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MMSE Interference Suppression for 
Direct- Sequence Spread- Spectrum CDMA 

Upamanyu Madhow and Michael L. Honig, Senior Member, ZEEE 

Abstract- We consider interference suppression for direct- 
sequence spread-spectrum code-division multiple-access (CDMA) 
systems using the minimum mean squared error (MMSE) per- 
formance criterion. The conventional matched filter receiver 
suffers from the near-far problem, and requires strict power 
control (typically involving feedback from receiver to transmit- 
ter) for acceptable performance. Multiuser detection schemes 
previously proposed mitigate the near-far problem, but are 
complex and require explicit knowledge or estimates of the 
interference parameters. In this paper, we present and analyze 
several new MMSE interference suppression schemes, which have 
the advantage of being near-far resistant (to varying degrees, de- 
pending on their complexity), and can be implemented adaptively 
when interference parameters are unknown and/or time-varying. 
Numerical results are provided that show that these schemes 
offer significant performance gains relative to the matched filter 
receiver. We conclude that MMSE detectors can alleviate the need 
for stringent power control in CDMA systems, and may be a 
practical alternative to the matched filter receiver. 

I. INTRODUCTION 

EMODULATION of direct-sequence spread-spectrum D (DS/SS) code-division multiple-access (CDMA) signals 
is conventionally achieved with a matched filter receiver. 
Because the crosscorrelations between the spreading, or 
signature, sequences for different transmissions are nonzero, a 
nearby interferer can disrupt reception of a highly attenuated 
desired signal. Interference suppression schemes previously 
proposed [5 ] ,  [8]-[9], [14]-[16] can mitigate this near-fur 
problem by exploiting the structure of the multiple-access 
interference. These schemes are significantly more complex 
than the matched filter receiver and require explicit knowledge 
or estimates of interference parameters. Consequently, recent 
proposals for CDMA systems (e.g., see 141) assume a matched 
filter receiver, and solve the near-far problem by using power 
control, which requires feedback from the receiver to the 
transmitter. 

In this paper we propose and analyze several interference 
suppression schemes based on the minimum mean squared 
error (MMSE) criterion. This work, originally presented in 

[lo]-[ll], was motivated by recent work which has shown 
that MMSE equalization techniques can be used to suppress 
both intersymbol interference (ISI) and crosstalk interference 
in wire channels [l], [7], [13]. A major advantage of MMSE 
schemes, relative to other previously proposed interference 
suppression schemes, is that explicit knowledge of interference 
parameters is not required, since filter parameters can be 
adapted to achieve the MMSE solution. Also, the complexity 
of these schemes, measured in number of filter coefficients, 
can be adjusted to achieve a given level of performance. 

The MMSE linear detector for a pulse-amplitude modu- 
lated data signal in the presence of interfering data signals 
consists of a bank of filters matched to the pulse shapes 
of all active users followed by symbol-rate samplers and 
an Infinite-length Impulse Response (IIR) multi-input/single- 
output digital filter (see [7] and the references therein). The 
interference suppression schemes proposed here can be viewed 
as finite-complexity approximations of this detector. The first 
scheme proposed consists of sampling the channel output at the 
chip rate, and using an N-tap adaptive FIR filter to minimize 
the mean squared error (MSE) between the transmitted and 
detected symbol where N is the processing gain. This scheme 
is motivated by the fact that the MMSE linear detector just 
described can be implemented as an infinite-length fractionally 
spaced tapped-delay line. For the special case of symbol- and 
chip-synchronous CDMA transmissions, the N-tap detector is 
in fact equivalent to the MMSE linear detector. If, however, 
transmissions are symbol-asynchronous, then the MMSE linear 
detector requires an infinite number of taps. Furthermore, if 
transmissions are chip-asynchronous, then the MMSE linear 
detector requires that the tap spacing be smaller than the 
chip duration. However, our numerical results demonstrate 
that even in the chip- and symbol-asynchronous situation, 
the N-tap MMSE detector can offer a dramatic performance 
improvement relative to the matched filter detector. Finally, in 
the absence of multiple-access interference, the N-tap detector 
reduces to the conventional matched filter receiver. 

The remaining interference suppression schemes proposed 
~~ 
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to a bank of D filters, each of which is a cyclically shifted 
version of the matched filter. In the second scheme a single 
matched filter is used, but its output is sampled D times per 
symbol interval. In each case, the decision statistic is a linear 
combination of the D samples obtained in a symbol interval, 
where the weights are selected to minimize the MSE. Since 
D can be much smaller than the processing gain N ,  these 
schemes should be easier to adapt than the N-tap MMSE 
detector when N is large. The first scheme typically performs 
somewhat better than the second scheme. Furthermore, the first 
scheme can be implemented as a bank of D filters of length 
N/D, which are each sampled D times per symbol interval. 
This makes the complexity of the two schemes comparable. 

Interference suppression techniques for CDMA systems 
using the MMSE criterion have also been considered in [2], 
[5], [16], and [17]. An adaptive correlator, which is similar 
to the N-tap detector is proposed in [17]. However, the em- 
phasis in [ 171 is on supressing narrowband interference, rather 
than other wideband CDMA signals.The detector proposed in 
[16] uses an MMSE criterion to estimate a finite block of 
transmitted symbols. The front end of this detector consists 
of a bank of filters matched to the pulse shapes of all active 
users followed by symbol-rate samplers. Explicit knowledge or 
estimates of the interference parameters are therefore assumed. 
Also, the estimated symbols are obtained by processing all 
matched filter outputs which correspond to the entire block 
of transmitted symbols. In contrast, the detectors presented 
here process samples from within a single symbol interval 
to estimate the desired symbol, and require significantly less 
computation. 

The MMSE decision feedback equalizer (DFE) in the con- 
text of CDMA is considered in [2]. Since only decisions from 
the desired user are fed back, the feedback filter suppresses 
intersymbol interference, but not multiple-access interference. 
Since we focus on the latter in the present paper, we restrict 
attention to linear MMSE detectors of varying complexity. A 
multiuser decision-feedback detector, in which decisions on 
transmitted symbols from all users are fed back, is considered 
in [5]. Although the feedback filter in this case does suppress 
multi-user interference, this structure is more complex than 
the detectors considered in this paper, and is more difficult to 
adapt in the presence of unknown interferers. 

