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Abstract— In this paper, we study the benefits of using tunable
transceivers for reducing the required number of electronic ports
in WDM/TDM networks. We show that such transceivers can
be used to efficiently “groom” sub-wavelength traffic in the
optical domain and so can significantly reduce the number of
electronic ports compared to the fixed tuned case. We provide
a new formulation for this “tunable grooming” problem. We
show that in general this problem is NP-complete, but we are
able to efficiently solve it for many cases of interest. When the
number of wavelengths in the network is not limited, we show
that each node only needs the minimum number of transceivers
(i.e., no more transceivers than the amount of traffic that it
generates). This holds regardless of the network topology or
traffic pattern. When the number of wavelengths is limited, we
show an analogous result for both uniform and hub traffic in
a ring. We also develop a heuristic algorithm for general traffic
that uses nearly the minimum number of transceivers. In most
cases, tunable transceivers are shown to reduce the number of
ports per node by as much as 60%.

I. INTRODUCTION

High capacity optical networks typically use a combination
of wavelength division multiplexing (WDM) and time divi-
sion multiplexing (TDM) techniques. In such a WDM/TDM
network each fiber link supports multiple wavelength chan-
nels operating at a given bit rate, e.g., 2.5 Gbps (OC-48).
The offered traffic is typically at a finer granularity than 1
wavelength, e.g. a traffic demand of 155 Mbps (OC-3) will
only utilize 1/16th of a wavelength. To more efficiently utilize
the network, this sub-wavelength traffic can be time-division
multiplexed onto a wavelength, for example, using the Syn-
chronous Optical Network (SONET) multiplexing hierarchy.
Each node in such a WDM/TDM network requires some
amount of terminal equipment for sending/receiving data.
This includes optical transceivers for accessing the wavelength
channels and electronic equipment for carrying out optoelec-
tronic conversion and multiplexing the sub-wavelength traffic.
The amount of terminal equipment required is a predominate
factor in the cost of such a network, and reducing this cost
is a important design consideration. Recently, there has been
significant interest in reducing the required amount of terminal
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equipment or ports by efficiently grooming the low rate traffic
so that only a subset of the available wavelengths must be
electronically processed at any node. The wavelengths that do
not need processing can optically bypass the node without
requiring electronic processing.

Most work on grooming in WDM/TDM networks has
focused on the case where optical transceivers are fixed-tuned
and so a fixed subset of wavelengths are dropped at a each
node; each dropped wavelength requiring an electronic port
(e.g. a SONET ADM). The basic traffic grooming problem as
studied in [1–15] is to assign a given traffic requirement to
wavelengths so that the total number of needed ports are min-
imized. The general traffic grooming problem has been shown
to be NP-complete [1], even in the special case where all traffic
is sent to a single egress node. However, for several special
cases, algorithms have been found that significantly reduce the
required number of ports. For example, for uniform all-to-all
traffic, algorithms have been found for both bi-directional rings
[2], [5–7] and unidirectional rings [1]. Heuristic algorithms
for general (non-uniform) traffic have also been presented in
[3], [9–11], [13], [14]. The port requirement in a network can
be further reduced by using electronic switches (e.g. SONET
cross-connects) to more efficiently groom the offered traffic
[1], [4]. However, these switches also add a non-negligible
cost to the network.

In this paper, we consider an alternative approach to design-
ing WDM/TDM networks. This approach is based on using
tunable optical transceivers, where these transceivers can be
tuned from TDM time-slot to time-slot. With such transceivers,
sub-wavelength traffic can be time-division multiplexed onto
a wavelength optically. By shifting some the multiplexing
functionality from the electronic domain to the optical domain,
we can in many cases significantly reduce the amount of
terminal equipment required over an architecture with fixed-
tuned transceivers. Also, by grooming the traffic optically,
there is no need for using electronic cross-connects as in [4].
The cost for these savings is in the tunable transceivers. These
must have tuning times less than a time-slot, which may be
on the order of µs. Presently such fast-tunable transceivers
are becoming available but are much more costly than their
fixed tuned counterparts. It is reasonable to expect that as
demand for tunable components increases, their cost will drop.



One goal of this work is to quantify the savings in terminal
equipment due to using tunable devices. As we show in
this paper, this savings can be significant, both in terms of
electronic and optical hardware.

