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Abstract—We consider a game theoretic model for two users
communicating over an interference channel, in which each user
can autonomously select its encoding and decoding strategy with
the objective of maximizing its own rate. We give an information
theoretic formulation for this game, which enables us to define
a Nash equilibrium region that is a natural extension of the
information theoretic capacity region of this channel. In previous
work, we completely characterized this Nash equilibrium region
for a deterministic interference channel model. Here, we show
that certain properties of this analysis extend to a Gaussian
channel model. In particular, we show that for a symmetric
channel, the symmetric sum-rate point is always achieved as an
approximate equilibrium.

I. INTRODUCTION

As wired and wire-line communication networks migrate to
more open models (e.g. open spectrum access), it is becoming
increasingly important to understand the interaction of various
users who may not have an incentive to cooperate with
each other. Such questions are naturally studied using game
theory. Here, we consider a canonical example of such a
problem, namely a game among two users sharing a Gaussian
interference channel. In this channel each user communicates
an independent message over a point-to-point link, and the
two links interfere with each other through cross-talk.

The capacity region of the Gaussian interference channel is
not known in general. However, recently it has been shown that
a very simple version of a scheme due to Han and Kobayashi
[1] results in an achievable region that is within one bit of
the capacity region for all values of channel parameters [2].
This result is particularly relevant in the high SNR regime,
where the noise is small and the achievable rates are high.
Furthermore, it is shown in [3] that the high SNR behavior of
the two-user Gaussian interference channel is in fact captured
by a deterministic interference channel, for which the capacity
region can be computed exactly using the results in [4]. (This
type of deterministic model was first proposed in [5] for
Gaussian relay networks.)

Unlike the classic strategy of treating interference as Gaus-
sian noise, information theoretic optimal or near-optimal
strategies require coordination between the two users. For
example, the Han-Kobayashi scheme requires the users to
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split their information into two streams, a common stream
and a private stream. The common stream is encoded so
that it can be decoded at the other user’s receiver and so
reduce the interference seen by that user. A natural question
is: would selfish users, interested only in maximizing their
own rate, have an incentive to implement such a strategy?
We study such a case, where each user individually chooses
an encoding/decoding scheme in order to maximize his own
transmission rate. The two users can then be viewed as playing
a non-cooperative game. We want to determine the set of Nash
equilibria (NE) of this game and compare the performance at
these equilibria to the (cooperative) capacity region. Clearly, if
a NE exists then the resulting rates have to be in the capacity
region, but the question is how many of the points in the
capacity region are Nash equilibria. Our focus is on a “one-
shot” game model in which each player has full information,
i.e. both players know all of the channel gains, and the actions
chosen by each player, as well as their pay-off function.

Other game theoretic approaches for the Gaussian interfer-
ence channel have been studied before, e.g. [6], [7]. How-
ever, there are two key assumptions in these works: 1) the
class of encoding strategies are constrained to use random
Gaussian codebooks; 2) the decoders are restricted to treat
the interference as Gaussian noise and are hence sub-optimal.
Because of these restrictions, the formulation in these works
are not information-theoretic in nature. For example, a Nash
equilibrium found under these assumptions may no longer
be an equilibrium if users can adopt a different encoding or
decoding strategy.

In [8] we gave an information theoretic formulation of
games on general interference channels which allows the
users to adopt any encoding and decoding strategy. In this
setting we defined a Nash equilibria region, which is a
natural extension of the information theoretic capacity region.
If a pair of rates lie in this region then for long enough
block lengths there exists a pair of encoding and decoding
strategies from which neither user is willing to deviate if
they require arbitrarily small probability of error. In [8], this
region was then completely characterized for the two-user
deterministic interference channel model from [3]. Moreover,
for this channel is was shown that there are always Nash
equilibria which are efficient, i.e., which lie on the maximum
sum-rate boundary of the capacity region. In this paper we



show that an analogous result holds for the Gaussian channel
model within a one-bit approximation. In other words, the
deterministic channel accurately approximates not only the
capacity region of the Gaussian channel but also the strategic
interactions of the two users in this channel.

