid vectors to reals defined by r(b−i) = g(F (2)(b−i)). The mass market auc-

tion, COREc, is the bid-independent auction given by function fr:

fr(b−i) = per(b−i)(b−i).

Since g(·), and therefore r(·), is chosen from a probability distribution, the auction

is randomized. Intuitively, r(·) estimates the optimal revenue. The following results are

immediate corollaries of Lemma 4.11, Theorem 4.12, Lemma 4.14, and the Taylor expansion

of log(1 + 1/x) = Θ(1/x).

Lemma 4.15 Let c > m/(m − 1). For b with m ≥ 3 winners in F (2), COREc achieves

consensus with probability

1− logc
m

m−1 = 1−Θ(1/m).

Theorem 4.16 Let c > m/(m− 1). When F (2) sells m ≥ 3 items, the COREc auction is

β(m)-competitive with

β(m) =
ln c

1− 1
c − 1

m

.

In the limit COREc is limm→∞ β(m) = c ln c/(c − 1) competitive.

The choice of c in the COREc auction is crucial. In order for consensus to work on bids

b on which F sells at least m items, we need c > m/(m− 1). Otherwise there exists a set

of bids such that no consensus is achievable.
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4.5.5 Convex Combinations of Auctions

The mass market auction COREc is competitive on bids such that the optimal auction,

F (2), has at least three winners. We now show how to obtain an auction that is competitive

with F (2) on all inputs.

Let A′ and A′′ be auctions such that A′ is β′-competitive on b ∈ B′ and A′′ is β′′-

competitive on b ∈ B′′. Consider the auction A that is a “convex combination” of A′

and A′′: With probability p, A runs A′ and otherwise A runs A′′. The following result is

straight-forward.

Lemma 4.17 A is max(β′/p, β′′/(1 − p))-competitive on b ∈ B′ ∪ B′′. For the optimal

choice of p, A is (β′ + β′′)-competitive on b ∈ B′ ∪ B′′.

Note that the competitive ratio of A may be better than the lemma guarantees.

Recall that, by definition, F (2)(b) has at least two winners. Let B3+ denote the set of all

b such that F (2)(b) has at least three winners and let B2 denote the set of all b such that

F (2)(b) has exactly two winners. As we have shown, the COREc auction is competitive on

B3+. We obtain an auction competitive for all bids by combining the COREc auction with

the 1-item Vickrey auction. Since the Vickrey auction sells to the highest bidder at the

price equal to the second highest bid, we have the following result.

Lemma 4.18 The Vickrey auction is 2-competitive on b ∈ B2.

4.5.6 CORE in Worst Case

Definition 4.14 The CORE auction is a convex combination of Vickrey (with probability

p) and the the mass market COREc auction (with probability 1− p).

To get a tighter analysis than that implied directly from Theorem 4.12 and Lemma 4.17

we utilize the observation that the Vickrey auction is k-competitive on B3+. Therefore if we

run the Vickrey auction with probability p, this adds pF (2)(b)/k to the expected revenue

of the B3+ case. Judicious choices of p and c give the following result:

Theorem 4.19 For an appropriate choice of c and p, the CORE auction is 3.39-competitive

against F (2)(b).
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Proof: Case 1 (b ∈ B3+): Theorem 4.16 implies that if the COREc auction is selected,

the expected revenue is at least F(2)(b)
ln c

(
k−1

k − 1
c

)
. Furthermore, if the Vickrey auction is

selected, the expected revenue is at least F(2)(b)
k . Thus the total expected revenue is at least

F (2)(b)

(
p

k
+

1− p

ln c

(

1− 1

k
− 1

c

))

.

Case 2 (b ∈ B2): The expected revenue for b is at least F (2)(b)p
2 due to the Vickrey

auction.

We pick p and c to balance the Case 1 and Case 2 revenue. Numeric simulation shows

that c = 2.0 and p = 0.59 is a near-optimal choice. This choice gives a competitive ratio of

3.39. 2

This auction has several interesting properties. One property is that in the “normal”

case, i.e., when the revenue estimates agree or when the Vickrey auction is used, the outcome

of the auction is a single sale price with the property that every bidder that bid above this

price wins. This is because the basic auction profit extractor is always single priced such

that all bidders bidding above the sale price win. Unintuitively, in the case where consensus

is not achieved CORE has at most two sale prices. These properties are described in greater

detail and with proof in Chapter 6.

4.5.7 Random Reals vs. Random Bits.

The CORE auction of the previous section needs to select a real-valued random variable for

selecting the consensus function. To combine this auction with the Vickrey auction, we use

another random real. Consider a more realistic model of computation that does not allow

infinite-precision reals. In this case our random variables must be rational. The CORE

approach easily adapts to such a model.

Using Lemma 4.13, one can show the following result.

Theorem 4.20 For any ε > 0, and with appropriate parameter settings, a CORE auction

that only uses two random bits is (6 + ε)-competitive against F (2).

Proof: If b ∈ B2, the competitive ratio is at least four as we chose to run the 2-competitive

Vickrey auction with probability 1/2. For the rest of the proof we assume b ∈ B3+; this

case determines the competitive ratio.
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For b ∈ B3+, the revenue in the case when the Vickrey auction is selected is F (2)(b)/k.

In the other case, our one random bit consensus estimate algorithm with c′ ≈ 3
2 and ρ =

k/(k − 1) gets an expected consensus value of F (2)(b)/(2c′ρ) = F (2)(b)k−1
3k . Thus the

expected profit is approximately

F (2)(b)

2

(
1

k
+

k − 1

3k

)

≥ F
(2)(b)

6
.

2

By using more random bits, we get a better discrete approximation of the continuous

distribution of U and of the optimal value of p of the previous section. With sufficiently

many bits, we can get arbitrary close to the 3.39 competitive ratio.

4.6 Randomization via Weighted Pairing

All truthful auctions we have introduced so far have had only one or two sale prices. In this

section we describe a multi-price auction. This auction is not competitive with F even in

the case where F has many winners. However, an extension of this auction gave the first

solution to the online auction problem with a sublograthmic competitive ratio [9]. In the

online auction problem the auctioneer is presented the bids one at a time and must make a

decision for each bidder before seeing any of the subsequent bids.

Definition 4.15 (Weighted Pairing) The weighted pairing auction is the bid-independent

auction, BIf , with function f defined as follows:

f(b) = bi with probability
bi

∑

j bj

Thus, to determine if bidder i wins the auction and at what price, pick a bid bj from b−i

with probability proportional to the value of bj, i.e., bj/(T − bi). This pairs bi with bj.

If bj ≤ bi, bidder i wins at cost bj , otherwise bidder i loses. Note that the result of this

selection for i does not affect the auction outcome for bidder j.

To understand the intuition behind this auction, consider a related random pairing

auction. Assume that n is even and pair bidders at random, independent of their bid
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values. For each pair, conduct a 1-item Vickrey auction, that is, for a pair (bi, bj) with

bi < bj , i loses and j wins at cost bi.

Compared to the random pairing auction, a bidder in the weighted pairing auction is

less likely to win, but when a bidder wins they are likely to pay more. It turns out that high

bidders are still likely to win the auction, and the benefit of high bidders paying higher prices

outweighs the benefit of more low bidders winning the auction. In particular, Theorems 4.21

and 4.22 imply that for the weighed pairing auction, in the worst case expected revenue

is proportional to T / log h. For the (unweighted) pairing auction, we have shown that the

worst case expected revenue is proportional to T /
√

h. We do not include the latter result

because it is dominated by the former.

Next we prove the following result.

Theorem 4.21 If 4h ≤ T , then for the weighted pairing auction E[R] = Ω(T / log h).

Proof: Partition the n bids into log h bins as before such that bin j contains only bids in

the interval [2j−1, 2j ]. Recall that an important property of these bins is that bids in the

same bin are within factor of two from each other. Let Sj be the sum of the bids in bin j.

Note that the sum of the contents of bins that contain only one bid is upper bounded by
∑log h

j=1 2j = 2h− 1 < T /2. We will ignore such bins in our analysis below. Consider all bins

with two or more bids, and let T ′ be the sum of bids in these bins. We have T ′ > T /2.

For each bin j, we look at pairings of bids that are both in j and we bound the expected

revenue due to such pairings. First, the probability that a bid i in bin j is paired with

another bid in bin j is (Sj − bi)/(T − bi) > Sj/(3T ), since bin j contains at least two bids

and Sj − bi ≥ Sj/3.

Let b′1, . . . , b
′
k be the values of bids in bin j in the increasing order. Given that a bid b′i

from the bin is paired with another bid in the same bin, the probability that the bid wins

is at least

i− 1

2(k − i) + (i− 1)
>

i− 1

2k
.

This comes from assuming the worst case, namely that all bids below bid i are at value 2j−1

and all bids above bid i are at value 2j . The expected number of bids in bin j that win
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when paired with other bids from the bin is at least

k∑

i=1

i− 1

2k
=

k − 1

4
.

The smallest bid in bin j has the value of at least Sj/(2k). Let Rj be the revenue generated

by bids in bin j being paired with other bids in bin j. We have:

E[Rj] ≥
Sj

3T ·
Sj

2k
· k − 1

4

≥
(k − 1)S2

j

24kT

Since k ≥ 2, we have (k − 1)/k ≥ 1/2 so

E[Rj] ≥
S2

j

48T

We are interested in E[R] ≥ ∑
E[Rj] ≥

∑ S2
j

48T . Since Sj ’s sum up to T ′, the sum is

minimized when all log h of the Sj’s are equal to T ′/ log h. In this case,

E[R] ≥ T
′2(log h)

48T log2 h

Since T ′ > T /2, we have

E[R] ≥ T
192 log h

Thus, E[R] = Ω(T / log h). 2

Note that the constant here is 1/192 which does not seem too good. However, the

analysis was very loose in contributions to R that it considered.

Lower bounds on revenues of the weighted pairing and the random sampling optimal

price auction, RSOP, and CORE, stated in terms of T , are the same, Ω(T / log h). The next

result shows that RSOP and CORE perform better than weighted pairing when compared

with F .

We show that the expected revenue of the weighted pairing auction is Ω(F/
√

log h), and

that this bound is tight in the worst case. This implies that the weighted pairing auction is

not constant competitive.

We use the following notation. We denote the expected revenue of the weighted pairing

auction by E[R], let k = log h and s =
√

log h. First we give bound the revenue from below.
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Theorem 4.22 If F ≥ 2h then E[R] = Ω(F/
√

log h) and this bound is tight.

Proof: If F ≤ T /s, then since E[R] = Ω(T /k) we have E[R] = Ω(T /s).

Assume F > T /s. Partition the bids over buckets, with bucket i containing bids in the

range [2i, 2i+1). Let M be the set of bids in a bucket with the largest total bid value and

assume that M is defined by the value range [t, 2t). We show that the revenue due only to

M is big. The assumption that F ≥ 2h implies that |M | ≥ 2. Recall that |M | t = Ω(F).

Let M ′ be the highest b|M | /2c elements of M and let M ′′ = M \M ′.

The probability that an item in M ′ is paired up with an item in M ′′ is Ω(T /F) = Ω(1/s),

and the expected revenue is Ω(|M ′| t/s) = Ω(F/s).

The above argument considers only contributions of items in M . Somewhat surprisingly,

the resulting bound is tight up to a constant factor. We give an example where the expected

revenue E[R] of the weighted pairing auction is O(T /s). The bid values are 2i for i =

1, . . . , k. For each i = 1, . . . , k − 1 the number of bids of this value is 2k−i and the total

value of such bids is 2k. For the last value, 2k, there are s bids of this value for the total of

s2k = F . Note that T = 2k(s + k − 1).

We show that E[R] = O(2k) by first showing that the expected contribution of all bids

of value less then 2k to E[R] is O(2k) and then showing that the contribution of all bids of

value 2k is O(2k).

For i < k, the probability that a bid of value 2i wins is less than

i2k − 2i

T − 2i
≤ i2k

T
≤ i

k
.

The expected contribution of a winning bid is less than

1

i

i∑

j=1

2j <
1

i
2i+1.

This all bids of value 2i contribute less than 2k+1/k. Summing over i = 1, . . . , k − 1, we

conclude that the expected contribution of the corresponding bids is less than 2 · 2k.

Next we consider the bids of value 2k. The probability that such a bid wins is at least

one and the expected revenue of a winning bid is at least

s

k + s
2k +

1

k + s

k−1∑

i=1

2i <
s + 1

k + s
2k =

2k

s
.
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Thus the total contribution of such bids is less than 2k. 2

4.7 Analysis of RSOP

Below we prove that the RSOP auction presented in section 4.4.1 is competitive [25] (an

early and weaker version of this proof appeared in [26]). Moreover, we show that, as m gets

large, the expected profit of RSOP` tends to F (m) for ` = dm2 (1− δ)e. This implies that for

any ε > 0, there is an m′ such that for any m ≥ m′, RSOP` is (1 + ε)-competitive against

F (m). The proof we give below is from [25] (a weaker analysis was originally given in [26]).

4.7.1 Preliminaries

We begin our analysis of RSOP` with some preliminary lemmas. We will use the following

definitions:

• For any value v, let Fv = vnv (resp. F ′
v = vn′

v and F ′′
v = vn′′

v) where nv is the number

of bids in b (resp. b′ and b′′) greater than or equal to v. Thus, Fv is the profit from

using v as a threshold for b.

• Let R be the random variable representing the profit of the auction RSOP` (where the

input b is implied by the context). Recall from the definition of the RSOP` auction

that p′ = opt`(b
′) and p′′ = opt`(b

′′) are the thresholds used for b′′ and b′ respectively.

Thus, the profit of the auction is R = F ′
p′′ + F ′′

p′ .

• Let Eα be the event

Eα : R ≥ (1− α)
(
Fp′ + Fp′′

)
. (4.1)

for 0 ≤ α ≤ 1. This event holding for small α indicates a high profit, a significant

fraction of the total profit achievable using p′ and p′′ as thresholds.

• Let ` = dm2 (1 − δ)e. Suppose that optm(b) = b(k), the k-th largest bid in b. Define

H to be the event that (a) there are at least ` bids in b′ that are at least b(k) and (b)

there are at least ` bids in b′′ that are at least b(k). Note that if H does not occur
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then RSOP` may be unable to pick a threshold of magnitude similar to b(k) from at

least one of the partitions.

The key lemma we use is the following:

Lemma 4.23 Let 0 < δ < 1 and ` = dm2 (1− δ)e. Then, for any b, RSOP` satisfies

Pr

[

R ≥ 1− α

α
F (m)(b)

]

≥ Pr[Eα ∩H]

and thus

E[R] ≥ 1− α

α
F (m)(b)Pr[Eα ∩H] .

Proof: Suppose that F (m)(b) = kb(k). By definition, opt`(b
′) returns the p′ that max-

imizes F ′
p′ conditioned on there being ` bids that are at least p′ (likewise for b′′ and p′′).

Notice that, conditioned on H, there are at least ` elements in each of b′ and b′′ that are

at least b(k). Thus, we can conclude that

F ′
b(k)
≤ F ′

p′ and F ′′
b(k)
≤ F ′′

p′′ .

We also have

F (m)(b) = Fb(k)
= F ′

b(k)
+ F ′′

b(k)
,

and thus

F (m)(b) ≤ F ′
p′ + F ′′

p′′ . (4.2)

Event Eα holding, equation (4.1) allows us to lower bound the profit R as

R ≥ (1− α)[Fp′ + Fp′′ ]

= (1− α)[F ′
p′ + F ′′

p′ + F ′
p′′ + F ′′

p′′ ]

= (1− α)[R + F ′
p′ + F ′′

p′′ ]

which by equation (4.2) gives

R ≥ (1− α)[R + F (m)].
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Event H holding, we rearrange terms to obtain

R ≥ 1−α
α F

(m).

2

This lemma reduces our problem to studying the events Eα and H. To do so, for any j,

we define Bj to be the j highest bids in b (i.e., {b(1), . . . b(j)}), and let n′(Bj) be the number

of these bids that are in b′.

Definition 4.16 Given c : 0 < c < 1, we say that Bj is c-good if

dcje ≤ n′(Bj) ≤ j − dcje.

Otherwise, Bj is c-bad.

We prove that Bj is likely to be c-good using the following version of the Chernoff bound:

Theorem 4.24 (see e.g. [36], page 70) Let Xi, 1 ≤ i ≤ n be independent Bernoulli

trials such that for all i, Pr[Xi = 1] = 1/2. Then for X =
∑

1≤i≤n Xi, and 0 < δ ≤ 1,

Pr
[

X < (1− δ)
n

2

]

< e−
δ2n
4 .

Since the partition of b into the two subvectors b′ and b′′ is done by flipping a fair coin

for each bid, we can conclude from the Chernoff bound that

Pr[Bj is c-bad] ≤ 2e−
(1−2c)2j

4 .

Thus, we can conclude by a simple union bound that

Pr[Bj is not c-good for some j > t ] ≤
∑

j≥t

2e−
(1−2c)2j

4

and therefore we have

Lemma 4.25

Pr[Bj is not c-good for some j > t] ≤ 2e−
(1−2c)2t

4

1− e−(1−2c)2/4
.
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4.7.2 Analysis of RSOP

We are now ready to proceed with the analysis of RSOP`. First we show that as m increases,

the competitive ratio of the auction approaches one.

Theorem 4.26 Let δ : 0 < δ < 1 be a constant and let ` = dm2 (1 − δ)e. Then in the limit

as m→∞, RSOP` is (1 + δ
2 )/(1− δ

2) competitive against F (m).

There is an absolute constant C > 0 such that

Pr

[

RSOP` ≥
(1− δ

2 )

(1 + δ
2 )
F (m)

]

≥ 1− e−Cδ2m.

Proof: Fix ε = δ/2. An immediate corollary of Lemma 4.25 is that

lim
m→∞

Pr
[
Bj is 1

2 (1− ε)-good for all j > m
2 (1− 2ε)

]
= 1− o(1). (4.3)

Thus, with probability 1− o(1), F ′
p′ ≤ 1

2(1 + ε)Fp′ and F ′′
p′′ ≤ 1

2(1 + ε)Fp′′ , and thus

Pr
[

E 1
2
(1+ε)

]

= 1− o(1). (4.4)

Finally, we show that Pr[H] = 1− o(1). As before, we assume that opt`(b) is the k-th

largest bid b(k). We also assume, without loss of generality, that b(k) is in b′, and that b(k′)

is the smallest bid larger than b(k) that is in b′′. Let G be the event that there is at least

one element b(i) with m(1− ε) ≤ i ≤ m in each of b′ and b′′. Then

lim
m→∞

Pr[G] = lim
m→∞

(
1− 21−εm

)
= 1− o(1).