This work compliments work on reconfigurable WDM
networks, where tunable components are used to change
the virtual topology in response to traffic variations or for
protection purposes [16], [17]. Reconfiguration is generally
thought of as occurring on a much slower time-scale than
than that considered here. It is also related to work on
optical burst or packet switching [18], where fast-tunable
components are used for switching bursty traffic. In optical
burst or packet switching, the emphasis is on protocols for
resolving contention and reserving bandwidth for randomly
arriving traffic demands. Here our focus is on the case where
traffic demands are changing slowly and a fixed TDM schedule
can be calculated for each node. For example, this can be
appropriate in the metro area.

In the following, we first describe the network model to be
considered and give some examples to illustrate the benefits
of tunability. For a given traffic demand, our goal is to design
networks that use the minimum number of tunable ports,
where a tunable port refers to all the hardware necessary
to send and receive on a single wavelength including a
tunable optical transceiver and an electronic port. Solving this
problem, requires scheduling the offered traffic to the available
time-slots and wavelengths so that the minimum number of
ports are required. We give an integer linear programming
(ILP) formulation for this minimum tunable port problem in
a ring network. With a limited number of wavelengths, this
problem is shown to be NP-complete, but we show it is
efficiently solvable in a number of important cases including
uniform traffic between an even number of nodes and when
all traffic is sent to a single egress node. Additionally, in
these cases each node is shown to need no more ports than
the amount of traffic it generates. On the other hand, with
sufficient wavelengths available, we show the problem admits
a simple solution for any traffic demand. Again this solution
results in each node using the minimum possible number
of tunable ports. Moreover, this solution holds regardless of
the network topology. For the limited wavelength case and a
general traffic requirement, we also give heuristic algorithms
with bounded approximation ratios. Numerical results show
that using these approaches can provide as much as a 60%
reduction in equipment.

II. NETWORK MODEL

We consider a network with N nodes numbered 1, . . . , N .
On each wavelength in the network, up to g low-rate circuits
can be time division multiplexed; g is referred to as the traffic
granularity. A static traffic requirement for the network is
given by an N × N matrix R = [Ri,j ], where Ri,j indicates
the number of circuits required from node i to node j (the
diagonal entries of R will be zero). A traffic requirement is
symmetric if Ri,j = Rj,i for all i, j; this represents the case
where all connections are bi-directional. Each node i generates

Ri =
∑

j Ri,j circuits of traffic or, equivalently Wi = Ri/g
(fractional) wavelengths of traffic. For symmetric traffic, these
quantities are also equal to the amount of traffic terminated by
the node. For any architecture that supports the entire traffic
requirement, each node i must have at least �Wi� optical
transmitters and, assuming the traffic demand is symmetric,
�Wi� optical receivers. When traffic is not symmetric, the
number of transmitters and receivers at each node may be
different. However, for simplicity of exposition we focus in
this paper on the case of symmetric traffic. As will be evident,
our results are easily applicable to asymmetric traffic as well.
Also for simplicity, we focus in this paper on the case of
unidirectional rings, and leave more general topologies for
future research; although, as we point out, many of our results
are applicable to general network topologies. Let Wmin denote
the minimum number of (fractional) wavelengths needed to
support the given traffic requirement. In a unidirectional ring
with symmetric traffic, each symmetric traffic demand Ri,j =
Rj,i uses exactly Ri,j circuits around the ring, and so

Wmin =
∑
i�=j

Ri,j

2g
=

N∑
i=1

Wi

2
.

Notice that since Wmin maybe fractional, the actual number
of wavelengths required is �Wmin�.

Each node in the network is assumed to have a set of tunable
ports, where each port includes a tunable optical transmitter
and a tunable optical receiver. As noted above, we use the
term “port” to refer to all of the equipment required to receive
and transmit on one wavelength (see Fig. 1). From the above
discussion, for symmetric traffic, each node requires at least
�Wi� tunable ports. Notice that our definition of a port allows
a node to receive traffic on one wavelength and transmit on
another simultaneously.