As the level of background noise tends to zero, or as the 
energies of the interferers increases to infinity, the MMSE 
linear detector converges to the decorrelating detector intro- 
duced in [8]-191, which eliminates multiple access interference 
at the expense of noise enhancement. Because the schemes 
considered here are finite complexity approximations of the 
MMSE linear detector, their performance is, in general, not 
as good as the performance of the decorrelating detector 
(which has the same complexity as that of the MMSE linear 
detector) [ll]. Nevertheless, the results in Sections I11 and V 
demonstrate that the schemes considered here are generally 
near-far resistant, in the sense defined in [9]. 

The next section presents the CDMA system model consid- 
ered, and the performance of the MMSE detectors presented 
in this paper is analyzed in Section 111. Section IV presents 
the two simpler interference suppression schemes. Numerical 

results are presented and discussed in Section V, and Section 
VI contains our conclusions. 

11. SYSTEM MODEL 

The received signal is the sum of K simultaneous CDMA 
transmissions plus additive white Gaussian noise. The received 
signal due to the jth user is given by 

r j ( t )  = Jq b ; , j s j ( t - i T - v j ) ~ ~ s ( ~ , t + B j ) ,  
00 

2=-= 

l < j l K  (1) 

where T is the bit interval, b; , j  E {11 -1) is the ith bit of 
the jth user, Pj, vj, and Oj are the power, delay, and carrier 
phase of the jth user, respectively, w, is the carrier frequency, 
and s j ( t )  is a spreading, or signature, waveform given by 

N-1 

s j ( t )  = -x-aj[Ic]$(t - IcT,) 
k=O 

where aj[k] E {-1, 1) is the kth element of the spreading 
sequence for user j ,  $(t)  is the chip waveform, N is the 
processing gain, and T, = TIN is the chip duration. We 
assume that $( t )  has unit energy and duration T,. 

The received signal is then 

K 

T ( t )  = C T j ( t )  + n(t)  (3) 

where n(t)  is white Gaussian noise with power spectral 
density N0/2. The problem considered is to demodulate the 
first transmission, which will be referred to as the desired 
transmission. It is assumed that the receiver is synchronized 
to this transmission, so that the lcth sample at the output of 
the chip matched filter is 

T [ k ]  = h/ 

j=1 

(k+l)Tc+vi 
T ( t ) $ ( t )  COS (4 + 61) dt .  (4) 

For the detectors considered in this paper all bit decisions are 
based on the discrete-time signal ~ [ k ] .  (The notation z[lc] will 
be used to denote samples of a continuous-time signal spaced 
at the chip interval.) 

We assume that the power and delay of the desired signal 
are, respectively, Pl = 1 and v1 = 0. For convenience we 
also consider a carrier-synchronous system in which the carrier 
phase B j  = 0 for each j ,  although our analysis is easily 
modified to take nonzero Oj into account. For 2 5 j 5 K ,  
the relative delay vj = (rj + Sj)Tc where rj is an integer 
between 0 and N - 1, and Sj = vj/T, - rj lies in the interval 
[0, 1). An asynchronous system is assumed in which both rj 
and Sj may be nonzero. 

Each detection scheme presented here estimates a given 
transmitted symbol from received samples within a single 
symbol period. The estimate of bo, 1 therefore depends only 
on the received signal for t E [0, TI, or equivalently, the 
vector of received samples rT = (r[O], . . . , T[N - 11). During 
this symbol interval the jth interfering signature sequence is 

kTc +vi 
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modulated by symbol bo, j  for vj < t 5 T ,  and by symbol 
b - i , j  for 0 < t 5 uj.  From (1)-(4) it can be shown that 

r = bo, iai + x f l ( b o ,  jao, j + b-1, j a - 1 ,  j) + n 

K 

(5a) 

wheretheN-vectoraj = (aj[O], a j [ l ] , - . - , a j [ N -  l])T,and 

j =2  

[ a O , j l k  = 41,jaj[k - T j ]  xk2r3 + rbZ, ja j [k  - Tj  - 11 Xk2r3+1 

[ O - i , j ] k  = $i,jaj[k + N - T j ]  X k l r J - i  

+ 42,jaj[k + N - ~j - 1 ] ~ k < ~ ~  (5b) 

for 0 5 k 5 N - 1 and 2 5 j 5 K where XA is the indicator 
function for the set A, 4 1 . j  = J: $(t)$(t + 6jTc)dt and 
4 2 , j  = s,'. $(t)$[t + (1 - Sj)Tc] dt. The numerical results 
in Section V assume that $( t )  is a rectangular pulse of width 
T, in which case 41,j = 1 - Sj and 4 2 , j  = Sj. The N- 
dimensional noise vector n is Gaussian with mean zero and 
covariance matrix a 2 1 ~  where I N  denotes the N x N identity 
matrix, and a2 = N0/2 .  

Note that 00, j and 0 - 1 ,  j are linearly independent and are 
modulated by different bits, so that the jth asynchronous 
interferer effectively contributes two interference vectors dur- 
ing a single symbol interval. We can therefore analyze the 
asynchronous system considered as a synchronous system with 
additional interferers. 

111. PERFORMANCE OF LINEAR MMSE DETECTORS 
Consider the problem of detecting the symbol bl given the 

received vector 
L 

r = x b j p j  + n (6) 
j=1 

where r E R M ,  the vector p 1  is the desired signal vector, 
b j ,  2 5 j 5 L, are symbols contributed by interferers, and 
{ p j } ,  j = 2 ,  . . . , L, is the set of interference vectors. We will 
assume that bj E {-1, 1}, that the transmitted symbols are 
independent and have zero mean, and that the noise vector n 
is Gaussian with zero mean and covariance matrix I?. 

Comparing (5) and (6), it is clear that (6) applies to the 
asynchronous CDMA system considered in the last section 
where the dimension M is the processing gain N, r = g 2 1 ~ ,  
the desired bit bl = bo, 1, the desired vector p 1  = al,  and 
the set of interference vectors is {flu,,, j , f l u - 1 ,  j } ,  

j = 2, . . . , K. The number of interference vectors L - 1 can 
range from K - 1 to 2(K - l ) ,  depending on the relative 
delays of the interfering transmissions. 