Thus, with probability 1− o(1),

m(1− ε) ≤ k′ < k. (4.5)

Moreover, from (4.3), we can conclude that with probability at least 1 − o(1), there are at

least m
2 (1 − ε) > ` bids above b(k) in b′. Also, from (4.3) and (4.5), we can conclude that

there are at least m
2 (1− ε)(1− ε) > ` bids above b(`) in b′′. Thus,

Pr[H] = 1− o(1). (4.6)
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Finally, from Equations (4.4) and (4.6) and Lemma 4.23, we have

Pr

[

R ≥ (1− ε)

(1 + ε)
F (m)

]

= 1− o(1),

where R is the profit of RSOP`. 2

Next we show that RSOP is β-competitive for a (relatively large) constant β.

Theorem 4.27 There is a constant β such that RSOP is β-competitive.

Proof: Suppose that opt2(b) is the k-th largest bid. We restrict our attention only to

partitions of the bids in which the highest bid b(1) is in one subvector, without loss of

generality, in b′, and both b(2) and b(k) are in the other subvector. This event, which we

shall denote G, occurs with probability 1/4.

We claim that

Pr
[

E 19
20

]

≥ 0.05. (4.7)

Indeed, an immediate corollary of Lemma 4.25 is that

Pr
[
Bj is 1

20 -good for all j > 20
]
≥ 0.8.

Moreover, if event G holds, all j ≤ 20 are 1
20 -good, since b(1) is in b′ and b(2) is in b′′. Thus,

with probability at least 0.8−Pr[¬G] = 0.8− 0.75 = 0.05, all Bk are 1
20 -good and event G

holds, and thus, in particular, event E 19
20

holds.

For the case m = 2, event G implies event H. Thus, from (4.7) and Lemma 4.23,

Pr

[

R ≥ 1

19
F (2)

]

≥ 0.05,

and thus RSOP is 380-competitive.

2
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Chapter 5

LIMITED SUPPLY

Up to this point, we have studied the unlimited supply case where the auction can

potentially sell an item to every bidder. In this section, we consider the case where the

number of items available for sale is bounded. This case is typical for physical goods

markets. As in the unlimited supply case, we assume there is free disposal. That is, there is

no cost to the auctioneer for unsold items. We denote the number of items available by k.

As before, the seller wishes to maximize profit and is not required to sell all the items. The

definitions of truthful and competitive auctions, stated for the unlimited supply case, also

apply to the bounded supply case. We denote by F (m,k) the profit for the optimal single

price auction that sells at least m and at most k items. It is this quantity that we wish to

be competitive with.

Obviously, the unlimited supply case is a special case of the limited supply case, i.e,

take k = n. We now show the less obvious result that the limited supply auction problem

reduces to the (unlimited supply) basic auction problem. To reduce the bounded supply

case to the unlimited supply case, we can simply ignore, i.e., reject, all but the highest k

bidders and run the unlimited supply auction on the remaining bids. We note that in order

for this to be truthful we need to make sure that none of these k bidders win at a price

lower than the highest ignored bid.

Definition 5.1 (Limited Supply Variant) Given an unlimited supply auction A, we de-

fine the limited supply variant of A, Ak, as follows.

1. Simulate k-Vickrey on b to get allocation xV and prices pV .

2. Let bA be given by bAi = xV
i bi (i.e., b with losers of k-Vickrey treated as zero).

3. Simulate A on bA to get allocation xA and prices pA.
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4. Output x with xi = xV
i xA

i and p with pi = xi max(pVi , pAi ).

Lemma 5.1 For any auction, A, the limited supply variant, Ak, is truthful.

The proof of this lemma is straightforward and we omit a discussion of it except to note

that it is crucial that no item is sold at a price lower than the k-Vickrey price.

Theorem 5.2 Given A that is β-competitive with F (m), the limited supply variant, Ak, is

β-competitive with F (m,k).

Proof: Let p be the sale price of k-Vickrey on b. Note that by the definition of bA,

F (m,k)(b) = F (m)(bA) as there are only k positive bid values in bA. By our assumption

that A is β-competitive, running A on bA achieves a profit of F (m)(bA)/β = F (m,k)(b)/β.

Further, since all non-zero bids in bA are at least p, raising the price payed by any winner

of A on bA does not cause any bidder with possitive contribution to the auction profit to

be rejected. Thus, the profit of Ak on b is at least F (m,k)/β. 2

This reduction which originally appeared in [26] allows us to trivially extend all positive

results for the unlimited supply case to the limited supply case.

It is interesting to point out that by using the limited supply variants of auctions like

RSOP and RSPE in k-item auctions it is possible on many bid vectors to obtain profit

significantly higher than that of the k-item Vickrey auction.
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Chapter 6

ENVY-FREE

Consider the outcome obtained by running a particular basic auction. A natural fairness

property of such an outcome is that it be defined by a single sale price such that all bidders

with bids above this price win and pay the price and all bidders with bids below the price lose.

We call such outcomes envy-free because, for bids equal to bidder utilities, no bidder would

prefer another bidder’s outcome. Envy-free auctions, auctions that always produce envy-free

outcomes, are natural and desirable for consumer acceptance. While some auctions, such as

the classical k-item Vickrey auction and some optimal Bayesian auctions [11, 38] are envy-

free, other auctions, in particular profit-maximizing competitive auctions discussed in the

previous chapter, are not. In this chapter we study compatibility of the envy-free property

with the desirable auction properties of truthfulness and worst case profit maximization

[24].

Unfortunately, all competitive auctions discussed thus far have the property that a bidder

in the auction may get rejected while another bidder wins and pays a lower price than the

first bidder’s bid1. In this case, the first bidder would be envious of the second bidder’s

outcome. Thus, these auctions are not envy-free.

There is a good reason why none of the constant-competitive auctions considered to date

have been envy-free. Our main result, presented in Section 6.2, is that it is not possible

to design an auction that is constant competitive, truthful, and always has an envy-free

outcome. We show that any auction that is always envy-free and truthful has a competitive

ratio of Ω(log n/ log log n), where n is the number of bids. This bound is close to being

tight: the Randomized Vickrey auction discussed in Section 4.1 is Θ(log n)-competitive and

always envy-free.

1In addition some of these auctions sell to different bidders at different prices; though, most of them can
be adapted to have a single sale price for winners.
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In order to obtain competitive auctions with envy-free-ness properties we will consider

relaxing both the truthful requirement and the envy-free requirement. In relaxation of

the envy-free requirement we will show that the CORE auction from Section 4.5, which is

truthful and competitive, is envy-free with probability that approaches one as the number

of items sold increases.

Alternatively we can consider relaxing the truthfulness requirement. When truthful

mechanisms for a problem do not exist, it is natural to look at relaxations of the requirement

that the mechanism be completely truthful. We adopt the notion from [2] that an auction is

truthful with probability 1−ε if the probability that any bidder can benefit from a untruthful

bid is bounded by ε. An auction is truthful with high probability if ε tends to zero with some

parameter in the input, e.g., the number of winners in an optimal auction. We show that a

variant of the CORE auction that is truthful with high probability is always envy-free and

also constant competitive assuming that bidders bid their true values.

Auctions that do not have the envy-free property are impractical selling mechanisms for

markets where consumers object to differential pricing [5]. For these applications, auctions

that are truthful and almost envy-free or envy-free and almost truthful may be acceptable.

6.1 Definitions

We now formalize our notion of an envy-free auction.

Definition 6.1 The outcome of an auction is envy-free if there is a price, t, such that every

winning bidder pays t, all bidders with bid values greater than t win, and all bidders with

values lower than t lose. Bidders with bid values equal to t may either win or lose. Call

such an outcome a t-envy-free outcome.

From this definition it is clear that envy-free outcomes are completely specified by a

number t and a description of whether tying bids, bids with bi = t, win or lose. We note

that our lower bounds will assume the more general case that tying bids can be treated

differently. This is consistent with the envy-free definition as such bidders have zero profit

if they win and zero profit if they lose and are therefore assumed to have no preference
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over the two possible outcomes. For our upper bounds we will give auctions that satisfy

the stronger condition that tying bidders are treated the same way, either they all win or

they all lose. In all of our analyses it will be largely irrelevant how tying bids are treated;

therefore, the relevant characteristic of the outcome is the value t.

We will be gauging the performance of envy-free auctions using the mass market variant

of our competitive analysis framework.

6.2 Lower Bound

In this section, we show that no envy-free auction can be o(log n/ log log n) competitive.

This result is with in a log log n factor of being tight as the Randomized Vickrey auction

(Definition 4.1) is envy-free and Θ(log n)-competitive.

For a particular input b, an auction that always yields an envy-free outcome induces a

probability distribution on values t such that the outcome is t-envy-free. Let t(b) be the

random variable for the price used by a auction with envy-free outcomes and define pb(x)

as

pb(x) = Pr[t(b) ≤ x] .

We begin by showing that any auction with envy-free outcomes has the property that the

distribution of t(b) on values less than x is independent of all bids with values above x.

Lemma 6.1 Let A be any truthful envy-free auction A with t and pb defined as above. For

all bid vectors b, b′, values x, and subsets of bidders S such that all i ∈ S have bi > x and

b′i > x, and i 6∈ S have bi = b′i, t(b) and t(b′) have the same distribution on values at least

x. That is,

∀y ≤ x, pb(y) = pb′(y).

Proof: Assume for a contradiction that there exists b and b′ differing on some subset S

(as defined above) such that t(b) and t(b′) do not have the same distribution on values at

most x. Let S = {i1, . . . , ik} and Sj = {i` : ` ≤ j}. Let b(j) be equal to b except for

bSj
= b′

Sj
. Note that b(0) = b and b(k) = b′. It must be that for some j∗ there exists y ≤ x

such that p
b(j∗−1)(y) 6= p

b(j∗)(y). However this violates truthfulness as the distribution of
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prices for bidder ij∗ when the bids are b(j∗) is not bid-independent: if bidder ij∗ changes

their bid between bij∗ and b′ij∗ they receive a different distribution of prices. An auction

that is not bid-independent is not truthful (Theorem 2.2). 2

Theorem 6.2 No truthful envy-free auction is β(m)-competitive with

β(m) ∈ O(log n
m/ log log n

m).

In particular, if m is a constant, e.g., m = 2, no truthful envy-free auction is β(m) ∈
O(log n/ log log n) competitive.

Proof: For any integer d ≥ 2, we show that no envy-free auction, A, is d/2-competitive on

an input b of size n = mdd that has at least m winners. Since d > log(n/m)/ log log(n/m),

this gives the theorem. Assume for a contradiction that some auction, A, is d/2-competitive.

Let b∗ be the bid vector with n/dk − n/dk+1 bids at value nk for 0 ≤ k < d and m bids

at nd. Let b(k) be identical to b∗ except for the largest n/dk+1 bids, which are decreased

to nk + ε:

b
(k)
i =







nk + ε if i ≤ n/dk+1

b∗i otherwise.

There are two observations about these bid vectors that will be useful.

• F(b(k)) = nk+1/dk as the highest n/dk bidders win at price nk.

• A on b(k+1) may place probability mass on prices at nk or below. An upper bound

on the contribution of this mass to the expected revenue of A is F(b(k)) = nk+1/dk.

Define t(b) and pb(x) for A as above. We will show by induction that A has

p
b(k)(nk) ≥ (k + 1)/d.

This implies that for b∗ = b(d−1) we have

pb∗(nd−1) = 1.
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This is a contradiction, because if this were the case, A would have expected revenue at

most nd/dd−1 and could not be d/2-competitive with F(b∗) = mnd.

We will be using the fact that A is envy-free by invoking Lemma 6.1 in the inductive

step to guarantee that p
b(k+1)(nk) = p

b(k)(nk) ≤ (k + 1)/d.

For the base case, we show that p
b(0)(1) ≥ 1/d. Note that b(0) is defined as:

b
(0)
i =







1 + ε if i ≤ n/d

1 otherwise.

Here we have F(b(0)) = n and as a d/2-competitive auction, A must have expected revenue

of at least 2n/d. Suppose that A has p
b(0)(1) = p. Given this constraint, the best revenue

is achieved by putting all probability mass p on 1 and the remaining probability mass 1− p

on 1 + ε. This gives the following bound on the expected revenue of A:

E
[

A(b(0))
]

≤ np + (1− p)(1 + ε)(n/d).

This is an increasing function of p ∈ [0, 1]. For p = 1/d we have the following:

E
[

A(b(0))
]

≤ n/d + (1− 1/d)(1 + ε)(n/d).

For ε chosen such that (1 + ε)(1− 1/d) = 1 we have

E
[

A(b(0))
]

≤ 2n/d.

Therefore p must be at least 1/d for A to be d/2-competitive.

For the inductive step, assume that p
b(k−1)(nk−1) ≥ k/d and consider running A on

b(k). By Lemma 6.1 and the definition of b(k), p
b(k−1)(nk−1) = p

b(k)(nk). Therefore,

the probability mass remaining to be placed on values strictly larger than nk−1 is P =

1 − p
b(k)(nk−1) < 1 − k/d. A must place p of this remaining mass on values at most nk

and the rest on higher values. Note that by definition, b(k) has n/dk bids at value strictly

greater than nk−1: it has n/dk+1 of them at nk + ε and the remaining at nk.

Thus, the most revenue can be obtained by placing all of p on nk and all of the P − p

remaining mass on nk + ε. As discussed above, the expected revenue due to probability
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mass on values at most nk−1 is at most nk/dk−1. Thus, A’s expected revenue is bounded

as follows:

E
[

A(b(k))
]

≤ pnkn/dk + (P − p)(nk + ε)n/dk+1 + nk/dk−1

This is an increasing function of p. For p = 1/d we have

E
[

A(b(k))
]

≤ nkn/dk+1 + (P − p)(nk + ε)n/dk+1 + nk/dk−1.

Routine manipulation using the fact d ≥ 2 shows that

E
[

A(b(k))
]

≤ 2nk+1/dk+1.

F of b(k) is nk+1/dk, thus p is at least 1/d. This gives the inductive claim that p
b(k)(nk) ≥

k + 1/d. 2

6.3 Envy-free with High Probability

In this section, we relax the condition that the auction outcome is always envy-free and

instead consider auctions that are truthful but only envy-free with high probability. One

such auction is the Consensus Revenue Estimate (CORE) Auction. We review the mass-

market version of the CORE auction (from Section 4.5) and discuss its properties.

Recall the definition of COREc:

• pick U uniformly at random from [0, 1],

• let function r(·) be F(·) rounded down to nearest ci+U for integer i, and

• the COREc auction is defined by bid-independent function f(b−i) = csr(b−i)(b−i).

We say that COREc achieves a consensus at value R if r(b−i) = R for all i. In this case,

by definition, COREc’s outcome is identical to that of ProfitExtractR. Since ProfitExtractR

always outputs envy-free outcomes, on consensus the outcome of COREc is envy-free. Thus,

the following lemma follows directly from Lemma 4.15.
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Lemma 6.3 On b with F selling m ≥ 2 items, COREc is envy-free (i.e., achieves a con-

sensus) with probability at least

1− logc
m

m−1 = 1−Θ(1/m).

In the case that CORE does not achieve a consensus, there are two sale prices, and the

auction is not envy-free.

Lemma 6.4 The CORE auction has at most two sale prices.

Proof: If we have a consensus estimate, the sale price is unique. Suppose the estimates

disagree. Let k be the number of winners in F (2) on b and consider two cases, k ≥ 3 and

k = 2.

In the first case, r(b) is between k−1
k F (2)(b) and F (2)(b). Thus, some bids will use

the sale price from ProfitExtractR(b) and some will use the price from ProfitExtractR(b)/c.

Lower bids will use the former (a higher price) and higher bids will use the latter (a lower

price).

In the second case, F (2)(b) is determined by the two highest bids. If bi is not one of

these bids, then F (2)(b−i) = F (2)(b). The values of F (2) when one or another of the two

bids is removed are the same. It follows that there are only two possible values of F (2)(b−j),

and therefore at most two distinct sale prices. 2

6.4 Truthful with high probability

Another approach to deal with the non-existence of truthful competitive auctions that

always have envy-free outcomes is to relax the requirement that the auction always be

truthful. To this end, we define a probabilistically truthful mechanism. This definition was

first given by Archer et al. in [2]. Let m be the number of winners in the optimal auction

on a given set of bids. We will be looking for a mechanism with good probabilistically

truthful properties in terms of m. For other solution concepts related to approximate or

probabilistic truthfulness, see for example [41, 47].
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Definition 6.2 [2] An auction is truthful with probability 1− ε if the probability that any

bidder can benefit from an untruthful bid is at most ε. An auction is truthful with high

probability if ε → 0 as m → ∞, where m is the number of winners in the optimal auction

F .

Definition 6.3 (CORE′
c) For constant c and input b, CORE′

c is:

1. Pick U uniformly at random from [0, 1].

2. Let function r(·) be F(·) rounded down to nearest ci+U for integer i.

3. Run ProfitExtractr(b) on b.

Lemma 6.5 For bids b and choice of U fixed identically for both COREc and CORE′
c, if

COREc is a consensus then CORE′
c is truthful.

Proof: Let R = r(b). To prove the lemma, we must show that for U such that COREc

is a consensus, no bidder can benefit from bidding any value other than their true utility

value. First we note that CORE′
c runs ProfitExtractr(b) on b. Consider the effect of bidder

i changing their bid to b′i resulting in bid vector b′. Bidder i cannot benefit from bidding

any b′i such r(b′) = r(b) = R because ProfitExtractR is truthful and therefore bidder i’s

best strategy in mechanism ProfitExtractR is to bid bi.

The fact that COREc is a consensus for this value of U means that r(b−i) = r(b) = R

for all i. Again consider b′ identical to b except for bidder i bidding b′i. For b′i ∈ [0, bi],

since r(·) is a monotonically increasing function of the bids, r(b−i) = r(b′) = r(b) = R.

Thus, no bidder can lower the the value of r(b).

We now consider bidder i raising their bid enough to make r(b′) > r(b). Although we do

not go into the details here, it is not difficult to show that peR(b−i) (the bid-independent

function implementing ProfitExtractR), for b−i fixed, is a strictly monotone increasing

function of R. Thus, if bidder i raises their bid to raise R to r′, the price offered them by

peR′ will be higher than for peR and therefore, bidder i would be worse off. 2

The following corollary follows from the above lemma and Theorem 4.15.
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Corollary 6.6 On b with F selling m ≥ 2 items, CORE′
c is truthful with probability

1− logc
m

m−1 = 1−Θ(1/m).

We now consider the performance of CORE′
c. We can view the use of r(·) in CORE′

c as

a consensus problem with ρ = 1 since the same value, r(b), is used for all bidders. This

allows us to make use of Theorem 4.12 directly to obtain the following corollary.

Corollary 6.7 The expected revenue of CORE′
c is

F(b)

ln c

(

1− 1

c

)

.

Conclusions and Extensions

Recall that with high probability, the CORE auction is equivalent to the profit extraction

mechanism that it is based on, which is a special case of the Moulin-Shenker [37] cost sharing

mechanism. We exploited the fact that the latter mechanism is envy-free. The mechanism

is also group strategy-proof: no coalition of bidders can collude by bidding untruthfully so

as some members of the coalition strictly benefit without causing other members of the

coalition to be strictly worse off. As such, both COREc and CORE′
c have collusion resistant

properties.