We begin by considering several simple examples to il-
lustrate the potential advantages of tunability. Consider a
unidirectional ring with N = 4 nodes, a granularity of g = 3,
and assume that there is a uniform demand of one circuit
between every pair of nodes, i.e. Ri,j = 1 for all i �= j.
In this case Wmin = 2 and Wi = 1 for all i. Assume
exactly Wmin wavelengths are available. There are a total
of N(N − 1) circuits that need to be assigned to these two
wavelengths. With g = 3, as many as 6 circuits can be
assigned to each wavelength; this can be accomplished by
assigning both circuits for each duplex connection to same
time-slot. The traffic demand can then be supported by finding
an assignment of each duplex connection to one of the g
time-slots in the TDM frame, on one of the wavelengths.
Without the possibility of tunable transceivers, the assignment
of circuits to wavelengths corresponds to the standard traffic
grooming problem considered in [1–14]. A simple approach
would be to arbitrarily assign circuits to the wavelengths.
For example, one such assignment is shown in Table I. Here
(i − j) indicates the duplex connection between nodes i and
j. Notice that since transmissions from i to j and from j to
i do not overlap on the ring, they can share the same time-



slot/wavelength. In this assignment, each node must transmit

TABLE I

AN ARBITRARY TRAFFIC ASSIGNMENT FOR g = 3.

λ1 λ2

Slot 1 (1-2) (1-4)
Slot 2 (1-3) (2-3)
Slot 3 (3-4) (2-4)

and receive on both wavelengths. As a result, two transceivers
are needed per node for a total of 8 transceivers. A slightly
more clever assignment, shown in Table II, only requires 7
transceivers, as node 1 is only assigned to transmit and receive
on λ1.

TABLE II

OPTIMAL ASSIGNMENT FOR FIXED TUNED TRANSCEIVERS.

λ1 λ2

Slot 1 (1-2) (2-3)
Slot 2 (1-3) (2-4)
Slot 3 (1-4) (3-4)

In this simple example, the above assignment is the best
possible without tunability and results in a savings of 1
transceiver. Many researchers have studied the static traffic
grooming problem, and in general average transceiver savings
that exceed 50% has been obtained for various traffic scenarios
[1], [2], [10], [13]. All of the previous works have assumed
that the transceivers are fixed tuned. However, as mentioned
earlier, using tunable transceivers can help reduce the number
of transceivers significantly. For example, consider the traffic
assignment given in Table II. Notice that node 3 only transmits
and receives on one wavelength at any given time (i.e., λ2 in
slot 1, λ1 in slot 2 and λ2 in slot 3). Hence, if node 3 were
equipped with a tunable transceiver, it would only need one
transceiver rather than 2 and a total of 6 transceivers would
be required. In the assignment in Table II, nodes 2 and 4
must transmit on both wavelengths in the same slot and hence
must each be equipped with two transceivers. Alternatively, a
more clever assignment, shown in Table III, requires each node
to transmit and receive only on one wavelength during each
slot and so each node need only be equipped with a single
tunable transceiver. Thus, the number of transceivers can be
reduced from 7 to 4 by proper slot assignment. In this case,
the optimal assignment can be found by inspection; however,
in larger networks we will see that this can be a non-trivial
combinatorial problem.

In what follows, we develop slot assignment algorithms, for
certain cases, whereby each node only needs the minimum
number of transceivers (�Wn�). In order to accomplish this,
we must assign circuits to slots in such a way that each node
is never assigned (to receive or transmit) on more than �Wn�
circuits during the same slot. Note that we allow the transmitter
and receiver to be tuned to different wavelengths during a
slot and hence it is possible for a node (even with just one

TABLE III

OPTIMAL ASSIGNMENT WITH TUNABLE TRANSCEIVERS.

λ1 λ2

Slot 1 (1-2) (3-4)
Slot 2 (1-3) (2-4)
Slot 3 (1-4) (2-3)

transceiver) to receive traffic from one wavelength and transmit
to another during the same slot.

A. Synchronization issues

From the above discussion, it is clear that we require nodes
to be synchronized at the slot level. Obtaining synchronization
in a linear network (e.g., bus or ring) is rather straightforward,
as all of the nodes can be synchronized to a single point of
reference, as is commonly done with SONET rings. However,
when the propagation delays around the ring are not negligible,
a subtle problem arises in a slotted ring. Consider a slotted ring
where slots are of duration ts seconds and the propagation
delay around the ring is tp seconds. In order to maintain
synchronization, when a slot propagates around the ring, it
should return to its source on a slot boundary. Hence, as
long as tp is an integer multiple of ts, synchronization is
maintained. In practice, tp may be arbitrary and not a multiple
of ts. In SONET rings, this problem is easily overcome
by adding, using electronic buffers, a small delay at one
of the nodes in order to make sure that the effective tp is
an integer multiple of ts. In an optical ring adding delay
is also possible using fiber delay lines. However, such an
approach may be cumbersome. A simpler alternative is to
use a framing whereby transmissions are synchronized along
frame boundaries. Let g be the number of slots per frame, and
suppose that tp > gts, then, by starting a new frame every tp
seconds, synchronization can be achieved. Of course, this may
result in the ring being idle for a duration tp − gts. However,
this idle time can be reduced by transmitting multiple frames
every tp seconds. Specifically, we can transmit n = �tp/(gts)�
frames every tp seconds and the amount of time during which
the ring is idle would only be tp − ngts. As with SONET,
slotted rings require that the propagation delay around the
ring is greater than the frame duration. For example, SONET
frames are 125µs in duration; propagating at the speed of
light this requires a ring of at least 25 miles. In practice, this
minimum propagation delay around the ring can be artificially
added.