The detection schemes proposed in this paper all have the 
form 

where c E RM is chosen to minimize the mean squared error 
L 

MSE = E{(cTr  - b1)2} = (cTpl - 1)2 + x ( c T p j ) I  + C T r C  

(7) 
j = 2  

where the second equality follows from the assumption that 
the bits b j  are uncorrelated. For the N-tap MMSE detector, 
r in (6) and (5) are the same. Note that the matched filter 
detector corresponds to setting c = al.  For the other detection 
schemes described in Section IV, the vectors p j  in (6) are 
different from the analogous vectors in (5 ) ,  and the dimension 
M is less than the processing gain N. 

In addition to MSE, two other performance measures of 
interest are signal-to-interference ratio (SIR) and error proba- 
bility. The SIR is defined to be the ratio of the desired signal 
power to the sum of the powers due to noise and multiple- 
access interference at the output of the filter c. That is, 

It can be shown that the MMSE solution also maximizes the 
SIR. This maximum value is denoted by MSIR. 

Since all users transmit binary, equiprobable, antipodal 
symbols, we may condition on bl ,= 1 for the purpose of 
evaluating the error probability P(b1 # b l ) .  Conditioning 
further on the vector of interference bits bl = ( b 2 ,  . . . , b ~ ) ~ ,  
we obtain 

Pe(bl) = P(i1 # bl 1 bl  = 1, b ~ )  

where Q(x)  = (27r)-1/2Jzm ~ ~ ' / ~ d t .  The average error 
probability is then given by P ,  = Eb,{P,(bl)}. The worst 
case error probability is denoted as P,* = P,(b;) where b; is 
the worst case interference bit pattern (for bl = l),  specified 
by b; = -sgn ( cTp j )  for 2 5 j 5 L. A related performance 
measure that is considered later in this section is near-far 
resistance [8]-[9]. 

It is easily shown that the MMSE solution for c satisfies 

Ac = (1 - cTp l )p l .  (10) 

where A = C;=2p jpr  + r. All solutions to (IO) minimize 
the MSE, whether or not A is nonsingular. Note that A is 
positive definite (and hence nonsingular) if either the noise 
covariance matrix I? is positive definite or if the interference 
vectors { p j } ,  j = 2 ,  + .  . , K ,  span W M .  For nonsingular A it 
is shown in Appendix A that 

= (1 + ~ ~ A - ~ ~ ~ ) - ~ A - ~ ~ , ,  (1 1) 

MSIR = c T p l / ( l - c T p l )  =pTA- lp l  = MMSE-l-1. (13) 

If L - 1, the number of interference vectors, is less than 
M, the dimension of the signal vectors, and the noise is zero 
(small), then the matrix A is singular (ill-conditioned). This 
situation is likely to apply to the N-tap detector, since M = N 
is generally selected to be larger than L- 1 5 2(K - 1). In this 
case the following geometric derivation of the MMSE solution 
can be used to evaluate performance. 
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Fig. 1. Geometric representation of signal and interference vectors. 

If A is ill-conditioned, then there are different solutions for 
c which result in nearly the same MSE. This can result in 
tap wandering during adaptation, which has been observed in 
single-user applications by Gitlin et al. [6]. One solution to this 
problem, which slightly increases the MSE, is the tap leakage 
algorithm proposed in [6]. 

A. Alternative Derivation Using Orthogonal Decompositions 

In what follows it will be convenient to assume that the 
noise is white, i.e., that r = a 2 1 M .  This assumption does not 
entail any loss of generality since the noise n can always be 
whitened by an orthonormal linear transformation V where 
VrVT = a 2 1 ~ ,  assuming I? is positive definite. 

Define the integerence subspace SI as the subspace of RM 
spanned by the interference vectors p z , .  . . , p L ,  and let Sy 
denote the subspace of RM orthogonal to S I .  The desired 
vector p1 can then be expressed as 

(14) I I  P1 = P1 + 01, 
where p: denotes the projection of p1 onto SI and o: denotes 
the projection of p1 onto Sy. Fig. 1 illustrates these geometric 
relationships. The MMSE solution c must lie in the subspace 
S spanned by the signal vectors p1 , pz  , . . . , p L  since from (6), 
any vector w orthogonal to this space satisfies w T r  = vTn, and 
therefore only contributes noise to the output. Furthermore, the 
space S is the direct sum of the orthogonal subspaces SI and 
the subspace spanned by 0:. so that the MMSE solution can 
be written as 

c = CI + dlo: (15) 

where we have used the fact that cTpj = (c')'pj for 2 5 j 5 
L. Solving (16)-(17) gives 

where c' is given by 

B. Asymptotic Behavior of the MMSE Solution 

The quantities in (18)-( 19) will be specified in terms of the 
crosscorrelations of the signal vectors p1 , . . . , p L ;  however, 
before doing this we consider the limiting behavior of the 
MMSE solution as 1 )  the noise level goes to zero, and 2) the 
interference vectors increase in energy. First consider the zero- 
noise situation in which a' = 0. If 0: # 0, then clearly the 
interference can be eliminated by choosing c to be a multiple 
of 0:. This choice of c is called the zero-forcing solution. 
If a' = 0, then the zero-forcing solution gives zero MSE, as 
indicated by (18). In this case, the MMSE solution is therefore 

(20) 

where the scaling is determined by the requirement lcTrl = 

Now consider the near-far situation, in which the energy 
of one or more of the interference vectors can vary arbitrarily. 
Define wj = (Ipj112 as the energy of the jth signal vector 
where 1 5 j 5 L. For a given w1, we are interested in the 
MMSE solution c when the interference energies wz, . . . , W L  

assume values that maximize the MMSE. It is easily verified 
that the MMSE increases monotonically as a function of 
the interference energies so that we consider the asymptotic 
MMSE solution as wj -+ 03 for j E J,, for some subset 
J ,  ( 2 , .  . . , L} .  In addition, we assume that wj, j $! Jm, 
are constant. In contrast to the worst case MMSE performance 
considered here, we note that for the maximum-likelihood de- 
tector, the interference energies that maximize error probability 
are not easily determined [141. 

It is shown in Appendix B that the MMSE solution satisfies 

0: 

I 10: I I 
c =  - 

lcTplI = lbll = 1. 

lim cTpj = 0, j E J,. w, -io3 

That is, c is asymptotically orthogonal to the space spanned by 
the set of interference vectors { p j } ,  j E J,. In the worst-case 
situation in which these vectors span the entire interference 
subspace S I ,  we have that c' = 0 asymptotically, and we 

where c' is the projection of c onto S I ,  and dl is a scalar. 