II. PROBLEM FORMULATION

To begin we recall the basic interference channel game
defined in [8]. Communication starts at time 0. User i
communicates by coding over blocks of length Ni sym-
bols, i = 1, 2. Transmitter i sends on block k infor-
mation bits b

(k)
i1 , . . . , b

(k)
i,Li

by transmitting a codeword de-

noted by x(k)
i = [x(k)

i (1), . . . ,x(k)
i (Ni)]. All the information

bits are equally probable and independent of each other.
Receiver i observes on each block k an output sequence
y(k)

i = [y(k)
i (1), . . . ,y(k)

i (Ni)] through the interference chan-
nel, which specifies a stochastic mapping from the input
sequences of user 1 and 2 to the output sequences of user 1 and
2. Given the observed sequences up to block k, {y(m)

i }k
m=1,

receiver i generates a guess b̂
(k)
i� for each information bit.

Without loss of generality, we assume that this is done via
maximum-likelihood decoding on each bit.

Note that this communication scenario is more general than
the one usually used in multiuser information theory, as we
allow the two users to code over different block lengths. Such
generality is necessary here, since even though the two users
may agree a priori on a common block length, a selfish user
may unilaterally decide to choose a different block length
during the actual communication process.

A strategy si of user i is defined by its message encoding,
which we assume to be the same on every block and involves:

• the number of information bits Li and the block length
Ni of the codewords,

• the codebook Ci employed by transmitter i,
• the encoder fi : {1, . . . , 2Li} × Ωi → Ci, that maps on

each block k the message m
(k)
i := (b(k)

i1 , . . . b
(k)
i,Li

) to a

transmitted codeword x(k)
i = fi(m

(k)
i , ω

(k)
i ) ∈ Ci,

• the rate of the code, Ri(si) = Li/Ni.

A strategy s1 of user 1 and s2 of user 2 jointly determines
the probabilities of error p

(k)
i := 1

L

∑Li

�=1 P(b̂(k)
i� �= b

(k)
i� ), i =

1, 2. Note that if the two users use different block lengths, the
error probability could vary from block to block even though
each user uses the same encoding for all the blocks.

The encoder of each transmitter i may employ a stochastic
mapping from the message to the transmitted codeword;
ω

(k)
i ∈ Ωi represents the randomness in that mapping. We

assume that this randomness is independent between the two
transmitters and across different blocks and is only known at
the respective transmitter and not at any of the receivers.

For a given error probability threshold ε > 0, we define an
ε-interference channel game as follows. Each user i chooses
a strategy si, i = 1, 2, and receives a pay-off of πi(s1, s2) =
R(si) if p

(k)
i (s1, s2) ≤ ε, for all k; otherwise, πi(s1, s2) = 0.

In other words, a user’s pay-off is equal to the rate of the code

provided that the probability of error is no greater than ε. A
strategy pair (s1, s2) is defined to be (1− ε)-reliable provided
that they result in an error probability pk

i (s1, s2) of less than
ε for i = 1, 2 and all k.

For an ε-game, a strategy pair (s∗1, s
∗
2) is a Nash equilibrium

(NE) if neither user can unilaterally deviate and improve their
pay-off, i.e. if for each user i = 1, 2, there is no other strategy
si such that1 πi(si, s

∗
j ) > πi(s∗i , s

∗
j ). If user i attempts to

transmit at a higher rate than what he is receiving in a NE
and user j does not change her strategy, then user i’s error
probability must be greater than ε. Similarly, a strategy pair
(s∗1, s

∗
2) is an η-Nash equilibrium2 (η-NE) of an ε-game if

neither user can unilaterally deviate and improve their pay-off
by more than η, i.e. if for each user i, there is no other strategy
si such that πi(si, s

∗
j ) > πi(s∗i , s

∗
j )+η. Note that when a user

deviates, it does not care about the reliability of the other user
but only its own reliability. So in the above definitions (si, s

∗
j )

is not necessarily (1 − ε)-reliable.
Given any ε̄ > 0, the capacity region C of the interference

channel is the closure of the set of all rate pairs (R1, R2)
such that for every ε ∈ (0, ε̄), there exists a (1 − ε)-reliable
strategy pair (s1, s2) that achieves the rate pair (R1, R2). The
η-Nash equilibrium region CNE(η) of the interference channel
is the closure of the set of rate pairs (R1, R2) such that for
every η̃ > η, there exists a ε̄ > 0 (dependent on η̃) so that if
ε ∈ (0, ε̄), there exists a (1 − ε)-reliable strategy pair (s1, s2)
that achieves the rate-pair (R1, R2) and is a η-NE.