We have considered truthfulness with high probability to get an auction that is both

envy-free and competitive. In our analysis we make the assumption that bidders will still

reveal their true utility values even though the mechanism is only truthful with high prob-

ability. In the case where each bidder is perfectly informed as to the bidding strategies and

utility values of other bidders, any non-truthful auction would fail to obtain true bids, as

each bidder could calculate their own optimum bid. However, in the presence of bidder un-

certainty about the strategies or utility values of other bidders, this calculation is no longer

straight-forward. A bidder in an auction that is truthful with high probability is faced with

a choice. The bidder can bid truthfully, which with high probability is an optimal strat-

egy, or alternatively the bidder could try to gain by manipulating their bid on the basis of

available information. If information is incomplete, the latter may be impossible.
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More generally, we have shown that one can get stronger results by relaxing the notion

of truthfulness. Relaxed truthfulness is an interesting direction for future research. For

example, is it possible to get better competitive ratios under a reasonable relaxation? Which

relaxations are reasonable?
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Chapter 7

ON THE COMPETITIVE RATIO

One goal of algorithm design (and in our case auction design) in a competitive analysis

framework is to obtain the algorithm (auction) that achieves the best competitive ratio. In

this chapter we consider this endeavor. We will look at several restrictions on auctions and

consider the case when there are only two or three bidders. For the two bidder case we

show that the Vickrey auction obtains the optimal competitive ratio. For the three bidder

case, we show that auctions that only sell the good at prices that are equal to bid values are

not as good as auctions that may sell the good for any price [21]. We conclude by giving a

bound on the the best competitive ratio for an auction on n bidders and show that in the

limit this competitive ratio is 2.42 [25].

7.1 Asymmetry

Recall the definition of a symmetric auction as one that gives an output that is not a function

of the order of the bids in the input vector, b. In Chapter 4 we saw that for a certain class

of inputs asymmetric deterministic auctions perform better in worst case than symmetric

deterministic auctions. Here we briefly show that asymmetry does not help randomized

auctions. This result is trivial, but for completeness we give a proof.

Lemma 7.1 For any asymmetric auction A with competitive ratio β, there is a symmetric

randomized auction with competitive ratio at least β.

Proof: Given asymmetric auction A with competitive ratio β, we construct a symmetric

auction A′ that first permutes the input bids b at random to get π(b) and then runs A on

π(b). Note, F (2)(b) = F (2)(π(b)) and since A is β-competitive on π(b) for any choice of
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π, A′ is β-competitive on b. 2

Throughout the remainder of this chapter when we are proving lower bounds on auctions

we will assume that the auction is symmetric.

7.2 Auctions for two items

Given two bids, b = (b1, b2), we look for an auction that sells one or two items and attains

a revenue competitive with F (2)(b) = 2min(b1, b2).

Observation 3 The Vickrey Auction is 2-competitive.

One might wonder if it is possible to do better with some other auction, perhaps even

one that is randomized. However, Theorem 7.10 shows us that this is not the case: no

auction as a competitive ratio better than two in the two bidder case.

7.3 Auctions for three items

Observation 4 The one item Vickrey auction, a deterministic auction, is 3-competitive.

Proof: If the auction bid are {b1, b2, b3} with b1 ≥ b2 ≥ b3 then F (2) = max(2b2, 3b1) ≤ 3b2.

Vickrey gets a revenue of b2 which is at least a third of F (2). 2

Definition 7.1 We say a bid-independent auction is restricted if the function f is required

to return a bid value, unrestricted otherwise.

Lemma 7.2 Assuming f is continuous (I.e. limε→0 f(a, b) = f(a, b + ε)), no restricted

auction can achieve a competitive ratio better than 5/2.

Proof: For h fixed, any restricted auction must be of the form:

f(1, 1) = 1

f(1, h) =







1 with probability p

h otherwise
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The expected revenue for the auction on {1, 1 + ε, h} is 1 + p (the 1 is from the h and the

p is from the 1 + ε). In this case, F (2) = 3 so the competitive ratio is 3/(1 + p).

The expected revenue for the auction on {1, h, h + ε} is 2p + h(1 − p) (the p + (1− p)h

is from the h + ε and the p is from the h). For large h, F (2) = 2h so the competitive ratio

is 2h/(2p + h(1− p)) ≈ 2/(1 − p).

We set these two ratios equal and solve for p obtaining a value of p = 1/5. Plugging this

value in for p in either of the above equations, we get a competitive ratio of 5/2. 2

This upper bound is tight as the following theorem proves.

Lemma 7.3 The bid-independent auction with f as

f(1, h) =







1 with probability 1/5

h otherwise

achieves a competitive ratio of 5/2.

Proof: Running this auction on bids {b1, b2, b3} with b1 ≤ b2 ≤ b3 gives a revenue of

E[R] = 0
︸︷︷︸

for b1

+ b1/5
︸︷︷︸

for b2

+ b1/5 + 4b2/5
︸ ︷︷ ︸

for b3

= 2b1/5 + 4b2/5

Thus, E[R] ≥ 6b1/5 (because b2 ≥ b1) and E[R] ≥ 4b2/5 which means

E[R] ≥ 2
5 max(3b1, 2b2)

= 2
5F

(2)

2

What is interesting to note is that this auction is essentially doing a 1-item Vickrey

auction with probability 4/5 and a 2-item Vickrey auction with probability 1/5.

Lemma 7.4 A non-restricted auction can achieve a better competitive ratio than 5/2.
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Proof: Define a bid-independent auction with f as

f(1, h) =







α with probability p

h otherwise

for α ∈ [0, 1].

Running this auction on bids {b1, b2, b3} with b1 ≤ b2 ≤ b3 Gives a revenue of

E[R] = 0
︸︷︷︸

for b1

+ pαb1
︸︷︷︸

for b2

+ pαb1 + (1− p)b2
︸ ︷︷ ︸

for b3

+b1-term

The competitive ratio of this auction is maximized at α = 6/7 and p = 36/43. This

gives a ratio of 2.39 (which is 2/p). 2

Other similar techniques to the above have yielded slightly better competitive ratios;

however, none are much closer to the lower bound of 13/6 that we prove later in this

chapter.

7.4 Worst Case Verse Mass Market Analysis

We have presented auction that perform well in worst-case and others that are competitive

for mass-markets. We have come up with auctions that are constant competitive in worst

case, as well as auctions that approach 1-competitive for mass markets. In this section we

show that for restricted auctions (see Definition 7.1, it is not possible for an auction to

both be constant competitive in worst case, and be 1-competitive for mass markets. The

intuition behind this argument is that even when it may be optimal to sell many items, a

bid-independent auction may be fooled into thinking that selling a small number of items

is better. We conjecture that this result holds with out the assumption that the restricted

auction assumption as well.

Lemma 7.5 No restricted auction, A, is better than ε-competitive in worst case and better

than (1− ε) competitive on mass markets.

Proof:
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A is truthful, so A is equivalent to the bid-independent mechanism BIf . We will as-

sume without loss of generality that the auction, A, is symmetric and that the f(b−i) is

independent from f(b−j) for all i 6= j. This assumption can be made without loss of gener-

ality, because given any auction A′ that is not symmetric and independent we can make it

symmetric and independent without worsening its competitive ratio by first creating A′′ as

the auction that randomly permutes the input and then runs A′ (Lemma 7.1). Finally, we

can create A as the auction that, for each bidder i, simulates A′′ with new random coins to

obtain the outcome for bidder i (as discussed in Section 3.3).

We will now consider the symmetric restricted auction A. We will fix n, the number of

bidders, and consider inputs with only bids at value 1 and h. As such, f(b−i) is a function

from the number of hs (given n and the number of hs the number of 1s is just the difference

less one) to a probability that f(b−i) outputs 1 or h. So, let pk be the probability that

f(b−i) outputs h if there are k bids at h and n − k − 1 bids at 1 in b−i. Of course, the

auction could reject some bidder by offering price ∞, however, this is never good in terms

of profit maximization, so we will assume that A does not. Let b(k) be the input with k

bids at h and the remaining n− k bidders at value 1.

Note that because A is restricted, on the all ones input it must offer price 1. Therefore,

p0 = 0. We now show that if the auction is to be better than (1 − ε)-competitive, it must

be that p1 < ε. Note that the revenue of this auction is thus,

R1 = 1 + (1− p1)(n− 1).

This approaches 1− p1-competitive in the limit so it must be that p1 < ε for it to be better

than (1 − ε)-competitive for mass markets. We now show that this auction with p1 < ε is

not ε competitive in worst case (against F (2)). Consider b(2). When we remove an h, we

are left with a masked bid vector with one h bid and n−2 bids at value 1. When we remove

a 1 bid, we are left with 2 bids at value h and n− 3 bids at value 1. Thus, the revenue is,

R2 = 2(hp1 + 1− p1) + p2(n− 2).

In the limit as h gets large, this quantity approaches 2hp1, which by our previous argument

is less than 2hε. Since F (2) = 2h, our auction is not ε-competitive with F (2) in worst case.
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The contrapositive shows that any restricted auction that is better than ε-competitive

with F (2) in worst case is not (1− ε)-competitive for mass markets. 2

7.5 A Lower Bound on the Competitive Ratio

Now we prove a lower bound on the competitive ratio of any truthful auction, even a

randomized one, in comparison to F (2): We show that for any randomized truthful auction,

A, there exists an input bid vector b on which

E[A(b)] ≤ F
(2)(b)

2.42

.

To prove the lower bound, we analyze the behavior of A on a bid vector chosen from

a probability distribution over bid vectors. The outcome of the auction is then a random

variable depending on both the randomness in A and the randomness in b. We show that

Eb[EA[A(b)]] ≤ Eb[F(2)(b)]
2.42 . We then use the following fact to claim that there must exist

a fixed choice of b (depending on A) for which E[A(b)] ≤ F(2)(b)
2.42 .

Fact 1 Given random variable X and to functions f and g, E[f(X)] ≤ E[g(X)] implies

that there exists x such that f(x) ≤ g(x).

As a quick proof, if for all x, f(x) > g(x) then it would be the case that E[f(x)] > E[g(x)]

instead of the other way around.

Consider n i.i.d. bids b(n) generated from the distribution with each bid bi satisfying

Pr[bi > y] = 1/y for all y ≥ 1. Consider a truthful auction A. Let Vi be the price offered

to bi in the bid-independent implementation of A. Vi is a random variable depending on A
and all of the bj other than bi. Let Pi be the price paid by bidder i, i.e., 0 if bi < Vi and Vi

otherwise. For v ≥ 0, E[Pi | Vi = v] = v ·Pr[bi > v|Vi = v] = v ·Pr[bi > v] ≤ 1, since bi is

independent of Vi. Therefore E[Pi] ≤ 1. Thus we have:

Lemma 7.6 For b(n) defined above, the expected revenue of any truthful auction, A, is at

most n.
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Note that for any deterministic bid-independent auction that offers prices of at least one,

the expected revenue is exactly n.

Lemma 7.7 For n bids from the above distribution, the expected value of F (2) is

E
[

F (2)(b(n))
]

= n− n

n∑

i=2

(−1

n

)i−1 i

i− 1

(
n− 1

i− 1

)

.

Proof: In this proof we will get a closed form expression for Pr
[
F (2)(b(n)) > z

]
and then

integrate to obtain the expected value. Note that all bids are at least one and therefore, we

will assume that z ≥ n. Clearly for z < n, Pr
[
F (2)(b(n)) > z

]
= 1. To get a formula for

Pr
[
F (2)(b(n))

]
, we define a recurrence based on Fn,k defined as

Fn,k = max
i

(k + i)bi

for bids b(n) sorted from highest to lowest (i.e., bi ≥ bi+1). Intuitively, Fn,k represents the

optimal single price revenue from b(n) and an additional k consumers each of which has a

value equal to the highest bid, b1. To define the recurrence, fix n, k, and z and define the

events Hi for 1 ≤ i ≤ n. Intuitively, the event Hi represents the fact that i bidders in b(n)

and the k additional consumers have bid high enough to equally share z, while no larger set

of j > i bidders of b(n) can do the same.

Hi = bi ≥ z/(k + i) ∧
n∨

j=i+1

bj < z/(k + j)

=

(
n

i

)(
k + i

z

)i

Pr[Fn−i,k+i < z] .

Note that events Hi are disjoint and that Fn,k is at least z if and only if one of the Hi

occurs. Thus,

Pr[Fn,k > z] = Pr

[
n∧

i=1

Hi

]

=

n∑

i=1

Pr[Hi]

=
n∑

i=1

(
n

i

)(
k + i

z

)i

Pr[Fn−i,k+i < z] . (7.1)

Also, note that F0,k = 0. For n bids b(n), F(b(n)) = Fn,0. We are interested in F (2)(b(n))



78

which is the same as F(b(n)) = Fn,0 except that we ignore the H1 case. This gives

Pr
[

F (2)(b(n)) > z
]

= Pr[Fn,0 > z]−Pr[H1]

= Pr[Fn,0 > z]− n
z Pr[Fn−1,1 < z] . (7.2)

So in order to obtain Pr
[
F (2)(b(n))

]
we need to solve the recurrence Fn,k, i.e., Equa-

tion (7.1). We will show that the solution is:

Pr[Fn,k > z] = 1−
(

z − k

z

)n(z − k − n

z − k

)

. (7.3)

Note that our solution for the recurrence is correct for n = 0. We show that it is true in

general inductively.

Pr[Fn,k > z] =

n∑

i=1

(
n

i

)(
k + i

z

)i

Pr[Fn−i,k+i < z] .

Substituting in our solution, we get

Pr[Fn,k > z] =
n∑

i=1

(
n

i

)(
k + i

z

)i(z − k − i

z

)n−i(z − k − n

z − k − i

)

=
z − k − n

zn

n∑

i=1

(
n

i

)

(k + i)i (z − k − i)n−i−1 .

We now apply the following version of Abel’s Identity: [1]

(x + y)n

x
=

n∑

j=0

(
n

j

)

(x + j)j−1(y − j)n−j .

Making the change of variables, j = n− i, x = z − k − n, and y = k + n we get:

zn

z − k − n
=

n∑

i=0

(
n

i

)

(k + i)i(z − k − i)n−i−1.

We plug this in above and subtract out the i = 0 term to get

Pr[Fn,k > z] =
z − k − n

zn

(
zn

z − k − n
− (z − k)n−1

)

= 1−
(

z − k

z

)n (z − k − n)

(z − k)
.
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Thus, our closed form expression for the recurrence is correct.

Recall our goal is to compute Pr
[
F (2)(b(n)) > z

]
. Equation (7.3) shows that Pr[Fn,0 > z] =

n/z. This combined with Equation (7.2) and Equation (7.3) gives the following for z ≥ n:

Pr
[

F (2)(b(n)) > z
]

= n
z − n

z Pr[Fn−1,1 < z]

= n
z Pr[Fn−1,1 > z]

=
n

z

(

1−
(

z − 1

z

)n−1(z − n

z − 1

))

.

Recall that for z ≤ n, Pr
[
F (2)(b(n)) > z

]
= 1. To complete this proof, we use the formula

E
[
F (2)(b(n))

]
=
∫∞
0 Pr

[
F (2)(b(n)) > z

]
dz = n +

∫∞
n Pr

[
F (2)(b(n)) > z

]
dz. In the form

above, this is not easily integrable; however, we can transform it back into a binomial sum

which we can integrate:

Pr
[

F (2)(b(n)) > z
]

= n

n∑

i=2

(−1

z

)i

i

(
n− 1

i− 1

)

.

E
[

F (2)(b(n)) > z
]

= n + n

∫ ∞

n

n∑

i=2

(−1

z

)i

i

(
n− 1

i− 1

)

dz.

= n− n
n∑

i=2

(−1

n

)i−1 i

i− 1

(
n− 1

i− 1

)

.

2

Combining this with the previous lemma we get:

Lemma 7.8 For bids as defined above, we have

E
[
F (2)(b(n))

]

E
[
A(b(n))

] = 1−
n∑

i=2

(−1

n

)i−1 i

i− 1

(
n− 1

i− 1

)

.

Interesting special cases are n = 2 where this gives a lower bound of 2 which matches

the best competitive auction for two bids, the 1-item Vickrey auction. For n = 3 this gives

a lower bound of 13/6. A lower bound for the ratio of the best competitive auction on

general n is obtained by taking the limit.

Lemma 7.9

lim
n−→∞

(

1−
n∑

i=2

(−1

n

)i−1 i

i− 1

(
n− 1

i− 1

))

= 1 +

∞∑

i=2

(−1)i
i

(i− 1)(i − 1)!
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Proof: It is sufficient to show that
∣
∣
∣
∣
∣

(

1 +
n∑

i=2

(−1)i
i

(i− 1)(i − 1)!

)

−
(

1−
n∑

i=2

(−1

n

)i−1 i

i− 1

(
n− 1

i− 1

))
∣
∣
∣
∣
∣
= O

(
1

n

)

.

We use the following fact below: If, for 1 ≤ k ≤ K, 0 < ak < 1, then

K∏

k=1

(1− ak) ≥ 1−
K∑

k=1

ak.

∣
∣
∣
∣
∣

(

1 +

n∑

i=2

(−1)i
i

(i− 1)(i − 1)!

)

−
(

1−
n∑

i=2

(−1

n

)i−1 i

i− 1

(
n− 1

i− 1

))
∣
∣
∣
∣
∣

≤
n∑

i=2

∣
∣
∣
∣
∣

i

(i− 1)(i− 1)!
−
(

1

n

)i−1 i

i− 1

(
n− 1

i− 1

)
∣
∣
∣
∣
∣

=

n∑

i=2

∣
∣
∣
∣

i

(i− 1)(i− 1)!

(

1− n(n− 1) . . . (n− i + 2)

ni−1

)∣
∣
∣
∣

=

n∑

i=2

∣
∣
∣
∣

i

(i− 1)(i− 1)!

(

1−
(

1− 1

n

)(

1− 2

n

)

. . .

(

1− i− 2

n

))∣
∣
∣
∣

≤
n∑

i=2

∣
∣
∣
∣
∣
∣

i

(i− 1)(i− 1)!



1−



1−
i−2∑

j=1

j

n









∣
∣
∣
∣
∣
∣

≤
n∑

i=2

∣
∣
∣
∣

i

(i− 1)(i− 1)!

(
i2

n

)∣
∣
∣
∣
=

1

n

n∑

i=2

i3

(i− 1)(i − 1)!
≤ 1

n

∞∑

i=2

i3

(i− 1)(i − 1)!

As (i− 1)! grows exponentially,
∑∞

i=2
i3

(i−1)(i−1)! is bounded by a constant and we have the

desired result. 2

Routine calculations then show that the limit value in Lemma 7.9 is at least 2.42.

Combining this with Fact 1 we obtain:

Theorem 7.10 Let A be any truthful randomized auction. The competitive ratio of A is

at least 2.42.
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Chapter 8

MONOTONICITY

In this section we give further justification for the use of F and F (2) as the benchmark

in our competitive analysis [25].