(14) and (15) gives 
Projecting each side of (10) onto SI and Sy, and using 
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The MMSE solution is “near-far resistant” in the sense that 
the worst case MSIR in (22) is greater than zero provided 
that 11oi11 > 0. We now determine the near-far resistance 
of the MMSE solution in the sense defined in [81-[91. Let 
P,(n) be the average error probability for a given detector as 
a function of the noise variance 2. The asymptotic efJiciency 
of the detector is defined in [8]-[9], [15] as 

- 

y = sup{r;: lim P e ( a ) / & ( m / a )  2 0}, (23) 
u-0 

and is a limiting measure, as the noise level tends to zero, of 
how well the detector performs in the presence of multiple- 
access interference relative to its performance in the absence 
of multiple-access interference. The near-far resistance of the 
detector is defined in [8]-[9] as 

inf y. 77 = W 2 , . . . , W L  

That is, the near-far resistance is the asymptotic efficiency 
evaluated for worst case interference energies, and is a measure 
of the robustness of the detector with respect to variations in 
the received interference energies. 

As 0 -+ 0, the error probability for the MMSE detector 
considered here satisfies 

The asymptotic efficiency of the MMSE detector is therefore 
110:112/w1. Since this quantity is independent of the energies 
of the interference vectors, we have that 

The near-far resistance of the MMSE detectors considered is 
therefore the (appropriately normalized) norm of the compo- 
nent of the desired signal vector which is orthogonal to the 
space spanned by the interference vectors. 

The near-far resistance is nonzero if and only if the desired 
vector p1 is not contained in the interference subspace SI .  A 
necessary condition for this is to be true is that the dimension 
of SI be strictly less than the dimension of the signal vectors 
M .  Since the dimension of SI is upper bounded by L - 1, 
the number of interference vectors, it is reasonable to expect 
nonzero near-far resistance when L - 1 5 M - 1. We 
emphasize that this is neither a necessary nor a sufficient 
condition for nonzero near-far resistance, but is merely an 
approximate rule. Applying this rule to the N-tap MMSE 
detector, the signal vector dimension M = N ,  so that this 
detector has enough degrees of freedom to suppress ( N  - 
1)/2 asynchronous interferers. (Recall that each asynchronous 
interferer can generate at most two interference vectors, so that 
L - 1 5 2(K - 1)). In contrast, for synchronous CDMA, the 
N-tap detector has enough degrees of freedom to suppress at 
most N - 1 interferers, since each interferer generates only 
one interference vector (L - 1 = K - 1). 

C. MMSE Pet$onnance in Terms of Signal 
Energies and Cross- Correlations 

Rewriting (18)-(19) in terms of signal energies and cross- 
correlations gives somewhat different (but equivalent) ex- 
pressions for the MMSE solution c, the MMSE, and MSIR 
than (11)-(13). Define the unit-energy signal vector p j  by 
p j  = wJ1’2pj, and the normalized crosscorrelation between 
the jth and kth signals as R j k  = pTpk where 1 5 j ,  k < L. 
Let RI = ( R j k ) z < j , k < L  denote the nonnegative definite 
(L - 1) x (L - 1) interference cross-correlation matrix, and let 
pT = (R12, . . . , R I L )  denote the vector of cross-correlations 
between the desired vector and the interference vectors. 

and 0:. The projection of the desired 
signal onto the interference space SI can be written as p: = 
~ i u i ~ F = ~ z j j i ~ .  TO compute ZT = (zz,  . . . , zL) we note that 

We first compute 

pro: = j$(pl - p i )  = 0, 2 5 k 5 L, (27) 

which gives 

RIZ = p. (28) 

The vector z need not be unique unless the interference vectors 
are linearly independent, in which case z = Rllp.  It follows 
that 

I 

(29) 
From (26), the near-far resistance of the MMSE detector can 
be written as 

(30) 

where z is any vector that satisfies (28). It is easily shown that 
77 is unique even if (28) does not have a unique solution. 

To specify the MMSE solution we must compute &. By 
definition, 

\ -  

77 = 1 - pTz 

L 

cI = C d j p i ,  
j =2  

where ti? = (d2 ,  . . . , d L )  is determined from (19). It is shown 
in Appendix C that 

dI = (MMSE)J.lleI (32) 

where e: = (e2, . . . , e L )  satisfies 

(RIWIRI + ~ ‘ R I ) ~ I  = P,  (33) 

and that 

MMSE = [I + w l ( i  - pTz)/o2 + wlpTeIj-l, (34) 

MSIR = (w1/a2)[(1 - pTz) + a 2 p T e ~ ]  (35) 

where the (L-1) x (L-1) matrix W I  = diag[w2,. . . , w ~ ] .  An 
important difference between (34)-(35) and the equivalent ex- 
pressions (12)-( 13) is that the vectors that appear in (34)-(35) 
have L - 1 components, whereas the vectors in (12)-(13) have 
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(36) 

M components. The results for MSIR shown in Section V are 
computed from (35) when L < M (for the N-tap detector), 
and from (13) when L > M (for the simpler detection schemes 
to be described). 

The error probability conditioned on the interfering symbols 
(and on bl = 1) can now be evaluated in a straightforward 
manner from (9), and is given by (36) at the top of the next 
page. The average and worst case error probabilities, with 
respect to the interfering symbols, can be computed from the 
preceding expression as described at the beginning of this 
section. Although the preceding performance measures are 
uniquely specified, the vectors dI and e are unique if and 
only if the interference vectors are linearly independent. 

IV. SIMPLER INTERFERENCE SUPPRESSION SCHEMES 
In practice, the N-tap MMSE detector would be imple- 

mented as an N-tap adaptive filter. In situations where the 
processing gain N is large, and the received energy per 
chip is low, rapid estimation of the MMSE vector c may be 
difficult. This motivates the following interference suppression 
schemes, which contain fewer adaptive taps. 

A. Cyclically Shifed Filter Bank 

Recall that the MMSE solution c for detecting bl in (6) 
can be written as c = C f = , a , p ,  where aT = ( ~ 1 , .  . . , ( Y L )  
is an appropriately chosen L-vector. If the interfering signals 
p 2 ,  . . . , p L  were known, then the MMSE detector sign (cTr) 
could be implemented by taking the inner product of the 
received vector with each of the signal vectors (or matched 
filters) p J ,  j = 1, . . . , L, and then taking a linear combination 
of these outputs (i.e., weighted by the components of a). 