Clearly, CNE(η) ⊆ C and if η′ ≥ η, then CNE(η′) ⊆ CNE(η).
Here, our goal is to characterize rates in CNE(η) for a
symmetric two-user Gaussian interference channel represented
by

y1 = hdx1 + hcx2 + z1

y2 = hdx1 + hcx2 + z2

(1)

where for i = 1, 2, zi ∼ CN (0, 1) and the input xi ∈ C is
subject to the power constraint E[|xi|2] ≤ P . Following [2], we
parameterize this channel by the signal-to-noise ratio SNR =
P |hd|2 and the interference-to-noise ratio INR = P |hc|2. We
define the interference level α to be the ratio of SNR and INR
in dB, i.e.,

α =
log INR

log SNR
.

In [8], CNE(η) was studied for interference channel model
from [3], which can be viewed as an approximation of the
channel model in (1). In this case, CNE(0) is completely
characterized. This region is equal to the intersection of a
“box” B and the capacity region C of the deterministic channel
(see Figure 1). The intersection is always non-empty and
contains at least one point on the sum-rate boundary of C.

The characterization of CNE(0) in Figure 1 relied on know-
ing the exact capacity region C for the deterministic channel.
For the Gaussian channel C is only known in the case of very

1We use the convention that j always denotes the other user from i.
2In the game theoretic literature, this is often referred to as an ε-Nash

equilibrium or simply an ε-equilibrium for a game [13, page 143].
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Fig. 1. Examples of CNE(0) for for a symmetric deterministic interference
channel with normalized cross gain α.

weak [9]–[11] or very strong interference [1], [12] . Otherwise,
C is not known exactly but in [2] it is characterized to “within
one bit” for all parameter ranges. Specifically, [2] gave an
achievable region CHK using a version of the Han-Kobayashi
schemes and showed that for any (R1, R2) ∈ C it must be
that (R1 − 1, R2 − 1) ∈ CHK . This will effect how accurately
we can characterize CNE in two ways: first, in general we
can only characterize this region to within 1 bit, and second,
we must relax the allowable deviations a user can make to
be those in which it can improve its rate by at most one bit.
In other words, for the Gaussian channel in general we will
characterize CNE(1) to within one-bit (wob). Both of these
one-bit margins are directly related to the uncertainty in the
true capacity region of the Gaussian channel. For example, for
cases in which the capacity region is known exactly we can
tighten these results and exactly characterize CNE(0).

III. ANALYSIS

A. Achievability

For the deterministic approximation of the symmetric Gaus-
sian channel, the symmetric sum-rate optimal point is always
in CNE(0). Furthermore, for α > 2/3 all sum-rate optimal rate
pairs are in CNE(0) (see Figure 1). Our main result stated next
shows that an analogous results holds for the original Gaussian
channel.

Theorem 1: For a symmetric Gaussian channel the symmet-
ric sum-rate optimal point (wob) is in CNE(1) for all parameter
ranges. Furthermore, for α > 2/3 all sum-rate optimal points
(wob) are in CNE(1).

In [8], the result for the deterministic channel was based
on explicitly constructing schemes for each rate in CNE(0)
and showing that these where an equilibrium. The resulting
schemes can be viewed as a Han-Kobayashi scheme for the
deterministic channel. To prove, Theorem 1, we will follow
a similar procedure and show that for each choice of α, a
particular Han-Kobayashi scheme similar to the ones used in
[2] are an equilibrium which is also (wob) sum-rate optimal.