B. Tunable transceivers

In this architecture, nodes are equipped with tunable
transceivers. An example of such a node is shown in Fig.
1; however, many different implementations are possible. As
shown in the figure, each tunable transceiver consists of a
tunable optical ADM, a tunable receiver and a tunable laser.
In addition, each node must also be equipped with optical-to-
electrical (OE) and electrical-to-optical (EO) converters. There
are a number of possible implementations of such tunable
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Fig. 1. An example node with tunable transceiver.

transceivers; the specifics of which are not of interest to this
paper. However, the functionality of the tunable transceiver is
to allow a node to remove and add data to a wavelength during
a time slot. With time-slots durations on the order of µs; these
devices must be able to tune in sub-µs time.

As noted in the introduction, fast-tunable transceivers are
relatively expensive. Over the past few years a number of
manufacturers have began to offer such devices in the market
place. For example, fast-tunable lasers with switching times on
the order of a nanosecond or less have been demonstrated (e.g.,
[19], [20]). Fast-tunable receivers (i.e. filters) and associated
issues such as fast clock recovery [19] are also being actively
researched. A goal of this paper is to examine the benefits of
tunable components, so that the cost trade-off between tunable
and fixed-tuned devices can be better understood. As we show
in this paper, the use of tunable transceivers can reduce the
number of transceivers considerably. It is important to point
out that these savings are not only in terms of optical devices
(i.e., saving on optical receivers and lasers), but also on costly
OE and EO converters.

III. PROBLEM FORMULATION

We are interested in finding a time-slot assignment that min-
imizes the number of tunable ports needed for a network given
a traffic requirement R = [Ri,j ], and W available wavelengths
(clearly, to be feasible it must be that W ≥ Wmin). We refer
to this as the minimum tunable port (MTP) problem. Next,
we given a precise ILP formulation for this problem. For
simplicity, we restrict our attention to the symmetric traffic
case and assume that the network is a unidirectional ring.
However, the formulation can easily be extended to non-
symmetric traffic or other network topologies.

Let Xi be an integer variable indicating the number of
transceivers at node i. For k = 1, . . . , g and m = 1, . . . ,W ,
let Ti,j,m,k be a (0, 1)-variable indicating that a transmission
from node i to j is scheduled in time-slot k, on wavelength
m. In a unidirectional ring, routing is fixed and a transmission
from node i to j will use all of the links along the ring from
node i to j. Number the links along the ring l1, . . . , lN , where

li is the link between node i and i+1. Let El
(i,j) be a (0, 1)-

variable indicating that the transmission from node i to j uses
link l. Again, the values of El

(i,j) are a deterministic function
of i and j, and these variables are needed only for simplicity
of the presentation. The desired optimization problem is then

min
N∑

i=1

Xi

subject to:
∑
m,j

Ti,j,m,k ≤ Xi for all i, k (1)

∑
m,i

Ti,j,m,k ≤ Xj for all j, k (2)

∑
m,k

Ti,j,m,k = Ri,j for all i, j (3)

∑
i�=j

El
(i,j)Ti,j,m,k ≤ 1 for all l, k,m (4)

Ti,j,m,k ∈ {0,1}, El
(i,j) ∈ {0, 1} (5)

Constraints (1) and (2) ensure that no node can transmit or
receive on more wavelengths at any time than it has ports.
Constraint (3) ensures that the traffic demand is satisfied, and
(4) ensures that each time-slot on each wavelength is not used
more than once on any link on the ring. Constraint (5) is the
integer constraint.