The first reduced complexity interference suppression 
scheme consists of replacing the matched filters p l ,  p a ,  . . . , p L  
in the MMSE detector with a set of D < N linearly 
independent vectors p l ,  f l , .  . , fDP1,  which are fixed a 
priori, and do not depend on the particular interference vectors 
(which are assumed to be unknown). The vector c defined in 
the last section is therefore restricted to have the form 

D-1 

c = a o P l +  &f3 (37) 
J=1 

where the tap weights (YO, ... , ag-1 are chosen to minimize 
E[bl - cTrI2. That is, c E RN is now parametrized by the D- 
vector (ao,. . . , ao-1). Notice that the choice ag = 1, a3 = O, 
1 5 j 5 D - 1, is the standard matched filter. 

The bank of D filters projects the original N-dimensional 
signal vectors onto a D-dimensional subspace. The near-far 
resistance of this D-tap detector equals that of the N-tap 
detector if and only if of, the orthogonal component of the 
signal vector in N-dimensional space, is contained in the D- 
dimensional subspace spanned by p l ,  f l,. . . , f D - l .  If this 

condition is satisfied, then the D-tap detector can be made 
equivalent to the N-tap zero-forcing solution by selecting the 
a,'s in (37) so that c is a multiple of 0:. This condition is not 
likely to be satisfied in general, so that the near-far resistance 
of the simpler D-tap scheme is typically strictly less than that 
of the N-tap detector. 

Applying the approximate rule stated at the end of Section 
III.B, the effective signal vector dimension for the D-tap de- 
tector is M = D, so that there are enough degrees of freedom 
to suppress (D - 1)/2 asynchronous strong interferers. This 
assumes that the filter vector pl, fl, . . . , fD- l  are linearly 
independent. In order to reduce the complexity of this D-tap 
scheme, it is advantageous to select the vectors f 1, . . . , f D-1 

to be cyclically shifted versions of the desired vector p l .  For 
a typical set of user signature sequences (e.g., PN sequences), 
the resulting filter vectors are independent (in fact, nearly 
orthogonal). 

The cyclically shifted filter bank (CSFB) scheme is illus- 
trated in Fig. 2. The filter outputs are sampled at the symbol 
rate and are combined by means of D taps. Referring to the 
description of the CDMA system in Section 11, the filters 
f, E RN,  i = 0,  . .  . , D  - 1, are cyclic shifts of the signature 
sequence a l ,  i.e., 

[ f J k  = a1 [ ( I C  + iA)  "IN] ,  
0 5 IC 5 N -  1, 0 5 i 5 D -  1. (38) 

Successive shifts are therefore spaced by A = LN/DJ. 
Defining y, = f r ,  0 5 i 5 D - 1, from (5) we have that 

K 

?/ = bo, 181 -k z [ b O ,  380,  3 + b-1 ,38 -1 ,  31 + w (39) 
3=2 

where yT = [yo,. . . , yD-l ] ,  

[s1lZ = f a l ,  o I i 5 D - 1, (40d 

[ S k , j ] Z  = & f T % , j ,  

0 5 i 5 D - 1, IC = 0, -1, 2 5 j  5 K ,  (40b) 

and the noise vector has components [w]; = fTn, 0 5 
i 5 D - 1, and has covariance matrix U with components 
[ ~ ] i , k  = g a f f k ,  o 5 i, IC 5 D - 1. The decision rule is 
then 

80 , l  = sgn (aT?/), (41) 

where a E W D  is chosen to minimize the MSE = E { ( a T y  - 

Clearly, (6) can be made equivalent to (39) by choosing the 
signal dimension M = D, the desired signal vector p 1  = 8 1 ,  

the set of interference vectors p 2 , . . .  , p L  as { s - I , ~ ,   SO,^}, 
2 5 j 5 K ,  and the noise covariance matrix I? = U. The 
performance of the CSFB scheme can therefore be evaluated 

bo, d21. 
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. 

(b) 

Fig. 2. (a) Detector with cyclically shifted filter bank. fo, ... , f D P 1  are 
cyclic shifts of the matched filter a l .  (b) Reduced complexity CSFB for 
D = 2. 

from the formulas in Section I11 by making the appropriate 
substitutions. 

We now show that the vector y can be generated with D 
filters each of length N / D ,  assuming that D divides N, so 
that the total number of taps in the filter bank is N ,  instead 
of ND. It is shown in Appendix D that the same reduction 
in complexity can be achieved even if D does not divide 
N (which is the case for the example used to generate our 
numerical results). 

The output of the ith filter f; after the zeroth symbol interval 
is 

N - 1  

y; = a1 [(j + iA)  mod N]r[j] 
j = O  

D-la-1 
= E a l [ k  +jA]r[(k + ( j  - i )A)modN].  (42) 

k=O j=O 

We now divide each filter f; into D disjoint contiguous 
subji2ters of length N/D.  The set of subfilters, which we 
denote as {ek}, k = l , . . . , N / D ,  is the same for each of 
the cyclically shifted filters fi, and is specified by 

[ejll~ = a l [ j + k A ] ,  0 5 j  5 A -  1, 0 5 k 5 D -  1. (43) 

Let &[m] be the output of the kth subfilter e k  at time m. 
Then (42) and (43) imply that 

D-1 

yi = C2/k[((k-i+l)A-l)mod N], 0 5 i 5 D-1, (44) 

that is, y; is the sum of the outputs of the subfilters ek, k = 
l , . - . , D ,  sampledat (chip) times [(k-i+l)A-11modN. To 
generate all D components of y the output of each {ek} must 
be sampled D times at chip times i N / D ,  i = 0, . , D - 1. 
This is illustrated in Fig. 2(b) for the case D = 2. Of course, 
to detect the mth bit bm, 1 all chip samples used to generate the 
corresponding vector of filter outputs are incremented by mN. 

k=O 

I VI 

t b-2,1 , b-LJ I b0.J 1 , 
I 1 

I bJ1,i I b0.l I bi , i  I - - 
one symbol interval (n 

Fig. 3. Illustration of channel output samples r[k], which are used to 
compute the estimated symbol bo, 1. The contribution to the channel output 
from the desired user and the jth interferer are shown. For the delay T~ shown 
in the figure, the estimate 6 0 , 1  depends on the interference symbols b-1, 3 ,  

b , j ,  h , j ,  and b-1 ,1 .  