In these schemes, for a given block length n, user i chooses
a private message from a codebook Cp

i,n with rate Rp
i and a

common message from codebook Cc
i,n with rate Rc

i . These
codebooks satisfy the power constraints Pp and Pc, with
Pp + Pc = P . At each time, each user transmits the sum
of the common and private message. The private codewords
are meant to be decoded at only user i’s receiver while the
common codewords are to be decoded at both receivers. We let
INRp = |hc|2Pp denote the interference-to-noise ratio received
due to the private messages of each user.

Proof: (Theorem 1) The proof will be divided into 5 cases
which depend on the value of the interference parameter α.

Case 1: α ≤ 1/2. In this case in [2] it was shown that the
(wob) symmetric sum-rate optimal point in C is given by

Rp = log
(

1 +
SNR

1 + INR

)
,

which is achieved by each user only transmitting a private
signal (Pp = P ) and treating the interference from the other
user as noise (note that the interference may not be Gaussian,
but from the worst-case noise result in [14], it follows that a
user can still achieve rate Rp with arbitrarily small probability
of error.). We next argue that this also results in a rate pair in
CNE(1). To show this we must show that it is a 1-NE in any
ε-Game for ε small enough. Suppose that this was not true and
that user 1 could deviate and improve his rate to R1 > Rp +1
for an arbitrarily small ε. Then user 2 can still transmit at
rate Rp since this rate is achieved by treating interference as
noise. But this implies that the rate pair (R1, Rp) is achievable,
which contradicts (Rp, Rp) being (wob) sum-rate optimal in
C.

For very weak interference, defined as SNR and INR which
satisfy

INR(SNR) + INR3 ≤ 0.5(SNR2), (2)

it has been shown in [9]–[11] that the above scheme is in
fact sum-rate optimal (i.e. within 0 bits). In this case, we can
refine the previous argument to show that the symmetric sum-
rate point is in CNE(0). Furthermore, for all α < 1/2, it was
shown in [2] that as SNR and INR approach ∞ for a fixed
α the one-bit gap goes to zero and so for large SNR we also
have that the resulting rate pair is in CNE(0).

Case 2: 1/2 ≤ α ≤ 2/3. In [2] it was shown that in this
range the (wob) sum-rate can be achieved by setting INRp = 1
for each user. In fact in this range there are multiple choices
of INRp all of which result in a sum-rate that is (wob) optimal.
However, to construct an equilibrium, choosing INRp = 1 will
not work as we explain next.

Given a choice of INRp for this parameter range it is optimal
for a user to first decode both common messages treating both
private messages as noise and then decode its own private
message. To decode the common messages with arbitrarily
small probability of error, (Rc, Rc) must lie in the intersection
of two MAC regions (one corresponding to each receiver).3

3Note that here we are only considering a MAC for the common messages
and assuming that both receivers treat both of the private messages as noise.
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Fig. 2. Examples of the common rate MAC regions at receiver 1 and 2.

In a symmetric channel, there are two possibilities for the
intersection of these two regions as shown in Figure 2: either
they overlap so that the sum-rate point lies on the sum-rate
boundary of each MAC channel (as shown on the right) or
the sum-rate point is determined by the intersection of user
1’s single user constraint in the MAC for receiver 2 and user
2’s single user constraint in the MAC for receiver 1 (the case
on the left). Setting INR = 1 results in the later case. To
see that this is not a Nash equilibrium suppose that user 1
unilaterally increases his common rate to R1 and keeps his
private rate the same. After such a deviation, provided that
the rate pair (R1, Rc) lies in the MAC region for user 1, user
1 will still be able to reliably decode both his common and
private messages and thus will have improved his pay-off.4

We next show that each user can reduce the value of INR
from 1 so that the resulting rate pair lies on the sum-rate
boundary of each MAC. Specifically, the sum-rate boundaries
of these two regions will overlap if the following condition is
satisfied:

log

(
1 +

INR(1 − INRp

INR )

1 + INRp + SNR( INRp

INR )

)

≥ log

(
1 +

SNR(1 − INRp

INR )

1 + INR + SNR( INRp

INR )

)