Thus far we have demonstrated several auction mechanisms that perform comparably

to F (2). In that F (2) is comparable to F , these auctions perform comparably to F . As

F is the optimal single-price auction it is clear that no auction that always uses a single

price can achieve a higher revenue than F . This gives good justification for comparing the

revenue of single-price auctions to F (or F (2)).

The question remains of whether or not we have chosen the “best” metric possible

for comparison when considering multi-priced auctions. There are two primary goals in

choosing the metric. First, we wish to achieve the best possible performance and thus we

would like to compare ourselves against the strongest possible benchmark. On the other

hand, we would like to find a natural metric that comes as close as possible to capturing

the performance of the best truthful auction across a wide range of inputs.

Let us reconsider for a moment the strongest possible benchmark, the optimal omniscient

multi-price auction, T , that achieves as revenue the sum of the bids. Lemma 3.1 showed

that the profit of T can be a factor of Θ(log n) more than F . There remains the question:

Does there exist an alternative metric on bids b that captures the benefit of using multiple

prices (and hence is sometimes larger than the F(b)) that we could compare our truthful

multi-priced auctions against?

As evidence to the contrary, we will show that no monotone auction can achieve an

expected profit higher than F on any input. Monotone auctions are a large class of natural

multi-priced truthful auctions; all the competitive auctions presented in this thesis are

monotone. This result supports the conjecture that there is no systematic way for an

auction to achieve a higher profit than F .
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8.1 Hard-coded Auctions

We begin with some motivation for the notion of monotonicity by presenting some examples

of non-monotone auctions. These auctions are not natural in the context of worst-case profit

maximization in that while they can achieve significantly higher profit than that of F on

certain bid sets (in fact they can achieve T (b)), they do so at the cost of having horrendously

low profit (and hence very bad competitive ratio) on other inputs.

We first observe that for every b there is a symmetric truthful auction that achieves a

profit of T (b). For example, consider the n-tuple b with half of the bids at value one and

half at value h > 2. Thus, T (b) = (h + 1)n/2 and F(b) = hn/2. Consider the symmetric

auction given by bid-independent function f :

f(b−i) =







1 if more hs than 1s in b−i.

h otherwise.

This auction achieves profit T (b) on our particular input: If bi = h then f(b−i) outputs

h; on bi = 1, f(b−i) outputs 1. Note that on most other inputs, b′, this auction performs

much worse than F .

Now we generalize this result and show that for any set of bids b∗ there exists a truthful

(symmetric) auction that achieves a revenue of T (b) =
∑

i b
∗
i . This is exemplified in the

bid-independent auction Afb∗
parameterized by b∗ and defined as follows:

fb∗(b−i) =







bj if π(b−i) = b∗
−j for some permutation π

∞ otherwise.

The “otherwise” case is arbitrarily chosen. In fact any number of bid vectors that have

a pairwise difference of at least two bid values can be hard-coded into an auction in this

manner. The auction will perform very poorly on any input that differs on only one bid

value from one of the hard-coded bid vectors.

For worst case profit maximization, the mechanism of both of these auctions is counter

intuitive. For the case that half the bids are at one and half at h, the bid-independent

function sees more h values and outputs one. When it sees less h values, it outputs h. A
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more intuitive output for a profit maximizing auction would be to output h when there are

more bids at value h.

Note that we can combine a hard-coded auction and a competitive auction by flipping

a fair coin and running the former or the latter depending on the outcome of the toss. The

resulting auction is competitive, with the competitive ratio twice that of the underlying

competitive auction. Furthermore, on the hard-coded input b∗, the expected revenue of the

auction is at least T (b∗)/2, which can be significantly bigger than F(b∗).

Although a competitive auction can outperform F on some inputs, we conjecture that

this happens at the expense of the competitive ratio and auctions designed to achieve high

competitive ratios do not outperform F in this sense. In the next section we introduce the

class of monotone auctions that includes BIopt, RSOP, RSPE, CORE, and Vickrey. We

show that no monotone auction can outperform F .

8.2 Monotonicity

The intuition underlying our notion of monotonicity is that the bid-independent function

defining the auction should output higher prices when it sees higher bid values.

Definition 8.1 An auction is monotone if for any pair of bidders i and j with bi ≤ bj, we

have:

∀x ≤ bi, Pr[bidder i wins at price ≤ x] ≤ Pr[bidder j wins at price ≤ x] .

The intuition is that if bi < bj , then b−i looks like a higher set of bids than b−j. Therefore,

the price bidder i pays if he wins will tend to be higher than the price bidder j pays if he

wins.

The class of monotone auctions is very general. It is not difficult to verify that the

Vickrey auction with a reservation price is monotone. Thus, the optimal Bayesian auctions

for i.i.d. prior distributions are monotone. Analysis of BIopt, RSOP, RSPE, and CORE

shows that they are also monotone. Proofs are given in Section 8.3. The optimal single-

price omniscient auction, F , is also monotone.
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F is clearly monotone as all bidders bidding above the sale price win and pay the same

price. We now show that F is the optimal monotone auction. This further justifies our

comparison to F and the related metric F (2).

Theorem 8.1 Let A be any monotone (truthful) randomized auction. For all bid vectors

b, the revenue R =
∑

i pi of A on input b satisfies

E[R] ≤ F(b).

Proof: Let f be the bid-independent function defining A. For each i, define gi(x) =

Pr[f(b−i) ≤ x].

Now consider the following thought experiment. Let U be a random variable that is

uniform on [0, 1]. Imagine running the bid-independent auction that for each i uses g−1
i (U)

to set the threshold for bidder i, with g−1
i defined as g−1

i (y) = inf {x : gi(x) = y}. We

denote by RU the resulting auction revenue. We observe that the threshold distribution for

bidder i in this experiment is precisely the same as the original threshold distribution for

bidder i:

Pr
[
g−1
i (U) ≤ x

]
= Pr[U ≤ gi(x)] = gi(x).

Therefore, by summing the expectations for the bidders, we obtain

E[RU ] = E[R] .

We complete the proof by showing that the expected revenue from our thought exper-

iment E[RU ] is at most F(b). Conditioned on U = u, let k be the index of the smallest

winning bid. Thus, g−1
k (u) ≤ bk. Since A is monotone, for x ≤ bk and all j with bj ≥ bk, we

have gk(x) ≤ gj(x). Furthermore, gk(x) and gj(x) are monotone non-decreasing functions.

Therefore, it must be that g−1
j (u) ≤ g−1

k (u) ≤ bk ≤ bj and therefore all bidders with bid

values at least bk win at a price at most bk. Thus, the revenue, Ru, is at most bk times

the number of bids with bid value least bk which totals to at most F(b). This holds for all

u ∈ [0, 1], and thus E[RU ] ≤ F(b). 2

8.3 Analysis of Auctions

In this section we show that the auctions BIopt, RSOP, RSPE, and CORE are monotone.
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8.3.1 BIopt is monotone

As BIopt is a symmetric auction, the order of the bids in the input does not affect the

outcome. For convenience of notation we will assume that they are indexed from highest,

b1, to lowest, bn. We denote by t = opt(b) and t1 = opt(b−1) the optimal sale price for b

and b−1, respectively.

Theorem 8.2 BIopt is monotone as

• It uses the single sale price t1 for all winners.

• All bidders that bid above the lowest winning bid also win.

Proof: Recall that the bid-independent function that implements BIopt is f(b) = opt(b) =

argmaxbk
kbk. We will show that for any bidder i that wins the auction, bidder i − 1 also

wins the auction and at the same price. From this, a simple induction gives the theorem.

In the case that bi = bi−1 the fact that BIopt is symmetric implies that they must both

win at the same price. Now consider the case that bi−1 > bi. Since bidder i wins, the

computation of opt(b−i) must find the maximum of kbk for k < i and (k − 1)bk for k > i

to be (k∗ − 1)bk∗ for k∗ > i. The only difference between the computation of opt(b−i) and

of opt(b−i+1) is that for opt(b−i) we consider (i − 1)bi−1 and for opt(b−i+1) we consider

(i − 1)bi. Since opt(b−i) finds (k∗ − 1)bk∗ bigger than the other values it considers and

since (i− 1)bi−1 > (i− 1)bi, it must be that (k∗− 1)bk∗ is the biggest value that opt(b−i+1)

considers as well. 2

8.3.2 RSOP Auction

We will show that RSOP is monotone with respect to any two bidders i and j. First fix

i and j such that bi ≤ bj. The randomness of RSOP is in the partitioning. We verify the

monotonicity of RSOP by presenting a disjoint grouping of the partitionings such that each

group is monotone with respect to i and j and the RSOP auction is just a randomization

over monotone groups.
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We put partitionings with bi and bj in the same partition in their own group. Note that

these groups are monotone with respect to bi and bj because both bi and bj are offered the

same price.

Any partitioning with bi and bj in opposite partitions we will pair in a group with the

partitioning we get when we swap bi with bj. This gives us a group with two partitionings:

Partitioning P : B1 ∪ {bi} and B2 ∪ {bj}.

Partitioning P ′: B1 ∪ {bj} and B2 ∪ {bi}.

We show that this group {P,P ′} is monotone with respect to bi and bj if one of the two

partitionings is chosen by flipping a fair coin. Consider the thought experiment where for

bi a “heads” coin flip means use P and “tails” means use P ′, but for bj a “heads” coin flip

means use P ′ and “tails” for P . In this experiment, “heads” results in bi getting the optimal

price for B2 ∪ {bj} and bj getting the optimal price of B2 ∪ {bi}. This is just the outcome

of BIopt on the bid set B2 ∪ {bi, bj}. Likewise on “tails”, the outcome is that of BIopt on

the bid set B1 ∪{bi, bj}. By Theorem 8.2, both of these outcomes are monotone. Note that

the outcome for bi and bj as random variables in our thought experiment are the same as

the random variables for their actual outcomes for this grouping. Thus, this grouping is

monotone with respect to bidders i and j.

8.3.3 RSPE Auction

To show that RSPE is monotone, we will use the same general approach as for RSOP of

finding disjoint groupings in the partitionings and showing that each is itself monotone with

respect to two bids bi and bj with bi ≤ bj.

As with RSOP, partitionings with both bi and bj on the same partition are themselves

monotone as the cost sharing mechanism is monotone: it gives an outcome such that all

winning bidders pay the same price and all bidders whose bid value is above this price win.

Likewise, we pair a partitioning with bi and bj in different partitions, with the partition-
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ing with bi and bj swapped. We get partitionings P and P ′ as defined above.

Fj = F(B2 ∪ {bj}) Fi = F(B1 ∪ {bi})

F ′
i = F(B2 ∪ {bi}) F ′

j = F(B1 ∪ {bj})

Since bi ≤ bj we have:

Fj ≥ F ′
i F ′

j ≥ Fi

Note that if bi does not win for either P or P ′ then this grouping is trivially monotone

with respect to bidders i and j. Otherwise, suppose bi wins in partitioning P and pays price

pi. We will show that bj wins in P ′ and pays p′j ≤ pi.

Let peR be the bid-independent function for O-ExtractR. Recall that for partitioning

P , the price for bi is computed by running O-ExtractFj
on B1 ∪ {bi}. For partitioning P ′

the price for bj is computed by running O-ExtractF ′

i
on B1 ∪ {bj}. Thus,

pi = peFj
(B1) ≥ peF ′

i
(B1) = pj.

The intermediate step here follows because Fj ≥ F ′
i and because peR is monotone in R.

8.3.4 CORE Auction

We now consider the Consensus Revenue Estimate auction (CORE). This auction performs

the 1-item Vickrey auction with some probability, and otherwise does the bid-independent

cost sharing with a bid-independent revenue estimate computed as F (2) rounded down to

the nearest ci+U for integer i, c > 1.5, and U uniform [0, 1]. We show that this is just

a randomization over deterministic monotone auctions. First, the 1-item Vickrey auction

is monotone. Second, on success, the outcome of CORE is the same as the outcome of

O-ExtractR with R the largest ci+U less than F (2)(b). O-ExtractR is monotone for any R,

thus on success, the consensus revenue estimate technique is monotone. It remains to show

that on failure, when there is no consensus, that the outcomes are monotone. Order the

bids from larger to smaller, that is bj ≥ bi for j < i. Let Ri be the consensus value used for

bi. That is Ri is the largest value of the form ci+U that is at most F (2)(b−i). F (2)(b−i) is
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non-decreasing in i so Ri is as well. Consider any bid that wins, bi. Since bi wins, it must

be that pi = peRi
(b−i) ≤ bi. We now show that all bids higher than i win and they do so at

price at most pi. To do so, we note that for all j < i (i.e., bj ≥ bi) peRi
(b−j) = peRi

(b−i),

and that peRj
(b−j) ≤ peRi

(b−j). The first is true from the definition O-ExtractRi
. The

second is true because Ri ≥ Rj and by the definition of O-ExtractRi
as the auction that

sells to largest set of bidders that can afford to equally share the price Ri. Certainly the

sale price can not go up when Ri is lowered to Rj . Thus CORE is monotone.

8.4 Non-monotone variant of BIopt

As a proof of concept, we now exhibit an auction which is a variant of BIopt that is both

non-monotone and performs achieves a revenue that is higher than F on some bid sets.

Recall that for each bid, BIopt computes the sale price as the optimal sale price for the

remaining bids. Define BIopt
′ as the auction for each bid, uses a sale price that is 2/3 of

the optimal sale price for the other bids. Consider the bids b = (9/4, 3/2, 1). The following

table shows the result of BIopt
′(b).

bi b1 b2 b3 2 opt /3

b 9/4 3/2 1

b−1 ? 3/2 1 2/3

b−2 9/4 ? 1 3/2

b−3 9/4 3/2 ? 1

Note that for all i, bi ≥ 2 opt(b−i)/3 so all bidders win. Also note that the sale prices

are not monotone. In particular, bidder 2 bid higher than bidder 3 but is required to pay a

higher price. Note that F(b) = 3 and the revenue of BIopt
′(b) = 1 + 3/2 + 2/3 > 3.
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Chapter 9

THE MULTI-ITEM AUCTION PROBLEM

Consider an airplane flight where passengers have individual movie screens and can

choose to view one out of a dozen movies that are broadcast simultaneously. The flight is

only long enough for one movie to be seen. The airline wants to price movies to maximize

its revenue. Currently, airlines charge a flat fee for movies. Even if the fee is based on a

careful marketing study, passenger demographics may vary from one flight to another, and

individual utilities can vary with flight route, time of the year, etc. Therefore a non-adaptive

pricing is unlikely to be optimal for the seller. We investigate adaptive pricing via auctions.

In the scarce supply case, multiple item auctions have been studied by Shapley and

Shubik [49]. (See [44] for a survey of the area.) Results for the scarce case, however, do not

directly apply to the unlimited supply case. Consider the case where each item for sale is

unique – for example the real estate market considered in [49]. In this case consumers will

bid heavily for highly desirable items, which will sell for a high price. In contrast, in the

unlimited supply case the seller can in principle give every consumer a copy of the item the

consumer desires most. However, in such an auction, the consumer has no incentive to bid

high. Thus a good auction mechanism must in some cases limit the number of copies of

each item.

In this chapter we extend some of the results for basic auctions to unlimited supply

multi-item auctions. In particular, we show how the random sampling technique along with

the fixed pricing mechanism can be used to obtain a solution to the multi-item auction

problem.

One of our main results is on a sampling problem that may be of independent interest.

A variant of the sampling problem is as follows. Suppose we have n applicants and m tests.

Each applicant takes each test and gets a real-valued score. We have to select k applicants

based on the results of these scores. Furthermore suppose that we choose a random subset of
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the applicants, call the applicants in the subset red, and call the remaining applicants blue.

After the results of the tests are known and the subset is selected, an adversary selects the

k winning applicants while obeying the following restriction: If an applicant x is accepted

and for every test, applicant y get a score that is at least as good as the score of x, then

y must be accepted as well. The adversary’s goal is to bias the admission in favor of red

applicants. Although we study a slightly different problem, our techniques can be used to

show that if k = o(m2 log n), then with high probability the ratio of the number of red

applicants to the number of blue applicants is bounded by a constant.

This problem seems natural. One can view candidates as points in m-dimensional space,

and view the adversary as selecting a shift of the positive quadrant so that the shifted

quadrant contains k points total and as many red points as possible.

9.1 Definitions

The input to an auction is a number of bidders, n, a number of items, m and a set of bids

{aij}. We study the case when each bidder wants only a single item, i.e., the unit demand

case. We say that an auction is single-priced if the sale prices for copies of the same item

are the same, and multi-priced otherwise.

Our analysis framework for auction mechanisms for the multi-item problem will be

similar to that used for the basic auction except that we will be considering a promise

version of the problem. We will give auctions that achieve a profit that is a constant

fraction of F , the profit of the optimal envy-free outcome under the assumption that the

input is well behaved. Our promise will be based on F being large compared to h, the ratio

between the highest and lowest bid.

For convenience, we assume that the input bids are non-degenerate, i.e., all input bids

values aij are distinct or zero. This assumption can be made without loss of generality

because we can always use lexicographic tie-breaking to achieve it.

Our competitive multi-item auctions are randomized. We use the following lemma, which

is a variation of the Chernoff bound (see e.g. [12, 36]), as the main tool in our analysis.

Lemma 9.1 Consider a set A and its subset B ⊂ A. Suppose we pick an integer k such
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that 0 < k < |A| and a random subset (sample) S ⊂ A of size k. Then for 0 < δ ≤ 1 we

have

Pr[|S ∩B| < (1− δ)|B| · k/|A|] < exp(−|B| · kδ2/(2|A|)).

Proof: We refer to elements of A as points. Note that |S ∩ B| is the number of sample

points in B, and its expected value is |B| · k/|A|. Let p = k/|A|. If instead of selecting

a sample of size exactly k we choose each point to be in the sample independently with

probability p then the Chernoff bound would yield the lemma.

Let A = {a1, . . . , an} and without loss of generality assume that B = {a1, . . . , ak}. We

can view the process of selecting S as follows. Consider the elements of A in the order

induced by the indices. For each element ai considered, select the element with probability

pi, where pi depends on the selections made up to this point.

At the point when ai+1 is considered, let t be the number of currently selected points.

Then i− t is the number of points considered but not selected. Suppose that t/i < p. Then

pi+1 > p.

We conclude that when we select the sample as a random subset of size k, the probability

that the number of sample points in B is less than the expected value is smaller than in the

case we select each point to be in the sample with probability p.

2

9.2 Fixed Price Auction and Optimal Prices

Consider the following fixed price auction. The bidders supply the bids and the seller

supplies the sale prices, rj, 1 ≤ j ≤ m. Define cij = aij − rj. The auction assigns each

bidder i to the item j with the maximum cij, if the maximum is nonnegative, and to no

item otherwise. Note that this is precisely the item that maximizes the bidder’s profit. In

case of a tie, we choose the item with the maximum j. If a bidder i is assigned item j, the

corresponding sale price is rj .