B. Over-Sampling 

The CSFB scheme is similar (but not equivalent) to sam- 
pling the output of the single matched filter f a  = 01 D times 
per symbol period. Over-sampling the output of the matched 
filter in this context is analogous to the fractionally spaced 
equalizer for single-user channels [7]. Denote the matched 
filter output at time N - 1 - ZA as 

N - 1  

v, = a1 [k]r[k - iA] (45) 
k=O 

where A = [N/DJ is the interval between successive sam- 
ples. The decision rule for b a , ~  is then given by b a , ~  = 
sgn(aTw) where wT = (v_,,...,vg,...,~g-~--l), m is a 
phase offset, and a E R D  is chosen to minimize the MSE. 
In general, m can also be selected to minimize the MSE; 
however, the numerical results in the next section assume that 
m = [(D - l ) /2J .  It is shown in Appendix E that the vector w 
can be expressed as shown in (6) where p l ,  . . . , p L  are chosen 
appropriately. The performance of this scheme can therefore 
be evaluated by using the formulas in Section 111. 

From (45) it is apparent that samples r[k]  for k = -(D - 
m - ! ) A , . - . , N  - 1 + m A  are used to compute the esti- 
mate bo, 1 .  As illustrated in Fig. 3, depending on the relative 
delay rJ, the j th  interfering signal during this interval may 
contain segments from three different symbol intervals. The 
bits associated with these different segments are bo, 3 ,  b-1, 3 ,  

and either b-2, or bl,  J .  This is in contrast to the CSFB and 
N-tap MMSE schemes, in which the jth interfering signal 
contributes segments from at most two successive symbol 
intervals with associated bits and b - l , J .  Also, for the 
over-sampling scheme adjacent symbol intervals of the desired 
transmission, associated with bits b-1 ,1  and b l ,  1, act as 
additional interference, which is not present in the CSFB 
scheme. For the same value of D the performance of the 
over-sampling scheme is therefore expected to be, on average, 
somewhat worse than that of the CSFB scheme. According 
to the approximate rule stated at the end of Section 111-B, 
since each asynchronous interferer can effectively contribute 
three interference vectors, the over-sampling scheme should 
perform significantly better than the matched filter detector 
when the number of strong asynchronous interferers is less 
than or equal to (D - 1)/3. 

Both the over-sampling and CSFB schemes require D filter 
taps. However, the CSFB scheme requires D samplers (as 
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compared to one for the over-sampling scheme), together 
with D connections between sampled outputs as shown in 
Fig. 2(b). The increase in complexity required by the CSFB 
scheme relative to the over-sampling scheme seems quite 
modest so that the CSFB scheme may be preferable in many 
situations. 

V. NUMERICAL RESULTS 
We now compare numerically the performance of the in- 

terference suppression schemes discussed in preceding section 
with the matched filter receiver for a specific example. All of 
the following results assume that the processing gain N = 
31, and that the interferers are asynchronous, but have the 
same signature sequence, which is different from the desired 
signature sequence. Both the desired and interference signature 
sequences are Gold sequences taken from [3, Table VI. The 
corresponding interference vectors are linearly independent, 
due to the different delays of the interferers, and the fact 
that distinct shifts of a PN sequence are linearly independent. 
The delays of the interferers relative to the desired signal, as 
multiples of the chip interval T,, are denoted by vg, . . . .  v ~ .  
In order to reduce the computation required to average over all 
delays, we impose the relation v3 = vg + ( j  - 2)X (modulo N)  
for 3 5 j 5 K ,  for fixed A, which fixes the delay between user 
j ,  j > 3, and user 2. The following examples are averaged 
over v2. 

Fig. 4 shows a plot of near-far resistance, as defined in 
Section 111 versus the delay vg for the N-tap, CSFB, and over- 
sampling schemes. (The near-far resistance of the matched 
filter is zero.) The parameters are K = 3 users, X = 5.5,  and 
D = 7 for the CSFB and over-sampling schemes. According to 
the discussion in Section IV, the minimum number of taps for 
which the near-far resistance can be expected to be positive is 
D = 5 for the CSFB scheme and D = 7 for the over-sampling 
scheme. In fact, for D = 5 (not shown here), and for nearly all 
delays u2, the over-sampling scheme does have zero near-far 
resistance, and the near-far resistance of the CSFB scheme is 
quite small. Fig. 4 shows that the near-far resistance of each of 
the simpler schemes is very sensitive to delay, and can be quite 
small. In contrast, the near-far resistance of the N-tap MMSE 
detector is much less sensitive to delay, and stays relatively 
high. It is interesting that there are several delays at which 
the over-sampling scheme has greater near-far resistance than 
the CSFB scheme. However, the succeeding sets of numerical 
results, which are averaged over delays, show that the CSFB 
scheme offers a modest performance improvement relative to 
the over-sampling scheme. 

We now consider the situation in which S (strong) inter- 
ferers each have power P,  assumed to be large, relative to 
the desired user, and the remaining K - 1 - S interferers 
have the same power as the desired user. Figs. 5 and 6 show 
SIR and average error probability, respectively, as a function 
of P, which varies from 0 to 10 dB, relative to the desired 
user. The performance measures are averaged over the relative 
delay vz (quantized to multiples of T,/4). The signal-to-noise 
ratio for the desired user in the absence of multiple-access 
interference is fixed at 20 dB. The curves for the CSFB 

0 5 10 15 20 25 30 

Delay 

Near-far resistance of MMSE detectors versus delay vz ( N  = 31, Fig. 4. 
A’ = 3). 
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Fig. 5. SIR versus the relative power of strong interferers. For the N-tap 
MMSE detector ( N  = 31), K = 11 with 10 strong interferers, and for the 
simpler schemes, A = 5 with two strong interferers. 

scheme, over-sampling scheme, and matched filter receiver 
assume that K = 6 and S = 2, whereas the curves for the 
N-tap MMSE detector assume that K = 11 and S = 10. That 
is, for the simpler schemes there are five interferers, two of 
which are strong, and for the N-tap MMSE detector there are 
10 interferers, all of which are strong. 