Here the quantity on the left-hand side of the inequality is
the maximum common rate user i can achieve in the MAC
corresponding to receiver j �= i when that user is decoded
last, while the right-hand side is the maximum rate that user
i can achieve at the MAC for receiver i when that user is
decoded first. Simplifying, it can be seen that this requires
setting

INRp ≤ INR2 + INR3 − SNR(INR)
SNR2 . (3)

Suppose that we set INRp equal to the right-hand side of (3). It
can be shown with this value of INRp the sum-rate achieved by
both users will be strictly larger than the sum-rate achieved
when INRp = 1 (unless α = 2/3 in which case the right-
hand side of (3) is equal to 1) and so is also (wob) optimal.
Furthermore, at this value the sum-rate faces of the two MAC
regions intersect at a single point, which will be the corner
point of each MAC that corresponds to successively decoding
the intended transmitters message first.

4To be more precise, here we have argued that these points are not a NE,
but this does not rule them out as a 1-NE, i.e. the gain from these deviations
could be small.

For our choice of INRp, as SNR and INR scale with a fixed
α, we have log INRp

log SNR → 3α − 2. In [2] it was shown that for
the resulting sum-rate to be (wob) optimal it must be that
log INRp

log SNR → γ for some γ ∈ [3/α − 2, 0]. Hence, for large
enough SNR, the choice of INRp which satisfies (3) and is
(wob) optimal is to the first-order unique.

We now argue that this choice of INRp results in a 1-NE. Let
R = Rp +Rc denote the rate achieved by each user using this
strategy. Suppose that this is not a 1-NE and WLOG suppose
that user 1 can deviate and improve his rate to R̃ > R + 1.
To show that this is not possible, we introduce a Z-channel
in which user 1 one again has SNR1 and receives interference
from user 2 with INR2. However user 2 now no longer has
any interference from user 1 and instead has a channel with a
SNR equal to that seen by his common message in the original
channel, i.e.,

˜SNR =
SNR(1 − INRp

INR )

1 + INR + SNR( INRp

INR )
.

The resulting channel will be a Z-channel with strong inter-
ference and so the sum-rate is given by

RZS = log(1 + SNR + INR − INRp).

In this Z-Channel, suppose that user 2 again transmits the
same common signal as in the original channel. By construc-
tion, it will be able to achieve this rate with arbitrarily small
probability of error. Furthermore, if user 2 uses the proposed
Han-Kobayashi scheme, in the Z-channel it will again be
able to reliably decode at rate R since the only difference is
that user 2’s private message (which was independent of the
common message) is no longer present. The sum-rate achieved
by this scheme for the Z-channel is

RZHK = R + Rc = log
(

1 +
SNR + INR − INRp

1 + INRp

)
.

For SNR > 1, it can be seen from (3) that INRp < 1, in
which case it follows that RZHK > RZS +1, i.e. this scheme
is (wob) optimal for the Z-channel.5 Any deviation that user 1
can make in the original channel, he can also make in this Z-
channel to achieve the same rate R̃. Furthermore, since user 1
does not interfere with user 2, after user 1 makes this deviation,
user 2 can still achieve the same rate of Rc. This results in a
sum rate of R̃ +Rc > RZHK +1, but this contradicts RZHK

being (wob) sum-rate optimal for the Z-channel.
As in case 1, for all α in this range it was shown in [2]

that using our choice of INRp as SNR and INR approach ∞
for a fixed α, then once again the one-bit gap goes to zero
and so for large SNR we have that the resulting rate pair is in
CNE(0).

Case 3: 2/3 ≤ α ≤ 1: In this regime again the (wob)
optimal sum-rate can be achieved by setting INRp = 1 for

5Note that in terms of characterizing CNE(1), the case where SNR ≤ 1
is not interesting since from the single-user bound Ri ≤ log(1 + SNR), no
user can every improve his rate by more than 1 bit and so any strategy would
be a 1-NE.



each user [2]. Moreover, now INRp = 1 results in the common
rate pair (Rc, Rc) lying on the sum-rate boundary of the
corresponding MAC regions at both receivers and so we do
not need to reduce this value as in the previous case.