Lemma 9.2 Suppose the sale prices are set independently of the input bids. Then the fixed

price auction is truthful.
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Proof: If bidder i gets object j, the bidder’s price is at least rj and the bidder’s profit is

at most aij−rj. The best possible profit for i is maxj(uij−rj). If the bidder bids aij = uij ,

this is exactly the profit of the bidder.

2

Remark. Although we assume that the bidders do not see sale prices before making their

bids, the lemma holds even if the bidders do see the prices.

Now consider the following optimal pricing problem: Given a set of bids, find the set

of prices such that the fixed price auction brings the highest revenue. Suppose an auction

solves this problem and uses the resulting prices. We call this auction the optimal omniscient

single-price auction and denote its revenue by F . We can interpret F as the revenue of fixed

pricing using perfect market analysis.

9.3 The Random Sampling Auction

We use random sampling to make the optimal single-price auction truthful.

Definition 9.1 (Random Sampling Optimal Price Multi-item Auction) The Ran-

dom Sampling Optimal Price Multi-item Auction works as follows:

1. Partition bids uniformly at random into two sets, S and N .

2. For both sets, compute the optimal prices, rS and rN .

3. Run the fixed pricing mechanism with prices rS on bidders in N .

4. Run the fixed pricing mechanism with prices rN on bidders in S.

Lemma 9.3 The random sampling auction is truthful.

Remark. Another natural way of sampling is to sample bids instead of bidders. However,

this does not lead to a truthful auction, because bidder’s bids selected in the sample may

influence the price used to satisfy the bidder’s remaining bids.

Next we show that, under certain assumptions, in expectation the auction’s revenue is

within a constant factor of F . Without loss of generality, for every 1 ≤ i ≤ n, 1 ≤ j ≤ m,
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if aij is undefined (not in the input) we define aij to be zero. For every bidder i, we view

(ai1, . . . , aim) as a point in the m-dimensional space and denote this point by vi. Thus vi is

in the quadrant Q of the m-dimensional space where all coordinates are nonnegative. We

denote the set of all input points by B.

Note that by the symmetry in the problem and linearity of expectation, the expected

revenue collected from S and N are equal and sum to the total expected revenue of the

auction. For ease of discussion we will analyze the contribution of the revenue from S′′. Let

R be the random variable representing this revenue. As such, S and N will play different

roles in our analysis. We will refer to S as the sample as it will be used to compute prices

for N . We will refer to N as the non-sample.

For a fixed m and sale prices (r1, . . . , rm), let Rj be a region in the m-dimensional space

such that if vi ∈ Rj , then bidder i prefers j to any other item, i.e., for any 1 ≤ k ≤ m,

cij ≥ cik (recall that cij = aij − rj). We would like {Rj : 1 ≤ j ≤ m} to be a partitioning of

Q. We achieve this by assigning every boundary point to the highest-index region containing

the point. (This is consistent with our tie-breaking rule for the fixed price auction.) Rj is

a convex (and therefore connected) region in Q. In fact, the region Rj is as follows:

Rj = {x : xj ≥ rj & xj − rj ≥ xk − rk ∀k 6= j}. (9.1)

Figure 9.1 shows a two item auction with prices r1 and r2 for items 1 and 2 respectively.

These prices induce the regions R1 = R′
1 ∪ R′′

1 and R2 = R′
2 ∪ R′′

2 . Arrows point to selling

prices for the bidders in each region.

Thus sampling and computing rj ’s partitions Q into the regions, and each bidder i in N

gets the item corresponding to the region that i is in. Intuitively, our analysis says that if

a region has many sample points, it must have a comparable number of non-sample points

– even though the regions are defined based on the sample. The latter fact makes the

analysis difficult by introducing conditioning. Intuitively, we deal with the conditioning by

considering regions defined by the input independently of the sample.

For a given input, let (q1, . . . , qm) be the optimal prices for the input bids that yield

revenue F . These prices induce the regions discussed above. Bidders in region Rj pay qj

for the item j. If we sample half of the points, the expected number of sample points in a
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Item 2
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Figure 9.1: Two item auction with regions R1 and R2

region Rj is half of the total number of points in the region, and for the prices q1, . . . , qm,

the expected revenue is F/2. The optimal fixed pricing on the sample does at least as well.

Thus the expected revenue of optimal fixed pricing of the sample, E[Fs], is at least F/2.

However, we need a high-probability result. Our goal is to show that with high probability

E[Fs] is close to F/2 and that E[R] is close to E[Fs], where R is the revenue of the random

sampling auction.

We say that a set A ⊆ B is t-feasible if A is nonempty and for some set of sale prices,

A is exactly the set of points in Rt. For each feasible set A, we will define its signature

SA = (s1, . . . , sm) such that si’s are (not necessarily distinct) elements of A and, for a fixed

t, different t-feasible sets have different signatures. In the following discussion, sij denotes

the j-th coordinate of si.

We construct signatures as follows. Let Rt be a region defining A. Rt is determined

by a set of prices (r1, . . . , rm). We first increase all rj’s by the same amount (moving Rt

diagonally) until some point in A is on the boundary of Rt. Note that since we change all

prices by the same amount, the limiting constraint from (9.1) is xt ≥ rt. Thus the stopping

is defined by xt = rt, and the point on the boundary has the smallest t-th coordinate among
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Figure 9.2: Signatures in a two item auction

the points in A. We set st to this point.

Then for j 6= t, we move the the region starting at its current position down the j-th

coordinate direction by reducing rj until the first point hits the boundary. The boundary

we hit is defined by xt − rt = xj − rj, and the point that hits it first has the minimum

xj − xt + stt among the points in A. Observe that the point st remains on the boundary

xt = rt, and therefore we stop before rj becomes negative. When we stop, we take a point

that hits the boundary and assign sj to it.

Consider the set of points in the signature, SA = {s1, . . . , sm}. Define R to be the region

we got at the end of the procedure that computed SA. R is defined by

R = {x : xt ≥ stt & xt − stt ≥ xj − sjj ∀j 6= t}.

It follows that R can be constructed directly from SA.

Figure 9.2 shows the signatures we get from the prices r1 and r2. The points on the

boundary of the shaded region are the signature of that region. Note, for example, that

there are no points in R1 that are not inside the boundary induced by the signature for R1.

The next two lemmas are simple, so we omit the proofs.

Lemma 9.4 For each t, 1 ≤ t ≤ m, there are at most nm t-feasible sets.
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Lemma 9.5 For every t-feasible subset C of the sample S there is a t-feasible subset A of

the input such that C = A ∩ S.

For k ≥ 1 and 0 < δ < 1, we say that a sample S is (k, δ)-balanced if for every 1 ≤ t ≤ m

and for every t-feasible subset of the input, A, such that |A| ≥ k, we have

(1− δ) ≤ (|A ∩ S|)/(|A ∩N |) ≤ 1/(1 − δ).

Lemma 9.6 The probability that a sample containing half of the input points is (k, δ)-

balanced is at least 1− 2mnm exp(−kδ2/8).

Proof: Lemma 9.1 implies that the probability that for a set A with |A| ≥ k,

Pr[|A ∩ S| < (1− δ)|A ∩N |] < exp(−kδ2/8)

and

Pr[|A ∩N | < (1− δ)|A ∩ S|] < exp(−kδ2/8).

Note that the fact that the number of sample points in one subset is close to its expectation

makes it no less likely that the number of sample points in another subset is close to

expectation. Thus the conditioning we get is favorable. By Lemma 9.5, there are at most

nm t-feasible subsets for every t, so the total number of feasible subsets is mnm. These

observations imply the lemma. 2

Theorem 9.7 Assume αhm2 ln n ≤ F and m ≥ 2. Then R ≥ F/24 with probability at

least 1− exp(−α/1728) (for some constant α > 1).

Proof: Consider Lemma 9.6 with δ = 1/2 and k = αm log n/12. The probability that the

sample is (k, δ)-balanced is

1− 2mnm exp(−kδ2/8) = 1− 2mnm exp(−αm log n/864) ≥ 1− exp(−α/1728)

for m ≥ 2. For the rest of the proof we assume that the sample is (k, δ)-balanced; we call

this the balanced sample assumption.

Next we show that the revenue of the auction on the sample, Fs, satisfies Fs ≥ F/6. Let

Qi be the set of bidders who get item i when computing F on the entire bid set. Consider
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sets Qi containing less than (αm log n)/2 bidders. The total contribution of such sets to F
is less than F/2. This is because there are at most m such sets and each bid is at most h

giving a maximum possible revenue of αhm2 log n/2 = F/2. Thus the contribution of the

sets with at least (αm log n)/2 bidders is more than F/2, and we restrict our attention to

such sets. By the balanced sample assumption, each such set contains at least 1/3 sample

points, and thus Fs ≥ (1/3)F/2 = F/6.

Finally we show that R ≥ F/24 using a similar argument. Let Ri be the regions defined

by the prices computed by the auction on the sample. Consider the regions containing less

than (αm log n)/12 sample points. The total contribution of such sets to the revenue is less

then F/12. The remaining regions contribute at least F/12 (out of F/6). Each remaining

region contains at least (αm log n)/12 sample points. By the balanced sample assumption,

each such region contains at least one non-sample point for every two sample point and thus

R ≥ F/24. 2

Lemma 9.3 and Theorem 9.7 imply that if the assumptions of the theorem hold, the

random sampling auction is competitive.

9.4 Concluding Remarks

Our analysis of the random sampling auction is somewhat brute-force, and a more careful

analysis may lead to better results, both in terms of constants and in terms of asymptotic

bounds. In particular, the assumption αhm2 ln n ≤ F in Theorem 9.7 may be stronger than

necessary. One can prove that Fs = Ω(F) assuming αhm ≤ F . We wonder if the theorem

holds under this weaker assumption.

Although our theoretical bounds require m to be small compared to n and the optimal

fixed price solution to contain a large number of items, it is likely that in practice our

auctions will work well for moderately large m and moderately small optimal fixed price

solutions. This is because our analysis is for the worst-case. In many real-life applications,

bidder utilities for the same item are closely correlated and our auctions perform better.

Another open problem is a generalization of our results. One possible generalization is

to the case when some items are in fixed supply. Another generalization is to the case when
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consumer i wants up to ki items.
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Chapter 10

AUCTION PROBLEMS WITH PRODUCTION COSTS AND

MARKET SEGMENTATIONS

In this section we discuss a natural generalization of the basic auction problem to the

case where the bidders are divided into markets and there may be a cost to the auctioneer

that is a function of which markets have winning bidders. In particular, this generalization

includes the multicast pricing problem (defined below) of Feigenbaum et al. [18]. To consider

this problem, we first look at a special case, the fixed cost basic auction problem which can

represent the problem of selling a digital good when there is a fixed cost to producing an

initial copy, but once produced, duplicating is free. The goal then would be to ascertain via

an auction mechanism whether the good should be created and sold or whether there is not

enough demand for the good to cover the costs.

10.1 Introduction

We briefly present a few motivating problems. These problems are all extensions of the

basic auction problem.

Conditional Financing

A company is considering an initial public offering of its shares, or a venture capitalist is

trying to sell fixed return junk bonds for some venture. The company would like to sell

the shares only if the revenue raised is sufficiently high. How can this be done so that

the company raises as much money as is possible, given the potential shareholders’ honest

valuations of the company, but so that, if the company is not valued sufficiently highly by

the public, the IPO can be cancelled?
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Offering a pay-per-view broadcast in a segmented market

A company offering a pay-per-view broadcast needs to formulate a pricing scheme for its

potential viewers. Suppose that the potential viewers are partitioned into markets (e.g.,

by location or by some measure of the quality of the good they are receiving). Further,

suppose that the cost of providing the broadcast to viewers in the ith market is Ci, a fixed

cost which is paid once if and only if there are any viewers in the ith market. The goal of

the company is to maximize its profit, the sum of the prices paid by each of the viewers

minus the costs of providing the broadcast to those markets in which there are viewers.

Multicast pricing

Feigenbaum, Papadimitriou and Shenker [18] initiated the study of pricing algorithms for

multicast transmission. The model is a network with users residing at nodes in the network.

There are costs associated with transmitting data across each of the links in the network.

Each user has a utility for receiving the broadcast. The problem is to choose the multicast

tree and the prices to charge each of the recipients of the broadcast. Feigenbaum et al.

focus on the network complexity of implementing solutions that are either budget-balanced,

in which the broadcaster precisely recovers the cost of the transmission, or efficient, in

which the receivers chosen are the set which maximizes the difference between the sum

of the utilities of the receivers and the cost of multicasting to that set of receivers. For

budget-balanced solutions there is no profit to the broadcaster, and for efficient solutions

the broadcaster may run a deficit. Our interest is in designing truthful pricing mechanisms

which maximize the broadcaster’s profit.

10.1.1 Generalized Auction Problems

We define a framework for modeling dynamic pricing problems for revenue maximization

as generalized auctions. This framework captures all of the problems just described, and

many others.

A generalized auction problem G = (S, c(·)) is described by the following parameters:

• S = {Si : 1 ≤ i ≤ m}. The sets Si partition the n bidders into m market segments.
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Importantly, within each market, bidders are indistinguishable from one another.1

• c(·), a cost function mapping vectors in {0, 1}m to non-negative real numbers. The

domain of c(·) describes each possible market allocation, so, for example, a vector

r = (r1, . . . , rm) in the domain indicates for each market i whether or not goods are

allocated to that market (ri = 1 or ri = 0, respectively). The cost, c(r), is the cost

to the auctioneer (the service provider) of providing the goods assuming the market

allocation, r.

So, for example, for the basic unlimited supply auction problem, m = 1, and c(r) = 0

for all r as duplicating and distributing the goods is assumed to be free for the auctioneer.

For the multicast pricing problem, the number of markets is the number of nodes in the

network, and the viewers at the ith node form Si, the ith market. The cost of a market

allocation c(r) is exactly the cost of transmitting along the multicast tree defined by the

nodes (markets) receiving the broadcast.

10.1.2 Cancellable Auctions

A natural approach to the design of generalized auction mechanisms that do not incur

deficits is to run a basic auction on each market and then cancel the results if the revenue

raised from the bidders does not exceed the costs that the auctioneer will have to pay to

provide goods to the selected receivers. Consider, for example, the problem of selling a

digital good via a truthful auction, where the cost of producing the good is C, and, once

produced, the good can be duplicated at negligible cost (so that effectively the auctioneer

has an unlimited supply of the good). In this case, the auctioneer (who will bear the burden

of producing the good), does not even want to produce the good unless they can recover

their cost of C.

We are thus motivated to introduce a stronger form of truthful auctions, cancellable

auctions. Given a truthful auction A and a parameter C, we define an auction AC as

follows: On input b, run A on b. If the resulting revenue is at least C, return the outcome

1Bidders in different markets may also turn out to be indistinguishable from one another if the cost
structure of providing services to them is identical.
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of A(b). Otherwise, cancel A by returning the outcome with no winners. We say that A
is cancellable if, for any value of C, AC is truthful. As we shall see in Section 10.3.1, not

every truthful auction is cancellable.

10.1.3 Contributions

We present a truthful mechanism that obtains a constant factor of the optimal truthful

profit on any input set of bids for which (a) there is competition in each market, i.e., there

is not one bidder whose bid dwarfs all other bids; and (b) there is a significant profit margin

to be had, i.e., the optimal profit is at least a constant factor more than the cost incurred

by the optimal allocation. Furthermore, on any set of bids not satisfying these conditions,

the mechanism incurs no deficit (See Section 10.4).

Thus, we obtain mechanisms that are profit maximizing for a broad class of generalized

auction problems, including all the problems mentioned earlier in this section. For example,

we obtain the first results on profit maximization for the conditional financing problem

and for the multicast pricing problem in a worst-case, competitive analysis framework.2

Although it is not the primary focus of this chapter, the multicast pricing mechanism we

present also has low network complexity, in the sense of Feigenbaum et al. [18].

Optimal fixed-pricing

We first recall the definition of optimal fixed pricing for basic auctions, F(b) = maxi ib(i).

We now extend this to general auctions:

Definition 10.1 The optimal profit for any selling mechanism for G = (S, c(·)) that uses

a single price for each market is

FG(b) = max
r∈{0,1}m




∑

1≤j≤m

rjF(bSj
)− c(r)



 .

where bSj
is the restriction of b to the jth market Sj.

2Recent work by Mehta et al. studies profit maximization for the multicast pricing problem in a Bayesian
setting [34]
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10.2 Competitive Framework

Given a mechanism M, for each input b ∈ R
n, the profit to the auctioneer, MG(b), is the

revenue from the bidders minus the cost of providing the goods, i.e.,

MG(b) =
∑

i

pi − c(r).

The fact that FG(b) is an upper bound on the profit of any monotone truthful auction on

input set b motivates the evaluation of truthful mechanisms by considering their competitive

ratio relative to FG , i.e., the supremum over all bid vectors of FG(b)/MG(b). Unfortunately,

in many cases, there is no constant bound achievable on this competitive ratio. For example,

for the G as the basic auction problem (with no costs), FG(b) is equal to the optimal fixed

price revenue F(b). In Chapter 3 we showed that no randomized basic auction can obtain

a constant fraction of F(b). Recall that intuition that if there is one very high bidder that

completely dominates all other bidders, there is no way to truthfully extract a constant

fraction of their bid value. Instead of F we considered F (2) as our metric for comparison for

the basic auction problem. Recall, that F (2) is defined as the optimal fixed price revenue

assuming at least two items are sold (again, b(i) is the ith largest bid).

F (2)(b) = max
i≥2

ib(i).

We conjecture that for G the fixed cost unlimited supply auction where the cost of

producing the good is C and FG(b) = max(0,F(b) − C) it is not possible to attain a

constant fraction of max(0,F (2)(b)−C) as this difference gets arbitrarily small. Intuitively,

it is much easier to be competitive with gross profit than it is to be competitive with the

net profit.

We are thus motivated to define the following weaker notion of competitiveness:

Definition 10.2 For generalized auction problems, we say that a truthful mechanismM is

β-competitive if, for all bid vectors b,

E[MG(b)] ≥
profitβ(b)

β
,
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where

profitβ(b) = max
r∈{0,1}m




∑

1≤i≤m

riF (2)(bSi
)− βc(r)



 ,

As noted previously, we cannot be constant competitive against FG(b). Nonetheless, for

a large class of inputs, achieving a constant fraction of FG(b) implies achieving a constant

fraction of profitβ(b) and vice versa. This is the class of bids for which

• For each market Sj, F(bSj
) = F (2)(bSj

), meaning there is no single bidder whose bid

completely dominates all others in that market, and

• The optimal profit margin is a constant factor of the cost of the optimal allocation.

Thus, for an interesting class of problems and inputs to these problems, we will present

mechanisms that obtain profit that is within a constant factor of optimal. An interesting

problem left open by our work is whether or not there is a stronger performance measure

one can compare against and still obtain strong competitiveness guarantees.

10.3 The Fixed Cost Basic Auction

In this section, we consider the fixed cost basic auction problem:

Definition 10.3 (Fixed Cost Basic Auction Problem) Given:

• n identical items for sale.