Ignoring the potential problem of slow adaptation speed, 
Figs. 5 and 6 show that the N-tap MMSE detector essentially 
eliminates the need for power control. Despite their relative 
simplicity, the CSFB and over-sampling schemes perform 
substantially better than the matched filter receiver, and would 
likely loosen the requirements for power control in this con- 
text. These results also show that for the same D the CSFB 
scheme performs somewhat better than the over-sampling 
scheme. We add that the degradation in the performance of 
the MMSE schemes with respect to single-user performance 
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Fig. 6. 
The parameters are the same as in Fig. 5. 

Average error probability versus relative power of strong interferers. 

was found to be nearly independent of SNR for values of SNR 
greater than 10 dB. Finally, all of the interference schemes 
considered can be combined with power control, and should 
result in a performance improvement relative to that of the 
matched filter receiver with the same degree of power control. 

VI. CONCLUSION 
We have presented three MMSE interference suppression 

schemes, which offer a significant performance improvement 
relative to the matched filter receiver. The N-tap MMSE 
detector seems appropriate when the processing gain N is 
relatively small, which corresponds to relatively few simul- 
taneous transmissions. The CSFB and over-sampling schemes 
seem appropriate when N is relatively large, and there are 
relatively few strong interferers (because of power control). 
These detectors are significantly less complex than linear 
multiuser detectors previously proposed, such as the decor- 
relating detector [8]-[9], which in principle requires infinite 
memory. Of course, the MMSE schemes proposed here are 
easily modified so that the adaptive filter spans more than one 
symbol interval. This may be desirable if the adaptive filter is 
to suppress multi-path, as well as multiple-access, interference. 

A major advantage MMSE interference suppression 
schemes have over previously proposed multiuser detection 
schemes [5], [8]-[9], [14] is that the MMSE performance 
criterion allows filter parameters to be adapted in a straight- 
forward manner without a priori knowledge of the interference 
parameters. An important question is whether or not standard 
adaptive algorithms are able to track time-varying interference 
in a wireless environment. In addition to interference from 
other users, fading, multipath, and narrowband interference 
[12] must also be considered. Finally, the use of MMSE 
schemes to suppress both multiple-access interference and 
intersymbol interference in the context of CDMA with a finite 
bandwidth constraint is currently being studied. 

APPENDIX 

A. Derivation of (11)-(13) 

obtain 
Taking the inner product of each side of (10) with c, we 

Z A C  = cTpl (1 - c T p l ) .  

Substituting into the expression for MSE (7), and the expres- 
sion for SIR (8) gives 

MMSE = 1 - cTp l ,  
MSIR = c T p l / ( l  - c T p l )  = (l/MMSE) - 1. (A.l) 

Since the MSE is a quadratic function of c, (10) is a necessary 
and sufficient condition for minimizing the MSE. If A is 
singular, then all solutions to (10) yield the same MSE and 
SIR. If A is nonsingular, so that c is unique, then the MMSE 
condition (10) can be rewritten as 

('4.2) c = (1 - cTpl )A- 'p l .  

Taking the inner product of each side with p1 gives 

cTpl = (1 - cTpl)pTA-'pl.  

Solving for cTp l ,  and substituting into (A. 1)-4A.2) gives 
(1 1)-( 13). 

B. Proof of (21) 
We first note that 

lim cTpj = 0 ,  j E J,. 
wj-+w 

That is, if (cTpj)' 1 E for some j E J, and some E > 0, then 
(cTpj)' 2 E W ~  --f 00. Combining this with (7) contradicts the 
fact that MMSE 5 1 ( c  = 0 gives MSE = 1). 

Denote the space spanned by { p j } .  j E J,, as S,, and 
denote the projection of c onto S, as coo. (B.l) implies that 
as wI + 00, j E J,, cDo --$ 0. Consequently, 

w3 lim - 00 ( ~ , ) ~ p ;  = 0, i e J,, (B.2) 
3 E J 0 0  

since ((c:pi)' 5 W ; I I C " ~ ~ ~ ,  and the w; are bounded for 
i J,. 

To establish (21) we project each side of (10) onto S, to 
obtain 

L 

c ( c T p j ) p j "  + C T ' C ~  = (1 - c T p l ) p y ,  (B.3) 
j = 2  

1 5 j 5 L where the projection of p j  onto S, is denoted as 
pj". Premultiplying each side of (B.3) by ( c , ) ~  gives 

L 

C ( C T P j ) [ ( W P j " 1  + ~ ' l l C " I l 2  = (1 - CTPl ) [ (Cm)TP?l .  
j=2 

(B.4) 
Combining this with (B.2) and using the fact that cTpj = 
( C - ) ~ P ?  for j E J ,  gives 

(B.5) [(C")'PjI2 + ~211c"112 + 0, 
j€ Jm 

as wj --f 00, j E J,, which implies (21). 
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C. Derivation of (32)-(35) 
It is convenient to rewrite (16) as 

(C. 

where 
gives 

denotes the MMSE from (12). Substituting from (3 

L L  L 

j = 2 k = 2  k=2 

and taking the inner product of each side with pm for 2 5 
m 5 L gives (32)-(33). From (12) and (15) we have that 

Substituting (17) for d l ,  and (31) and (32) for (t?)T gives 

which implies (34) and (35). 

D. Complexity Reduction for  CSFB: General Case 

We show that the vector y can be generated with D - 1 filters 
of length A, and one of length A + S where S = N - DA. 
The output of fi at time N - 1 is 

N - 1  

yi = x a l [ ( k + i A ) m o d N ] r [ k ]  
k=O 

k=Om=O 
0-2A-1 

k=i  m=O 
A - 1 + 6  

m=O 

. ~ [ m  + (D - 1 - i )A + SI, 
for 0 5 i 5 D - 1. Define the subfilter eo-1 by 

The subfilters e o , “ . , e D - - 2  are again defined by (43). Let 
&[m] denote the output of the filter e k  at time m .  From (D. 1) 
we have that 

i-1 

k=O 
0 - 2  

+ x . l t k [ ( k  - i + 1)A - 11 + y ~ - 1 [ N  - 1 - ZA] (D.3) 
k=i 

which expresses yi as the sum of the outputs of the filters 
e l ,  . . . , e o - 1  at appropriate chip times. 