Now we prove that this is a 1-NE. Again let R = Rp + Rc

be the rate achieved by each user when using this strategy.
Suppose that this is not a 1-NE and that user 1 can deviate
and improve his rate to R̃ > R + 1. To show this is not
possible, we again introduce a Z-channel, except in this case
the Z-channel we will use is simply the original channel with
the cross-link between user 1 and user 2 removed. This is
a Z-channel with weak interference and as shown in [2] its
sum-rate RZ = log(1+SNR+ INR) is an upper bound on the
sum-rate for the original interference channel. Furthermore,
for α > 2/3 the sum-rate achieved by the Han-Kobayashi
scheme with INRp = 0 for the original interference channel is
within one bit of this bound, i.e,

2R ≥ RZ − 1. (4)

Since we have only removed interference, both users can
reliably transmit at rate R in the Z-channel by using the
same codebooks as they use for the Han-Kobayashi scheme
in the original channel. Now if user 1 can improve his rate to
R̃ > R + 1 in the original channel, he can also do so in the
Z-channel (since from the point-of-view of his receiver the
two channels are no different). Furthermore, since user 2 does
not see any interference in the Z-channel, he is still able to
transmit at rate R after user 1 deviates. But this means that the
sum-rate of R̃ + R > 2R + 1 is achievable in the Z-channel,
which contradicts (4).

Moreover, this argument can be extended to all other points
on the sum-rate boundary. In particular, for such points, the
sum-rate achieved is still equal to the sum-rate of the Z-
channel.

Case 4: 1 ≤ α ≤ 2. This corresponds to the strong inter-
ference case for which the capacity region is exactly known
and all points on the sum-rate boundary can be achieved by
using a Han-Kobayashi Scheme with INRp = 0 [1]. Such a
scheme is also an η-NE for any η > 0. The proof of this
follows essentially the same argument as the proof in case
3. In particular, for this regime, the Z-channel obtained by
removing one of the interfering links is again a bound on the
optimal sum-rate that is tight (in this case to within zero bits).
Moreover since the exact capacity region is known in this
case we can assert that all of the sum-rate optimal pairs are
in CNE(0).

Case 5: 2 ≤ α. This corresponds to the very strong interfer-
ence case, and once again the capacity region is known [12].
Indeed in this case the capacity is simply a “box” given by the
intersection of the single-user bounds for each transmitter. The
unique sum-rate optimal point is where each user is achieving
its single-user bound. To see that this is a η-NE is trivial,
since there is no way that a user can deviate and send at a
rate greater than the single user bound. Once again in this
case, we do not need a one-bit margin and have shown that
the sum-rate pair is in CNE(0).

B. Non-equilibrium points

In the previous section we showed that certain sum-rate
optimal rate pairs are in CNE(1). Comparing to Figure 1, these
correspond exactly to the efficient rate pairs in CNE(0) for the
deterministic model studied in [8]. The analysis in [8] provided
more than this, it also showed that some non-efficient rate pairs
are in CNE(0) and that certain rate pairs in C can not be in
CNE(0). In this section, we next give a simple bound which
shows that certain rate pairs in the capacity region are not
achievable as Nash equilibria.

Lemma 1: For any η ≥ 0, if (R1, R2) ∈ CNE(η), then Ri ≥
log(1 + SNR

1+INR ) − η for i = 1, 2.
Proof: Regardless of user j’s strategy, user i can always

achieve at least rate log(1 + SNR
1+INR ) ( with arbitrarily small

probability of error) by treating user j’s signal as noise. Hence,
this is always a possible deviation for user i in any ε-Game.
Thus user i’s rate in any η-NE must be at least Li − η.

For α < 1/2 this bound implies that no other rate pairs
(wob) besides the symmetric sum-rate pair can be in CNE(1).
Hence, in this regime we have completely characterized
CNE(1) to within one bit.

The bound in lemma 1 is analogous to the lower bounds
for each rate in the box B shown in Figure 1. Showing
the corresponding upper bounds for B and characterizing
inefficient Nash equilibria are topics of ongoing work.
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