• n bidders, bidder i willing to pay at most ui for an item.

• fixed cost C if any items are sold (zero cost otherwise).

Design an auction mechanism that maximized the profit of sale (the sum of the revenue less

the cost, C.
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A natural attempt to solve this problem would be to run a competitive basic auction A
on the input bids b to obtain profit A(b)− C. Unfortunately, this may come out negative

and the auctioneer may take a loss. As we are interested in how auctioneer perform in the

worst case, this is clearly unacceptable.

A simple modification we might think to make to the above proposed solutions is to run

simulate the auction A on b and compute its revenue. If its revenue is less than C then we

cancel the auction and content ourselves with not having a loss. Otherwise, we use effect

the outcome of the auction and obtain the non-negative profit A(b)−C. The problem with

this technique is that the resulting mechanism may not be truthful. This motivates the

definition of a cancellable auction as one that remains truthful even if its outcome may be

cancelled if its revenue does not meet some prespecified criterion.

10.3.1 Cancellability

Cancellable auctions are crucial building blocks in the design of mechanisms for more general

auctions. As discussed in the introduction, we define cancellable auctions as follows.

Definition 10.4 Given a truthful auction A and a parameter C, we define the auction AC

as follows: On input b, run A on b. If the resulting revenue is at least C, return the

outcome of A(b). Otherwise, cancel A by returning the outcome with no winners. We say

that A is cancellable if and only if, for any value of C, AC is truthful.

There are two natural ways to prove that an auction is cancellable: The first is to show

that for each C, there is a bid-independent function f such that the outcome (as a random

variable) of the bid-independent auction defined by f is the same as that of AC . A second

approach is to show directly that in AC any bidder’s profit is maximized by bidding their

utility value. Specifically it suffices to use the following:

Proposition 10.1 The truthful auction A is cancellable if for any bid vector b−i and any

bidder i with utility ui, if bidder i wins upon bidding ui, then Rui
= Rb for any b such that

bidder i wins when bidding b. For the fixed values of b−i, Rb denotes the revenue of A when

bidder i bids b.



107

To see this, observe that, by assumption, A is truthful, and thus, bidder i’s profit before

the possible cancellation is maximized by bidding their utility value. To ensure that bidder

i’s profit is still maximized after cancellation by bidding ui, it must be that if the auction

is cancelled when bidder i bids ui, then bidder i loses or otherwise has non-positive profit

when bidding any value that results in the auction not being cancelled. Another way to put

this is that a truthful auction is cancellable if its revenue is not a function of the bid values

of the winning bids.

We next observe that the notion of a cancellable auction is strictly stronger than that

of a truthful auction.

Observation 5 Not all truthful auction mechanisms are cancellable.

In particular we show that the RSOP auction is not cancellable. RSOP is obviously truthful,

as it is bid-independent. We observe now that the auction obtained by running RSOP and

cancelling the outcome if the revenue is less than C is not truthful.

Consider b = {1, 1, 1, . . . , 1, h}. Clearly, for h sufficiently large, h is the optimal threshold

for its partition, and bids in the other partition will be rejected and the revenue of the auction

is close to n/2. However, if the high bidder bids 1 instead of h, b′ = {1, 1, 1, . . . , 1, 1} and

all bidders win at price 1. Thus the auction revenue is n.

Suppose the auction is to be cancelled if its revenue is less than C = 3
4n. Then,

• the high bidder’s profit is 0 when bidding h, and

• the high bidder’s profit is h− 1 when bidding 1.

Thus RSOP is not cancellable.

It turns out that none of the auctions presented thus far are cancellable except for the

fixed price mechanism, the k-item Vickrey auction, and Randomized Vickrey. We now show

that a variant of the RSPE auction is cancellable. This variant is identical to RSPE except

for a subtle tie-breaking step.
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10.3.2 The Random Sampling Profit Extraction Auction with Tie-Breaking

A formal description of the Random Sampling Profit Extraction Auction with Tie-Breaking

(RSPE′) is given in Definition 10.5. This auction achieves the same competitive ratio as

RSPE, i.e., four. Recall that RSPE computes the optimal fixed price revenues for two

random partitions of the bidders and then on both partitions it tries to profit extract the

revenue from the opposite partition. Typically, these optimal fixed price revenues will be

different and the partition with the lesser revenue will be completely rejected as it cannot

afford to cost share the optimal revenue of partition with the higher optimal revenue. In

the case where the optimal revenues are the same, we could either allow both partitions

to have winners or impose some tie breaking criterion to make sure that only one of the

partitions has winners. If we allow both partitions to have winners as in RSPE, the resulting

mechanism, while being truthful and 4-competitive, is not cancellable.3 Thus, if we want

a cancellable auction, we must do some sort of tie breaking. The technique we choose, as

described in the formal definition of RSPE′, is to impose a total order, ≺, on fixed price

revenues.

Definition 10.5 (Random Sampling Profit Extraction with Tie-Breaking (RSPE′))

The RSPE′ auction works as follows:

1. Partition bids b, into two sets S′ and S′′, by flipping a fair coin for each bid. Let the

resulting bid vectors be bS′ and bS′′ .

2. Compute F ′ = F(bS′) and F ′′ = F(bS′′), the optimal fixed price revenues for bS′ and

bS′′, respectively.

3. Compute the auction results by running CostShareF ′′ on bS′ and CostShareF ′ on bS′′.

3For example, consider two bidders with utilities u1 = 4 and u2 = 2 and a cost C = 3. Assume we sample
with S′ = {1} and S′′ = {2}. If both bidders bid their utility we have F ′ = 4 and F ′′ = 2 and the revenue
is R = 2. Since the revenue is less than the cost C, the auction is cancelled and the first bidder’s profit is
zero. If we allow ties, the first bidder could lower their bid to b1 = 2 causing F ′ = F ′′ = 2. This results
in both bidders winning and yields a revenue of R = 4. In this case, the auction is not cancelled and the
first bidder’s profit is two.
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We impose a total ordering, “≺”, on values of the form “kbi” that respects their natural

partial ordering given by “<”. We define ≺ as:

kbi ≺ `bj ⇐⇒ kbi < `bj ∨ kbi = `bj ∧ i < j.

Note that F ′ and F ′′ are of the form “kbi” for some k and i, so using this total ordering in

Steps 2 and 3 guarantees F ′ 6= F ′′.

We prove the following.

Lemma 10.2 RSPE′ is a cancellable auction.

Proof: Let RSPE′
C be the auction that runs RSPE′ and cancels the outcome if its revenue

is not at least C. By definition, RSPE is cancellable if and only if RSPE′
C is truthful for all

C. We prove this using Proposition 10.1.

Consider any fixed outcome of the coin flips of RSPE′, and any bid vector b−i. In

addition, suppose that bidder i’s utility value is ui. For this particular execution, suppose

that bidder i is in S′. If bidder i wins in this execution of RSPE′ (prior to the possible

cancellation) then F ′′ ≺ F ′. Now suppose that bidder i changes his bid, resulting, possibly,

in a new value of F ′. If we still have F ′′ ≺ F ′, then the total revenue of the auction is

unchanged, equal to F ′′. Otherwise, if we now have F ′ ≺ F ′′, then bidder i loses. Thus, in

terms of Proposition 10.1, Rui
= Rb for any b such that bidder i wins when bidding b. 2

10.4 Applications of Cancellable Auctions

In this section we show how cancellable auctions can be used as a building block for the

construction of profit optimizing mechanisms. For generalized auction problems, we define

the following Local Random Sampling Profit Extraction auction (Auction 10.6).

Definition 10.6 (Local Random Sampling Profit Extraction auction, LRSPE) On

input b:

1. Run RSPE′ on each market, bSj
, to get revenue Rj .
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2. Compute the maximizing (or approximate) market allocation r∗ = argmaxr

∑

j rjRj−
c(r).

3. For each j, if r∗j = 0, cancel auction on Sj . Else collect Rj in revenue from market

Sj.

Lemma 10.3 The Local Random Sampling Profit Extraction auction is truthful.4

This proof is immediate from the cancellability of RSPE.

Theorem 10.4 LRSPE is 4-competitive.

Proof: Since RSPE is 4-competitive, for all j we can expect at least F (2)(bSj
)/4 from the

jth market. Consider the allocation r′ used by profit4(b), that is, r′ maximizes maxr

∑

j rjF(bSj
)−

4c(r).

Our revenue is

LRSPEG(b) = max
r

∑

j

Rjri − c(r)

≥
∑

j

Rjr
′
i − c(r′)

and

E




∑

j

Rjr
′
i − c(r′)



 ≥
∑

j

F (2)(bSj
)r′i/4− c(r′)

= profit4(b)/4

and so

E[LRSPEG(b)] ≥ profit4(b)/4.

2

4In fact, any cancellable auction could be used in place of RSPE and the resulting local mechanism would
be truthful.
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Corollary 10.5 LRSPE is 4-competitive for the multicast problem.

We note that LRSPE for the multicast problem of [18] can be implemented with low network

complexity, 2 messages per link, using the natural prize-collection algorithm for trees (E.g.

[18]).

Corollary 10.6 Consider the algorithm LRSPE′ that differs from LRSPE in that rather

than actually compute the optimal allocation, it makes use of an α-approximation to the

optimal allocation. LRSPE′ is 4α-competitive.

As we have seen, the LRSPE auction works very well for generalized auction problems

when each market has size at least 2 and there is competition in each market.

These assumptions might be valid for multicast in the Internet today where the content

provider is charged for usage of the backbone, while consumers are located at single ISPs

and are already paying a flat rate for their service. In this case, the consumers at each ISP

would form markets and there would possibly be a large number of them at each.

A key open question is how well a more global auction mechanism can do when these

assumptions do not hold. For example, there is a relatively simple global mechanism for the

basic market segmentation problem (where there are m markets but the cost, c(r), is zero

for all r). It remains open whether this or any other more global mechanism works well in

any quantifiable sense.

10.5 An Upper Bound on the Profit of Truthful Mechanisms

As for basic auctions, there is a natural definition of a monotone auction. For basic auctions,

demonstrating that it was not possible for a monotone auction to perform better than

the optimal single-price omniscient mechanism on any input reinforced our framework for

competitive analysis. In this section we extend the definition of monotonicity and the bound

on profit to the generalized auction setting.
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10.5.1 Monotonicity

We are now extend the definition of monotonicity from basic auctions to generalized auc-

tions.

Definition 10.7 A generalized auction, A, is monotone on markets S if it is defined by

a bid-independent function f with the property that for any bid vector b, and any pair of

bidders i and j within the same market such that bi ≤ bj then

∀x ≤ bi, Pr[bidder i wins at price ≤ x] ≤ Pr[bidder j wins at price ≤ x] .

10.5.2 Bound on Profit

Theorem 10.7 Let A be any monotone auction for the basic auction problem on bids b,

and let W be the event that there is at least one winner, i.e., there exists i such that xi = 1.

The revenue R =
∑

i pi of A on input b satisfies:

E[R | W] ≤ F(b).

Proof: Let f be the bid-independent function defining A. Let q be the probability that

the event W occurs. We define gi(x) as follows:

gi(x) = Pr[f(b−i) ≤ x | W]

= 1
qPr[f(b−i) ≤ x ∩W]

For x ≤ bi bidder i is a winner and thus f(b−i) ≤ x implies event W. So we can conclude

that for x ≤ bi,

gi(x) = 1
qPr[f(b−i) ≤ x].

By the monotonicity of f , for all i and j, gi satisfies the property that if bi ≥ bj then

gi(x) ≥ gj(x) for x ≤ bj .

Now consider the following thought experiment. Let U be a random variable that is

uniform on [0, 1]. Imagine running the bid-independent auction that for each i using g−1
i (U)

to set the threshold for bidder i, with g−1
i defined as g−1

i (y) = inf {x : gi(x) = y}. We
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denote by RU the resulting auction revenue. We observe that the threshold distribution for

bidder i in this experiment is precisely the same as the original threshold distribution for

bidder i conditioned on W:

Pr
[
g−1
i (U) ≤ x

]
= Pr[U ≤ gi(x)]

= gi(x).

Therefore, by summing the expectations for the bidders, we obtain

E[RU ] = E[R | W] .

We complete the proof by showing that the expected revenue from our thought exper-

iment E[RU ] is at most F(b). Conditioned on U = u, let k be the index of the smallest

winning bid. Thus, g−1
k (u) ≤ bk. Since gk(x) ≤ gj(x) for all j such that bj ≥ bk, and gk(x)

and gj(x) are monotone non-decreasing functions, we must have g−1
j (u) ≤ g−1

k (u) ≤ bk ≤ bj

and therefore all bidders with bid values at least bk win at a price at most bk. Thus, the

revenue, Ru, is at most bk times the number of bids with bid value least bk which totals to

at most F(b). This holds for all u ∈ [0, 1], and thus E[RU ] ≤ F(b). 2

We now give an upper bound on profit for generalized auctions.

Theorem 10.8 Let G = (S, c(·)) be a generalized auction problem. For any truthful mech-

anism M that is monotone on S, and for any input bid vector b, we give an upper bound

MG(b), the profit of M on bid set b as:

E[MG(b)] ≤ FG(b).

Proof: Define the following:

• qr with r = (r1, . . . , rm) ∈ {0, 1}m – the probability that the result of the auction is

the allocation r to the markets.

For 1 ≤ j ≤ m define:
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• qj – the probability that there is at least one winner in market Sj. Note that qj =
∑

r∈{0,1}m rjqr.

• Fj = F(bSj
) – the optimal fixed price revenue for market j.

• Rj – the revenue collected from the jth market.

Note that from Theorem 10.7 we have

E[Rj ] = qjE[Rj | rj = 1]

≤ qjFj (10.1)

Now we bound the expected profit:

E[MG(b)] = E
[∑

j
Rj − c(r)

]

=
∑

j
E[Rj ]−E[c(r)] .

By equation (10.1),

E[MG(b)] ≤
∑

j
qjFj −E[c(r)]

=
∑

j
Fj

(∑

r
rjqr

)

−
∑

r
qrc(r)

=
∑

r
qr

(∑

j
rjFj − c(r)

)

.

This is a convex combination, so we have

E[MG(b)] ≤ max
r∈{0,1}m




∑

1≤j≤m

rjFj − qrc(r)





= FG(b).

2

The proof just presented may seem at first glance to be more complicated than necessary.

However, we note that the most obvious approach of using the equation

E[MG(b)] =
∑

r

qr




∑

j

E[Rj | r]− c(r)





and then showing that E[Rj | r] ≤ Fj fails: E[Rj | r] can in fact significantly exceed Fj .
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10.6 Conclusions

For the fixed cost unlimited supply auction, i.e., one market with cost C if there are any

winners, we have shown that it is possible to get a constant fraction of F (2)(b)−4C in worst

case. We conjecture that this scaling of C is necessary in the sense that it is not possible

to get a constant fraction of F (2)(b) − C in worst case. This result seems likely because

F (2)(b)−C can be arbitrarily small compared to F (2)(b) and we know from Theorem 7.10

that it is not possible for a basic auction to be better than 2.42-competitive against F (2)(b).

For general auctions we gave a local mechanism that is competitive if there is compe-

tition amongst the bidders in each market and if there is a significant profit margin. This

solution can be applied directly to the multicast cost sharing problem of [18]. To design

competitive mechanisms for generalized auction problems that do not require the assump-

tion of competition among the bidders in each market (e.g., allowing for singleton markets),

global mechanisms must be employed. Even for simple special cases of the multicast tree,

this problem is difficult. Special cases, e.g., segmented markets with no cost (for all r,

c(r) = 0), that do permit natural global mechanisms are difficult to generalize.

Our formulation for generalized auctions captures a wide variety of allocation mecha-

nisms; however, more general models can be considered. In particular, our model could be

extended to allow cost functions that can take into account how many items are allocated

to each market instead of just whether or not any goods were allocated to the market.
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Chapter 11

THE DOUBLE AUCTION PROBLEM

In this chapter we consider the problem of designing a mechanism for double auctions

where bidders each bid to buy or sell one unit of a single commodity. The profit of the auc-

tioneer is the difference between the total payments from buyers and the total payments to

the sellers. We aim to maximize this profit. We extend the competitive analysis framework

of basic auctions and give an upper bound on the profit of any truthful double auction.

We then reduce the competitive double auction problem to basic auctions by showing that

any competitive basic auction can be converted into a competitive double auction with a

competitive ratio of twice that of the basic auction. In addition, we show that better com-

petitive ratios can be obtained by directly adapting basic auction techniques to the double

auction problem. In doing so, we show that the consensus and revenue estimate technique

from Section 4.5 gives a general result for profit maximizing mechanism design: it reduces

private value optimization problems to private value decision problems.

11.1 Introduction

For double auctions, the auctioneer, acting as a broker, is faced with the task of matching

up a subset of the buyers with an equal-sized subset of the sellers. The auctioneer decides

on a price to be paid to each seller and received from each buyer in exchange for the transfer

of one item from each of the selected sellers to each of the selected buyers. The profit of

the auctioneer is the difference between the prices paid by the buyers and the prices paid

to the sellers. We assume that each buyer wishes to purchase exactly one item, each seller

wishes to sell exactly one item, and that the items are indistinguishable, i.e., no buyer has

reason to prefer one seller’s item over that of another.

We note that the basic auction problem is the special case of the double auction problem

where all sellers are known to have zero value for their items.
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11.2 Preliminaries

We consider single-round, sealed-bid double auction mechanisms in which each bidders

wants to either buy or sell one out of a set of identical items. Bidders submit one sealed bid

each, and publicly declare themselves to be either a buyer or a seller. For buyers, the bid

represents the maximum amount they are willing to pay for an item, whereas for sellers,

the bid represents the minimum amount they are willing to sell the item for.

We denote by b the vector of bid values associated with buyers and by s the vector of

all bid values associated with sellers. The ith component of b (resp. s) is bi (resp. si), the

bid value submitted by the ith buyer (resp. seller). We assume that the number of buyers

is equal to the number of sellers, and we use n to denote this number.

Definition 11.1 (Double Auction) A single-round sealed-bid double-auction mechanism

is one where:

• Given the two bid vectors b = (b1, . . . , bn) and s = (s1, . . . , sn), the mechanism com-

putes a pair of allocation vectors, x and y ∈ {0, 1}n, and payment vectors p and

q ∈ R
n, subject to the constraints that:

– The number of winning buyers is equal to the number of winning sellers, i.e.,
∑

i xi =
∑

i yi.
1

– 0 ≤ pi ≤ bi (resp. si ≤ qi) for all winning buyers (resp. sellers) and pi = 0 (resp.

qi = 0) for all losing buyers (resp. sellers). These are the standard assumptions

of no positive transfers and voluntary participation. See, e.g., [37].

• If xi = 1 buyer i wins (i.e., receives the item) and pays price pi, otherwise we say that

buyer i loses or is rejected. If yi = 1 seller i wins (i.e., sells the item) and gets paid

qi, otherwise we say that seller i loses or is rejected.