E. Over-Sampling Solution and Pegormanee 

The aperiodic crosscorrelation between the signature se- 
quences a k  and a; is denoted as 

From (45) and (5) w can be written as 

for 1 5 j 5 K where 

the index i takes on values -m,...,O,..., D - m - 1, 
q = 61 = 0, and PI = 1. Comparing (E.2) with (6), the 
vector s 1 , o  is the desired vector, and the remaining vectors 
are interference vectors (including s-1,1 and s 1 , 1  from user 
1). Note that for each 2 5 j 5 K ,  either S I ,  j or s-2, j must be 
zero. The Gaussian noise vector w has zero mean and D x D 
covariance matrix U with components 

Note that the performance of the CSFB scheme can similarly 
be expressed in terms of crosscorrelations between interfering 
signature sequences and cyclic shifts of the desired signature 
sequence. 

REFERENCES 

[I] M. Abdulrahman and D. D. Falconer, “Cyclostationary crosstalk sup- 
pression by decision feedback, equalization on digital subscriber loops,” 
IEEE J. Select. Areas Commun., vol. IO, pp. 640-649, Apr. 1992. 

[2] M. Abdulrahman, D. D. Falconer, and A. U. H. Shekh, “Equalization for 
interference cancellation in spread spectrum multiple access systems,” 
in Proc. VTC, May 1992. 

[3] F. D. Garber and M. B. Pursley, “Optimal phases of maximal sequences 
for asynchronous spread-spectrum multiplexing,” IEE Electron. Lett., 
vol. 16, no. 19, pp. 75&757, Sept. 1980. 

[4] K. S. Gilhousen et al.,  “On the capacity of a cellular CDMA system,” 
IEEE Trans. Veh. Technol., vol. 40, pp. 303-311, May 1991. 

[5] A. Duel-Hallen, “Decorrelating decision-feedback multiuser detector 
for synchronous code-division multiple-access channel,” IEEE Trans. 
Commun., vol. 41, pp. 285-290, Feb. 1993. 

[6] R. D. Gitlin, H. C. Meadows, and S. B. Weinstein, “The tap-leakage 
algorithm: An algorithm for the stable operation of a digitally imple- 
mented, fractionally spaced, adaptive equalizer,’’ Bell Syst. Tech. J., vol. 
61, no. 8, pp. 1817-1839, Oct. 1982. 

[7] M. L. Honig, P. Crespo, and K. Steiglitz, “Suppression of near- and 
far-end crosstalk by linear pre- and post-filtering,” IEEE J. Select. Areas 
Commun., vol. 10, pp. 614-629, Apr. 1992. 

[S] R. Lupas and S. Verdh, “Linear multi-user detectors for synchronous 
code-division multiple-access channels,” IEEE Trans. Inform. Theory, 
vol. 35, pp. 123-136, Jan. 1989. 

[9] -, “Near-far resistance of multi-user detectors in asynchronous 
channels,” IEEE Trans. Commun., vol. 38, pp. 496-508, Apr. 1990. 

[IO] U. Madhow and M. L. Honig, “Minimum mean squared error inter- 
ference suppression for direct-sequence spread-spectrum code-division 
multiple-access,” in Proc. 1st Int. Con$ Universal Personal Commun., 
Dallas, T X ,  Sept. 28-Oct. 1, 1992. 

[ 1 I ]  -, “Error probability and near-far resistance of minimum mean 
squared error interference suppression schemes for CDMA,” in Proc. 
IEEE Global Telecommun. Conf ,  Orlando, FL, Dec. 6 9 ,  1992. 



3188 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 12, DECEMBER 1994 

[I21 L. B. Milstein, “Interference rejection techniques in spread spectrum 
communications,” Proc. IEEE, vol. 76, pp. 657-671, June 1988. 

[13] B. R. Petersen and D. D. Falconer, “Minimum mean square equalization 
in cyclostationary and stationary interference-Analysis and subscriber 
line calculations,” IEEEJ. Select. Areas Commun., vol. 9, pp. 931-940, 
Aug. 1991. 

[14] S. Verdd, “Minimum probability of error for asynchronous Gaussian 
multiple-access channels,” IEEE Trans. Inform. Theory, vol. IT-32, pp. 

[15] -, “Optimum multi-user asymptotic efficiency,” IEEE Trans. Com- 
mun., vol. 38, no. 4, pp. 496-508, Apr. 1990. 

[16] Z. Xie, R. T. Short, and C. K. Rushforth, “A family of suboptimum 
detectors for coherent multi-user communications,” IEEE J.  Select Areas 
Commun., vol. 8, pp. 683-690, May 1990. 

[I71 C. N. Pateros and G. J. Saulnier, “Adaptive correlator receiver perfor- 
mance in direct-sequence spread spectrum communications,” in Proc. 

85-96, Jan. 1986. 

MILCOM ’92, pp. 17.3.1-17.3.5. 

Upamanu Madhow received the B.S. degree in 
electrical engineering from the Indian Institute of 
Technology, Kanpur, in 1985. He received the M.S. 
and Ph.D. degrees in electrical engineering from the 
University of Illinois, Urbana-Champaign in 1987 
and 1990, respectively. 

From August 1990 to July 1991, he was a 
Visiting Assistant Professor at the University of 
Illinois. From August 1991 to July 1994, he was a 
research scientist at Bell Communications Research. 
Since August 1994, he has been with the University 

of Illinois at Urbana-Champaign, where he is currently an Assistant Professor. 
His current research interests are in communication systems and networks for 
wireless mobile communications, and in high speed computer communication 
networks. 

Dr. Madhow was awarded the President of India Gold Medal for graduating 
at the top of his undergraduate class. He was the recipient of a University of 
Illinois fellowship from 1985 to 1986, and a Schlumberger fellowship from 
1987 to 1988. 

Michael L. Honig (S’&M81SM’92) was bom in phoenix. AZ, in 1955. 
He received the B.S. degree in electrical engineering from Stanford University 
in 1977, and the M.S. and h . D .  degrees in electrical engineering from the 
University of California. Berkeley, in 1978 and 1981. respectively. 

He subsequently joined Bell Laboratories. Holmdel, NJ, where he worked 
on local area netwollrs, adaptive filtering. and voiceband data transmission. 
In 1983 he joined the Systems Principles Research Division at Bellcore. 
where he worked on Digital Subscriber Lims and wireless cunmunications. 
He has also been a visiting lecturer at Princeton University. Since Fall 
1994, he has been with Noahwestem University, where he is currently the 
Ameritech Professor in Information Technology in the Electrical Engineering 
and Computer Science Department. 