1We assume that the auctioneer neither has any items for sale nor is willing to purchase any. For this
reason, we can also assume that the number of buyer bids equals the number of seller bids. If there are
any extra buyers or sellers, the auctioneer can earn the same amount of profit by ignoring the extra low
bidding buyers or high bidding sellers.
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• The profit of the mechanism is M(b, s) =
∑

i pi −
∑

i qi.

It is assumed that input order of the bids b and s is arbitrary. Throughout our discussion

of auction problems we will use the following notation for the ith highest bidding buyer and

the ith lowest bidding seller.

Definition 11.2 The ith highest bidding buyer is b(i). The ith smallest seller bid is s(i).

Definition 11.3 (Vickrey Double Auction) The k-item Vickrey double auction on bids

b and s, Vk(b, s), sells to the highest k buyers at price b(k+1) and buys from the lowest k

sellers at price s(k+1). Its revenue is

Vk(b, s) = k(b(k+1) − s(k+1)).

In typical examples it is important that the k-Vickrey basic auction only sells k items.

It is likewise important that the k-Vickrey double auction has the same number of winning

buyers as winning sellers, e.g. k of them. As specified above, the k-Vickrey auctions are

not well defined if there are several bidders with identical bid values. It is simple to fix this

problem by assuming that the k-Vickrey auction breaks ties arbitrarily. This tie breaking

is natural and necessary for double auction problem and we will be assuming throughout

this chapter that bid values are distinct. This can be achieved by assuming an arbitrary (or

random) total order on the bidders that respects the partial order given by their actual bid

values. Thus, b(i) > b(i+1) and s(i) < s(i+1).

11.2.1 Bid Independence

We now extend the characterization of truthful mechanisms using the notion of bid inde-

pendence to the double auction problem.

Definition 11.4 Let f and g be a functions from bid vectors to prices (non-negative real

numbers). The deterministic bid-independent double auction defined by f and g is BIf,g.

For each buyer i,

1. Compute bid-independent threshold ti = f(b−i, s).

(where b−i = (b1, . . . , bi−1, ?, bi+1, . . . , bn))
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2. If ti < bi, set xi ← 1 and pi ← ti. (Buyer i wins.)

3. If ti > bi set xi = pi = 0. (Buyer i is rejected.)

4. Otherwise, if ti = bi the auction can either accept the bid at price ti or reject it.

We treat the sellers symmetrically using threshold vi = g(b, s−i) and buying from seller i at

price vi if vi is more than si.

A randomized bid-independent auction is a probability distribution over deterministic

bid-independent auctions.

The following theorem, which is a trivial generalization of the equivalent result for basic

auctions, relates bid independence to truthfulness.

Theorem 11.1 A double auction is truthful if and only if it is bid-independent.

11.2.2 Single Price Omniscient Mechanisms

As the basic auction problem is a special case of the double auction problem, we extend the

competitive framework for the basic auction problem to the double auction problem via the

following definitions of F and F (2) for the double auction problem.

Definition 11.5 The optimal single price omniscient mechanism, F , is the mechanism that

uses the optimal single buy price and single sell price. It achieves the optimal single price

profit of

F(b, s) = max
i

i(b(i) − s(i)).

Definition 11.6 The optimal fixed price mechanism that transfers at least two items, F (2),

has profit

F (2)(b, s) = max
i≥2

i(b(i) − s(i)).
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11.2.3 Competitive Mechanisms

We now formalize the notion of a competitive mechanism:

Definition 11.7 We say that a truthful double auction M is β-competitive against F (2)

if, for all bid vectors b and s the expected profit of M satisfies

E[M(b, s)] ≥ F (2)(b, s)/β.

We say that M is competitive if M is β-competitive for some constant β.

11.3 Reducing Competitive Double Auctions to Competitive Basic Auctions

In this section we describe a general technique for converting any β-competitive basic auction

into a 2β-competitive double auction.

Definition 11.8 (MA) Given,

• basic auction, A,

• input b and s, and

• `, the largest value such that b(`) ≥ s(`);

the double auction, MA, does as follows:

Case 1 (` = 1): Output the empty allocation.

Case 2 (` = 2): Simulate the 1-item Vickrey double auction, V1(b, s), and output its out-

come.

Case 3 (` ≥ 3): Let b′ and s′ be n-dimensional vectors with components by b′i = bi − s(`)

and si = b(`)− si. Let b′′ (resp. s′′) be the (`− 1)-dimensional vector consisting of the

largest `− 1 bids in b′ (resp. s′).
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1. With probability 1/2 simulate A(b′′). If buyer i wins the simulation of A at price

p′′i then buyer i winsMA at price pi = max(b(`), p
′′
i + s(`)). All other buyers lose.

Let k < ` be the number of winners in A(b′′). To determine the outcome for the

sellers, run the k-Vickrey basic auction on s.

2. Otherwise (with probability 1/2) simulate A(s′′). If seller i wins the simulation

of A at price q′′i then seller i wins MA at price qi = min(s(`), b(`) − q′′i ). As

in Step 1, we run the k-Vickrey basic auction on the buyers to determine the

outcome for buyers, where k < ` is the number of winners in A(s′′).

Theorem 11.2 MA is truthful.

Proof: We show that MA is truthful for the buyers. The result for sellers is symmetric.

First note all buyers that win the auction pay at least b(`) and that the buyer with the `th

highest bid and all buyers with lower bids always lose the auction. In the case that ` ≤ 2

this is obvious. For ` ≥ 3 we have:

• In Step 1, since b(`) is excluded from b′′, b(`) loses. In this case by definition, all

winners pay at least b(`).

• In Step 2, since k < ` the k-Vickrey auction on buyers rejects b(`) (and winners must

pay at least b(`)).

We now argue that MA is truthful for the buyer with the `th highest bid and all lower

bidding buyers. Suppose buyer i is one if these lower bidding buyers. Hold all other bid

values fixed. To win the auction, buyer i would have to bid higher than b(`−1). In this case,

all winners would pay at least b(`−1) which is more than this buyer’s utility value, bi. Such

a sale price would give buyer i a negative profit, hence buyer i prefers losing the auction.

Now we show that the mechanism is truthful for the remaining `−1 high bidding buyers.

First, none of these bidders can change the value of b(`) or ` without lowering their bid value

below b(`) which would cause them to lose the auction.

We now argue (the simpler case) that Step 2 is truthful for the `−1 high bidding buyers.

In this step the truthful k-Vickrey auction is run on these buyers. Since k-Vickrey is truthful
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and because the k is determined from s, `, and b(`) which we have shown to be unchangeable

by any winning buyers, Step 2 is truthful.

The truthfulness of Step 1 is similar. Suppose basic auction A is defined by bid-

independent function f ′. Then we can define the bid-independent function for this case

as f(b−i, s) = max(b(`), f
′(b−i − s(`)) + s(`)). Given that b(`), `, and thus s(`) have been

shown to be unchangeable by any winning buyers, this shows that Step 1 is truthful. 2

Theorem 11.3 If A is β-competitive, MA is 2β-competitive against F (2)(b, s).

Proof: If ` = 1, F (2)(b, s) ≤ 0 so the null allocation is competitive. If ` = 2, MA runs

the 1-item Vickrey double auction which is 2-competitive when ` = 2. For the rest of the

proof assume ` ≥ 3. Let k ∈ [2, `] be the number of items sold by F (2)(b, s). Thus,

F (2)(b, s) = k(b(k) − s(k))

= k(b(k) − s(`)) + k(b(`) − s(k))− k(b(`) − s(`)).

But by definition F (2)(b′) ≥ k(b(k) − s(`)) and likewise for s′, therefore

F (2)(b, s) ≤ F (2)(b′) + F (2)(s′)− k(b(`) − s(`)). (11.1)

Note that for the buyers (and similarly for sellers):

F (2)(b′) ≤ F (2)(b′′) + b(`) − s(`). (11.2)

Because k ≥ 2, from Equations (11.1) and (11.2) we have

F (2)(b, s) ≤ F (2)(b′′) + F (2)(s′′).

Note that because A is β-competitive, the expected revenues from Step 3 and Step 4 are at

least F (2)(b′′)/2β and F (2)(s′′)/2β respectively. Thus,

E[MA(b, s)] ≥ 1
2β (F (2)(b′′) + F (2)(s′′)) ≥ 1

2βF
(2)(b, s).

2

Plugging in the 4-competitive Random Sampling Profit Extraction basic auction, RSPE,

we get a double auction with a competitive ratio of 8. Plugging in the 3.39-competitive
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Consensus Revenue Estimate basic auction, CORE, we get a competitive ratio of 6.78. We

show below that we can do better than this by using the CORE technique customized to

the double auction problem.

11.4 The General Reduction to the Private Value Decision Problem

We now discuss a reduction from private value decision problems to private value optimiza-

tion problems. Using this reduction we obtain a result that is similar to that which applies to

classical optimization: for private value optimization problems we can obtain a near optimal

solution using a solution to the decision problem. The reduction for classical optimization

involves some sort of search (binary or otherwise) over the value of the optimal solution

and repeatedly invoking the decision problem solution until the optimal solution is found.

This is not possible in truthful mechanism design, as running several truthful mechanisms

and taking the output of the best one will not, in general, result in a truthful mechanism

overall. Instead we use a technique based on truthfully (i.e., bid-independently) estimating

the profit of the optimal solution and using this estimate with a truthful mechanism for the

decision problem. The general technique developed here will follow the same approach as

that of the CORE auction from Chapter 4.

11.4.1 Profit Extraction: The Private Value Decision Problem

We now formalize the notion of a private value decision problem by defining a profit extractor

as its solution. Let I represent the private value input to a generic private value optimization

problem. For example I = b for the basic auction problem and I = (b, s) for the double

auction problem.

Definition 11.9 (Profit Metric) A profit metric, O, is a function from the input spec-

ification of a private value optimization problem, I, to a real number (to be interpreted as

an amount of profit).

As an example, F (2)(b, s) is a profit metric for the double auction problem and F(b) is

a profit metric for the basic auction problem.
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Definition 11.10 (Profit Extractor) A profit extractor for profit metric O is a truthful

mechanism that given target profit R has profit at least R on all inputs, I, such that O(I) ≥
R.

For the basic auction problem a profit extractor for metric F was given in Chapter 2.

For some problems and metrics, exact profit extractors do not exist and approximate profit

extractors may be useful instead.

Definition 11.11 (Approximate Profit Extractor) An α-approximate profit extractor

for profit metric O is a truthful mechanism that given target profit R has profit at least R/α

on all inputs, I, such that O(I) ≥ R.

11.4.2 The Revenue Estimation Technique

We now sketch the reduction of the private value optimization problem to the private value

decision problem by showing how to truthfully estimate the optimal revenue for a given

input. Assume for some private value decision problem we have a truthful profit extractor

O-ExtractR for metric O.

The characterization of truthful mechanisms as those that have bid-independent im-

plementations (Theorem 11.1) and its truthfulness imply that O-ExtractR is implemented

by some bid-independent function, peR. That is, the bid-independent auction defined by

f(I−i) = peR(I−i) is exactly O-ExtractR. Consider the auction, M, parameterized by

function r(·) that is defined by bid-independent function

f(I−i) = per(I−i)(I−i).

Note that if r is a consensus, i.e., r(I−i) = R for all i, then M is identically O-ExtractR.

Furthermore, if r(I) is a revenue estimate, i.e. R is a constant fraction of O(I), then the

mechanism O-ExtractR (and thus, so doesM) achieves revenue a constant fraction of O(I).

Below we show a probability distribution from which to pick r(·) such that r is a consensus

with high probability and also a revenue estimate.

Our revenue estimation technique is based on the observation that the value of one of the

bidders in the mechanism should not have much effect on the mechanism’s overall revenue.
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In many cases of interest, for example the mass market sale of a digital good, this does

indeed hold true. In cases where this does not hold true, it is unlikely that any mechanism

can obtain a near optimal revenue. This motivates the following definition:

Definition 11.12 (Smoothness) For ρ > 1, the private value input, I, is ρ-smooth for

metric, O, if for all bidders, i, we have:

O(I)/ρ ≤ O(I−i) ≤ O(I).

In any ρ-smooth input I with metric, O, the following consensus estimate function has

the properties that we desire.

Definition 11.13 (Consensus Estimate Function Distribution) Parameterized by c >

1 and the metric O we define the distribution of consensus estimate functions, DO,c, as fol-

lows:

• For U be a uniform random variable from [0, 1],

• r(·) ∼ DO,c is defined as r(I−i) is O(I−i) rounded down to the nearest cj+U for integer

j.

Lemma 11.4 [23] For ρ-smooth input I, let random variable X be r(I) if r(I) = r(I−i)

for all i and zero otherwise. The consensus estimate function r(·) parameterized by c > ρ

satisfies:

E[X] =
O(I)

ln c

(
1

ρ
− 1

c

)

.

The following general definition of the Consensus Revenue Estimate (CORE) mechanism

gives the reduction from the private value optimization problem to the private value decision

problem.

Definition 11.14 (COREc) For constant c, metric O, and profit extractor O-ExtractR

for O that is defined bid-independently by peR; the mechanism COREc is defined bid-

independently by

f(I−i) = per(I−i)(I−i)

for r(·) sampled from DO,c.
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Before we can claim that COREc performs well, we must take care of one additional

potential pit-fall. Consider COREc on ρ-smooth inputs I with c > ρ. In the case where

there is no consensus, there will be two values R and R′ such that some bidders will have

a price and outcome that given from O-ExtractR and other from O-ExtractR′ . A problem

might arise if some outcomes are infeasible or if there is a cost function that associates

large negative costs with certain outcomes. In this case, the CORE auction could output

an infeasible outcome or acquire a large cost. We define a profit extractor to be safe if this

can never happen.

Definition 11.15 (Safety) A profit extractor O-ExtractR is safe if it is impossible for

COREc to output an infeasible outcome or an outcome with negative profit.

Of course, COREc can never output infeasible outcomes or ones with negative profit

when there is consensus. To prove that a profit extractor is safe, one must only consider

the behavior of the profit extractor when used in COREc when there is no consensus.

Theorem 11.5 Given

• metric O,

• safe profit extractor O-ExtractR for O, and

• and input I that is ρ-smooth for metric O;

For c > ρ, the COREc mechanism has an expected revenue and competitive ratio, respec-

tively, of:

E[COREc(I)] =
O(I)

ln c

(
1

ρ
− 1

c

)

,
O(I)

E[COREc(I)]
= ln c

(
1

ρ
− 1

c

)−1

.

Given ρ, the value of c can be chosen to give the optimal competitive ratio when restricted

to ρ-smooth inputs.
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11.4.3 Truthfulness with High Probability

As we saw in Chapter 6, there is a version of the COREc auction that is not completely

truthful. Instead it is truthful with high probability (see Definition 6.2). A key benefit of

going from the truthful version of COREc to CORE′
c, the version that is only truthful

with high probability, is that the outcome is always identical to the outcome of the profit

extractor, O-ExtractR, for some value of R. For general optimization problems, this may

be important if there is no profit extractor that is safe for the desired metric, O. This gives

us the following results.

Definition 11.16 (CORE′
c) For constant c, metric O, and profit extractor O-ExtractR for

O that is defined bid-independently by peR; the mechanism CORE′
c is:

1. Choose r(·) from DO,c.

2. Run O-Extractr(I) on I.

Theorem 11.6 Given

• metric O,

• profit extractor O-ExtractR (not necessarily safe) for O, and

• and input I that is ρ-smooth for metric O;

for c > ρ, the CORE′
c mechanism has an expected revenue and competitive ratio, respectively,

of:

E
[
CORE′

c(I)
]

=
O(I)

ln c

(

1− 1

c

)

,
O(I)

E[CORE′
c(I)]

= ln c

(

1− 1

c

)−1

.

The probability that CORE′
c is truthful is: 1− logc ρ.

11.5 Consensus and Revenue Estimate for Double Auctions

We now apply the Consensus and Revenue Estimate technique to the double auction prob-

lem. First we discuss profit extraction for the double auction problem and then we discuss

smoothness.
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11.5.1 Profit Extraction for Double Auctions

As discussed in Section 2.6, for the basic auction problem, ProfitExtractR is a profit extrac-

tor for metric F . In the following lemma we show that for the double auction problem, it is

not possible to even approximately profit extract F . We then extend this simple argument

to show that it is not possible to exactly profit extract F (2).

Lemma 11.7 For any value R and α ≥ 1, there is no truthful mechanism for the double

auction problem that achieves a profit of at least R/α on all inputs b and s with F(b, s) ≥ R.

Proof: Suppose for a contradiction that such a mechanism MR did exist. Consider

the single buyer, single seller case with b1 = s1 + R. On this input, to achieve revenue

R/α for any α ≥ 1, both the buyer and the seller must win the auction. Theorem 11.1

and MR’s truthfulness implies that the price for b1 is given by a bid-independent function

f(s1). Since b1 wins the auction and the auctioneer has a positive profit, it must be that

f(s1) ∈ [s1, b1] = [s1, s1 + R]. Symmetrically, we must have g(b1) ∈ [b1 − R, b1]. Now

consider inputs b′1 = s′1 + 2R. Given f and g above, the sell price is in p′1 ∈ [s′1, s
′
1 + R] and

the buy price is in q′1 ∈ [b′1−R, b′1] = [s′1 +R, s′1 +2R]. The auctioneer’s profit is p′1− q′1 ≤ 0

which gives a contradiction. 2

Theorem 11.8 For input b and s, let k ≥ 2 be the number of items sold by F (2)(b, s). Let

MR be a truthful double auction mechanism that is guaranteed to extract a profit of at least

R/αk on any b and s with F (2)(b, s) ≥ R. Then, αk ≥ k/(k − 1).

Proof: We prove the lemma assuming the mechanism is deterministic. Since random-

ized truthful mechanisms are just distributions over deterministic truthful mechanisms, the

lemma follows in general from the consideration of this case.

We prove the k = 2 case that α2 ≥ 2 below. The general theorem follows by a simple,

but tedious inductive argument that follows the same lines. For the case k = 2, with a

bid vector (b1, b2, s1, s2) consisting of two buyers and two sellers where b1 = b2 = b and

s1 = s2 = s = b−R/2. If α2 < 2, then both buyers and both sellers must win. Let f(·) and

g(·) denote the bid-independent functions defined by the truthful mechanism MR. Since
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all bidders must win, we have that

b ≥ f(?, b, s, s), f(b, ?, s, s) ≥ g(b, b, ?, s), g(b, b, s, ?) ≥ s.

Now consider instead the bid vector (b, b′, s, s), where b′ > b. Then since the price offered

buyer 2 is the same as it was in the previous case, namely f(b, ?, s, s), and both buyers and

sellers must win in order to achieve a revenue which exceeds R/2 , we still have

b ≥ f(b, ?, s, s), f(?, b′, s, s) ≥ g(b, b′, ?, s), g(b, b′, ?, s) ≥ s.

Similarly, if we consider the bid vector (b′, b, s, s), we must have

b ≥ f(?, b, s, s) , f(b′, ?, s, s) ≥ g(b′, b, ?, s), g(b′, b, s, ?) ≥ s.

Together the facts b ≥ f(b′, ?, s, s) and b ≥ f(?, b′, s, s) imply that for the bid vector

(b′, b′, s, s), with b′ > b, the price offered the buyers is at most b, which in turn implies that

the prices paid to the sellers are both at most b.

An analogous argument, starting with a bid vector in which both buyers bid b′ and both

sellers bid s′ = b′ − R/2 and then moving the seller bids down shows that for any pair of

buyers with bid values b′ and sellers with bid values s < b′ − R/2, the sellers both win at

prices that are at least b′ −R/2. This is true in particular for the bid vector (b′, b′, s, s).

For b′ > b+R/2, this leads to a contradiction: in the first case, we argued that the prices

offered to the sellers were at most b, whereas the second argument shows that the prices

offered to the sellers are strictly greater than b. Such prices would give negative profit. 2

Faced with these impossibilities, for the double auction problem we can either look for

profit extractors for other metrics or approximate profit extractors for F (2). We show that

both of these techniques give constant competitive double auctions; however, the latter

technique gives the better competitive ratio.

Definition 11.17 (Vickrey Optimal Double Auction) The Vickrey optimal public value

mechanism, Vopt, chooses the outcome of the k-Vickrey double auction that gives the most

revenue. Its profit is

Vopt(b, s) = max
k
Vk(b, s) = max

k
k(b(k+1) − s(k+1))
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It is easy to see from the definition of F (2) and Vopt that for all b and s, and F (2)

exchanging at least k items, Vopt(b, s) ≥ k−1
k F (2)(b, s). This allows us to compare the

profit of a CORE mechanism using a profit extractor for Vopt to F (2).

We now give the definition of a double auction profit extractor for Vopt. From this

definition it is obvious that the revenue of the mechanism is R is R ≤ Vopt and zero

otherwise.

Definition 11.18 The double auction profit extractor, Vopt-ExtractR, on input b and s

gives the outcome of Vk for the largest k such that Vk(b, s) ≥ R.

Lemma 11.9 Vopt-ExtractR is truthful.

Proof: We show that the auction is bid-independent for buyers. The case of sellers is

analogous. Define the bid-independent function f(b−i, s) for buyers as follows for input b−i

and s:

• Compute b(i) from b−i as

b
(i)
j =







bj if i 6= j

∞ otherwise.

• Simulate Vopt-ExtractR on b(i) and s to compute a buyer allocation, x, and prices, p,

(and seller allocation, y, and prices, q).

• If xi = 0, i.e., buyer i is not allocated the item in the simulation, then output price

∞.

• Otherwise, xi = 1. Output price pi, the price buyer i paid in the simulation.

We now show that the bid-independent mechanism, BIf , is identical to Vopt-ExtractR.

Suppose buyer i bidding bi is allocated an item at price pi by Vopt-ExtractR(b, s). This

occurs because there is some largest k with b(k+1) < bi such that Vk(b, s) ≥ R. It is easy to

see that for k′ ≥ k, Vk′(b, s) = Vk′(b(i), s). This is because these Vickrey auction revenues

are not a function of the values of the top k buyer bids and bidder i’s bid is one of the top k
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in both b and b(i). Thus, the simulation of Vopt-ExtractR(b(i), s) also finds k as the largest

value with Vk(b
(i), s) ≥ R, and the sale price offered buyer i in BIf is b(k+1) also.

Suppose now that buyer i bidding bi is not allocated an item by Vopt-ExtractR(b, s). This

means that for all k such that b(k) < bi, Vk(b, s) < R. Since for all k, Vk(b
(i), s) ≥ Vk(b, s),

the simulation of Vopt-ExtractR(b(i), s) either finds a sale price that that is more than bi or

it does not sell any items. In either case buyer i is rejected by BIf . 2

Definition 11.19 The approximate double auction profit extractor, F (2)-ExtractR, on input

b and s computes the largest k such that k(b(k)−s(k)) ≥ R, buys from the lowest k−1 bidding

sellers at price s(k), and sells to the top k− 1 bidding buyers at price b(k). All other buyers

and sellers (including the kth) are rejected.

F (2)-ExtractR is closely related to Vopt-ExtractR and it is not difficult to adapt the proof

of Lemma 11.9 to show that F (2)-ExtractR is truthful. We omit the details.

The following theorem shows that F (2)-ExtractR is the optimal approximate profit ex-

tractor for F (2) since its approximation ratio matches the lower-bound of Theorem 11.8.

Thus, Theorem 11.8 is tight.

Lemma 11.10 On bids b and s such that F (2)(b, s) exchanges k items, F (2)-ExtractR is

a k
k−1-approximate profit extractor for F (2). I.e., it achieves revenue at least R(k − 1)/k if

R ≤ F (2)(b, s).

Proof: Suppose that F (2)(b, s) ≥ R. Let k be the number of items exchanged by F (2) and

let k′ be the number of items exchanged by F (2)-ExtractR. Note that F (2)-ExtractR finds the

largest k′ such that k′(b(k′)−s(k′)) ≥ R. By the definition of k, F (2)(b, s) = k(b(k)−s(k)) ≥ R.

Thus, k′ ≥ k. The revenue of F (2)-ExtractR is

F (2)-ExtractR(b, s) = (k′ − 1)(b(k′) − s(k′))

≥ k′−1
k′ R ≥ k−1

k R.

2

Lemma 11.11 F (2)-ExtractR is safe.
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Proof: We must show that COREc with F (2)-ExtractR does not effect infeasible outcomes,

i.e., outcomes where the number of winning buyers is not equal to the number of winning

sellers. Let k be the number of items sold by F (2) on input b and s and let F = F (2)(b, s)

be its profit.

1. For buyer i not allocated items by F (2) we have F (2)(b−i, s) = F . Likewise for sellers.

2. F (2)-ExtractR for R ≤ F has at least k items exchanged.

Note that the top k buyers and sellers always exchange items regardless of consensus. Fur-

ther, by 1 above, the bottom n−k buyers and sellers always have consensus. Thus the same

number of these additional buyers and sellers exchange items. 2

11.5.2 CORE for double auctions

We will show below how to use the CORE framework and approximate profit extractor

F (2)-ExtractR to obtain a 3.75-competitive double auction. We can apply a similar tech-

nique to the exact profit extractor for Vopt; however, this only gives a provable competitive

ratio of 4.15 so we omit the details.

As discussed above, the CORE with profit extractor approach only works on b and s

that are ρ-smooth for F (2). Our goal, however, is an auction that is constant-competitive

with F (2)(b, s) for any b and s. We make the following observations about F (2). Let k be

the number of winners in F (2)(b, s).

• If k ≥ 3 then b and s are k
k−1-smooth. I.e., for all i,

k − 1

k
F (2)(b, s) ≤ F (2)(b−i, s),F (2)(b, s−i) ≤ F (2)(b, s).

In this case, for c > 3/2, COREc with profit extractor F (2)-ExtractR is constant-

competitive:

E[COREc(b, s)] =
F (2)(b, s)

ln c

(
k − 1

k

)(
k − 1

k
− 1

c

)

. (11.3)

• For k = 2, V1 is 2-competitive with F (2).
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Thus, it is possible to take a convex combination of the COREc auction with V1 to get a

constant-competitive auction in worst-case.

Definition 11.20 (COREc,p) The double auction COREc,p parameterized by c > 3/2

and p ∈ (0, 1) flips a coin and with probability 1 − p runs COREc with profit extractor

F (2)-ExtractR and with probability p runs V1.

Theorem 11.12 With a near optimal choice of c = 2.62 and p = 0.54, the COREc,p double

auction with profit extractor F (2)-ExtractR is 3.75-competitive against F (2).

Proof: Let k be the number of items sold by F (2)(b, s). We consider the case k = 2 and

k ≥ 3 separately.

Case 1 (k = 2): Our expected profit is pF (2)/2.

Case 2 (k ≥ 3): From Vickrey we get pF (2)/k and from COREc we get (1 − p) times the

quantity in Equation (11.3) for a combined expected profit of:

F (2)(b, s)

(
p

k
+

1− p

ln c

(
k − 1

k

)(
k − 1

k
− 1

c

))

.

Our choice of p and c optimizes and balances the two cases. Numerical analysis gives

c = 2.62 and p = 0.54 as a near-optimal choice. This choice gives a competitive ratio of

3.75. 2

Note that the competitive ratio of the CORE basic auction is better than the competitive

ratio of the CORE double auction (3.39 vs. 3.75). This difference is due to the fact that

the former uses an exact revenue extractor and the latter uses an approximation.

11.6 Monotonicity

We now extend the notion of monotonicity to double auctions. The intuition underlying our

notion of monotonicity is that if an auction is to achieve a large profit, the bid-independent

function defining the auction should output higher prices for buyers when it sees higher

buyer bid values.
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Definition 11.21 A double auction is monotone if:

• For any pair of buyers i and j with bi ≤ bj, we have:

∀x ≤ bi, Pr[buyer i wins at price ≤ x] ≤ Pr[buyer j wins at price ≤ x] .

• For any pair of sellers i and j with si ≥ sj, we have:

∀x ≥ si, Pr[seller i wins at price ≥ x] ≤ Pr[seller j wins at price ≥ x] .

11.6.1 Upper Bound on the Profit of Truthful Mechanisms

In this section, we show that the profit for all monotone double auction mechanisms is

bounded by 2F(b, s). Recall in Chapter 8 we showed that no monotone basic auction could

achieve an expected revenue more than F(b) for any b (Theorem 8.1).

We conjecture that the same bound holds for double auctions as well, though what we

prove below is a factor of two worse.

Lemma 11.13 For any value v and buyer and seller bids b and s, define b′ and s′ as

b′i = bi − v and s′i = v − si for 1 ≤ i ≤ n. Then for any monotone double auction, M:

E[M(b, s)] ≤ F(b′) + F(s′).

Proof: Let x, y, p, and q be the outcome and prices when M is run on b and s. Let

X = {i : xi = 1} and Y = {i : yi = 1}. Note |X| = |Y |. Thus,

M(b, s) =
∑

i

pi −
∑

i

qi =
∑

i∈X

pi −
∑

i∈Y

qi

=
∑

i∈X

(pi − v) +
∑

i∈Y

(v − qi).

Let Av,s be the basic auction that on b′ simulatesM(b, s) to compute prices pi for each

bidder b′i and then offers them pi− v. It is easy to see that this is truthful, monotone (since

M is), and gives revenue

Av,s(b
′) =

∑

i∈X

(pi − v).
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Using the bound on the revenue of any monotone basic auction (Theorem 8.1) we get:

E

[
∑

i∈X

(pi − v)

]

= E
[
Av,s(b

′)
]
≤ F(b′).

Combining this with the analogous argument for s′ we have:

E[M(b, s)] = E

[
∑

i∈X

(pi − v)

]

+ E

[
∑

i∈Y

(v − qi)

]

≤ F(b′) + F(s′).

2

Theorem 11.14 For any bid vectors b and s, any truthful monotone double auction, M,

has expected profit at least 2F(b, s).

Proof: Find the largest ` such that b(`) ≥ s(`) and choose v ∈ [s(`), b(`)]. Now we let b′

and s′ be b′i = bi − v and s′i = v − si for 1 ≤ i ≤ n. For our choice of v, Lemma 11.13 gives

E[M(b, s)] ≤ F(b′) + F(s′).

Note that F(b, s) = maxi i(b(i) − s(i)). Let k be the number of winners in F(b, s). Note

that by our choice of v, we have b(k) ≥ v and s(k) ≤ v. This gives:

F(b′) = max
i

i(b(i) − v) ≤ max
i

i(b(i) − s(i)) = F(b, s), and

F(s′) = max
i

i(v − s(i)) ≤ max
i

i(b(i) − s(i)) = F(b, s).

Thus, E[M(b, s)] ≤ F(b′) + F(s′) ≤ 2F(b, s). 2

11.7 Conclusions

In this chapter we have given a game theoretic treatment of the off-line problem of matching

up buyers and sellers of a single identical commodity so as to maximize the worst case profit

of the arbitrating auctioneer. Open questions related to the double auction problem include

considering similar questions in an on-line setting where the buyers, sellers, or both arrive

one at a time and the auctioneer must decide whether to sell and at what price before the

arrival of the next customer.

We have also shown again how the consensus and revenue estimate technique reduces

private value optimization problems to private value decision problems. We applied this
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technique to the double auction problem using an approximate profit extractor (i.e., an

approximate solution to the “decision problem”). These results motivate the very natural

general questions about profit extractors. For what problems do exact or approximate profit

extractors exist? What characterizes such problems? With the reduction, answering these

questions gives an answer to the question of what private value optimization problems can

be solved almost as well as their public value equivalents.
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Chapter 12

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this work, we have shown competitive analysis to be a successful technique for ob-

taining provable performance bounds on worst case and promise versions of private value

profit maximization problems. The important distinction between our work and prior work

is that the mechanisms we design are not assumed to have any prior knowledge about the

input.

We develop a number of techniques for solving private value profit maximization prob-

lems including the use of randomized sampling, the private value decision problem (i.e.,

profit extractors), cancellable mechanisms, and the technique of obtaining a consensus on

revenue estimates. Random sampling is a general technique for performing market analysis

on the fly as the mechanism is running. The technique of cancellable mechanisms gave rise

to a reduction from private value optimization to public value optimization for the case that

the bidders are divided into markets – running a cancellable auction locally in each market

replaces the private values in the market with a single public value that can be collected

(if profitable) or cancelled (if not profitable). The technique of obtaining a consensus of

revenue estimates leads to a general reduction from private value optimization problems to

private value decision problems.

Through these techniques we have given solutions to the basic auction problem, the lim-

ited supply auction problem, the multi-item auction problem, the multicast pricing problem,

and the double auction problem.

A number of interesting questions still remain open. Recall, that in Chapter 4 we proved

that no symmetric basic auction is competitive. Further, we gave a symmetric auction that

uses two random bits and is competitive in worst case. A variant of this auction uses only

one random bit and is competitive on mass markets. There is still the question of whether

there exists a competitive deterministic auction that instead of randomness uses asymmetry,
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i.e., makes use of the arbitrary ordering of the bids in determining its outcome, to obtain

worst case or mass market competitiveness.

For randomized auctions, we have shown a lower bound on the competitive ratio of 2.42.

We have an auction that obtains a competitive ratio of 3.39. It is an open question as to

what the optimal worst case competitive ratio is – even for the case where there are only

three bidders. Recall that for the three bidder case the lower bound on the competitive

ratio is 13/6.

One key assumption in the relevance of our competitive framework of comparing the

auction revenue to an optimal single priced auction is that the bidders are a priori indistin-

guishable. Indeed, for the case where the bidders are divided into markets where bidders

within a single market are indistinguishable in advance but bidders in different markets can

be distinguished, it makes more sense, as we have done in Chapter 10, to compete with an

optimal auction that is allowed to set different prices for bidders that can be distinguished.

We leave as an open question a solution to the basic auction problem with attributes. In this

variant of the basic auction problem each bidder i is accompanied by an attribute ai. Two

bidders with the same attribute ai = aj cannot be distinguished but bidders with distinct

attributes can. This problem arises as a special case of the multicast pricing problem. We

note that our solution to the multicast pricing problem does not handle this special case.

Our solution to the multi-item unlimited supply auction problem requires, as a sub-

routine, an algorithm for computing the optimal sale prices for each item. Obtaining a

polynomial time algorithm for this public value problem that gives better than a log n-

approximation is an open question. Note that obtaining a log approximation can be trivially

achieved by computing the optimal price vector restricted such that all items are sold at

the same price, i.e, rj = rj′ for all j and j′. The computation problem of computing the

optimal prices is APX-hard (i.e., there is no polynomial time approximation scheme) [8].

An interesting question which we have not considered at all in this thesis is the multi-

item limited supply auction problem. In this private value problem there are m non-identical

items for sale and n bidders. Each bidder has a utility value for each item, but the items

are interchangeable in the sense that no bidder wishes to acquire more than one item, i.e.,

the unit demand case. The goal is to design an auction that obtains the maximum profit.
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As this is a special case of the unlimited supply problem, an efficient approximation to the

public value version of the problem is also an open question.

In Chapter 6 we showed that no truthful envy-free auction could be competitive. As

we were still interested in auctions with envy-free outcomes, we considered auctions that

are truthful with high probability instead of fully truthful. Indeed, under this relaxed

notion of truthfulness, we obtained competitive and envy-free auctions for mass markets.

This solution concept of truthfulness with high probability gives some of the power lost

by the fully truthful requirement back to the auctioneer and allows them to both obtain

a higher profit and have more flexibility over the nature of the solution such as restricting

it to be envy-free. A justification for truthfulness with high probability as a valid solution

concept is as follows. We have assumed that the auctioneer does not know a distribution

from which the bidders valuations are drawn. It is natural in such situations to assume

that the bidders also do not know the values of the other bidders. In this case, in a non-

truthful mechanism there is no obvious strategy for a bidder to follow to maximize their own

profit. In a mechanism that is truthful with high probability we give the bidders an obvious

strategy that is almost always optimal, i.e., bidding their true value. They can they choose

between this obvious strategy and trying to determine a non-obvious optimal strategy that

is a complex function of the values of the other bidders. As this latter task is not possible

unless each bidder knows the other bidders values, we can argue that in auctions that are

truthful with high probability, rational bidders will bid their true values. An interesting

area for future research is in developing alternative solution concepts to truthfulness that

allow problems to be solved that are impossible to solve with truthful mechanisms.

One assumption we made throughout this thesis is that the bidders do not collude. A

very interesting direction for future research involves relaxing this assumption and looking

at mechanisms that are collusion resistant. A promising direction along these lines is to look

for mechanisms that have the property that with high probability (in random coin flips made

in the mechanism) any coalition of colluding bidders of size t has no incentive to collude.

As an example, a weak notion of collusion resistance, that of group strategyproofness which

requires that if any member of a coalition gains from the coalition’s non-truthful bidding

strategy then some member of the coalition is hurt by it. The Consensus and Revenue
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Estimate Auction (CORE) is t-group strategyproof with high probability. We conjecture

that similar result can be shown for stronger notions of collusion resistance than group

strategyproofness.

With the multicast pricing problem and the double auction problem, we have begun to

look at optimization problems with limited feasible solutions and structured cost functions.

Of course, considering additional structured optimization problems in a private value profit

maximization framework is of interest. Along these lines there is the question of finding

profit extractors for other structured optimization problems. Such a profit extractor, if

found, could be used to solve the profit maximization problem using the consensus and

revenue estimation techniques developed in Chapter 11.

Research in the area of intersection between the fields of Economics, Game Theory, and

Computer Science is still quite new and there are many open questions in all aspects of the

area. Furthermore, we believe that the importance of understanding these problems is only

going to increase in the future as the need for solutions to problems with resource sharing

between parties with diverse and selfish interests becomes more crucial.
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