We also consider a restricted version of the problem with
the assumption that every bi-directional pair must be assigned
to the same wavelength/time-slot, as in the examples from
Sect. II. We refer to this as the minimum tunable port with
symmetric assignments (MTPS) problem. With a unidirectional
ring, symmetric assignments imply that each pair will take up
one time-slot on one wavelength around the entire ring. This
simplifies the optimization. In particular, Ti,j,m,k = Tj,i,m,k,
and, due to the unidirectional ring routing, El

(i,j) + El
(j,i) = 1

(for all l). Specifically, the MTPS problem can be formulated
identically to the MTP problem except for the following three
changes. First in constraint (3), we only need to consider pairs
j > i, due to the symmetry. Second, constraint (4) is replaced
by

N∑
i=1

N∑
j=i+1

Ti,j,m,k ≤ 1 for all m, k, (6)

and finally, the variables El
(i,j) are not needed. Note that in

(6) there are Wg constraints, while in (4) there are NWg
constraints; this decrease reflects the reduced flexibility due
to the symmetric assignment assumption. Since any solution
to the MTPS problem is also a feasible solution for MTP,
the solution to MTP will clearly be less than or equal to the
solution to MTPS. Examples can be found where it is strictly
less; however, in the following, we will see that in several
important cases these two problems have the same solution.

IV. COMPLEXITY RESULTS

In this section we address the complexity of the MTP prob-
lem. We show that in general this problem is NP-complete.



We first show NP-completeness for the MTPS problem. Then
we proceed to show that the problem without the symmetric
assignment restriction is also NP-complete. Our proof is based
on relating the MTP problem to the EDGE COLORING prob-
lem for an arbitrary graph. The EDGE COLORING problem
is to find the fewest colors required to color the edges of a
given graph G so that no two adjacent edges have the same
color. The solution is called the chromatic index of the graph.
Vizing’s theorem [25], states that a graph’s chromatic index is
either ∆ or ∆ + 1, where ∆ is the maximum degree of any
node in the graph. Determining which of these values is the
chromatic index for an arbitrary graph is NP-complete [21] .

Theorem 1: The MTPS problem is NP-complete.
Proof: To prove this, we show that any instance of EDGE

COLORING can be transformed into an instance of the MTPS
problem. Given a graph G, we identify it with a traffic matrix
for the MTPS problem. Specifically, the nodes in the ring
correspond to the nodes in G. The traffic demand is such that
there is one bi-directional circuit (Ri,j=Rj,i=1) between each
pair i, j for which there is an edge between the corresponding
nodes in G, and Ri,j = 0 otherwise. Let the traffic granularity
g equal the maximum degree in the graph G (hence, each node
will generate at most one wavelength of traffic), and let the
number of available wavelengths W = �N/2�. We show that
the solution to the MTPS problem is N transceivers (one per
node) if and only if G has a chromatic index of g. From
Vizing’s theorem, it follows that any algorithm that can solve
MTPS can be used to determine the chromatic index of G,
and so MTPS must be NP-complete.

First, assume that the solution to MTPS uses N tunable
transceivers. Notice that by construction each node in the ring
must have at least one transceiver; if there are exactly N
transceivers then this bound must be meet with equality. With
1 transceiver per node, each node can transmit at most once
in each time-slot, and by associating each time-slot with one
color, it is clear that the corresponding solution yields an edge
coloring of G using g colors. Hence, from Vizing’s theorem,
the chromatic index must be g. Notice that this must be an
edge coloring because if two adjacent arcs had the same color,
then the common node must be scheduled twice in the same
time-slot.

Next, suppose that G’s chromatic index is g. In this case,
an edge coloring using g colors can be mapped back into a
time-slot assignment using exactly one transceiver for each
node. Also, the number of edges labeled with a given color
must be less than �N/2� (since each edge takes-up 2 of the
N nodes), and so this assignment can be accommodated on
the W available wavelengths. Therefore, we have shown that
the chromatic index of G is g if and only if the solution to
MTPS is N .

An example of the mapping between EDGE COLORING
and MTPS is given in Fig. 2, where a 4 node complete graph
is colored using 3 colors (C1, C2, C3). Since the graph is
complete, each node has degree 3; hence, g = 3 and the
corresponding traffic matrix is the uniform all-to-all traffic
matrix (i.e. Ri,j = 1 for all i �= j) used in the example of
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Fig. 2. A complete graph corresponding to the uniform traffic matrix. The
coloring corresponds to the slot assignment given in Table III.

Sect. II. The MTPS solution for this traffic, using 3 slots, was
given in Table III; this corresponds to the coloring in Fig. 2,
where slot j in the table is identified with color j in the figure.

The next lemma implies that using more than the minimum
number of wavelengths in the MTPS problem does not provide
any benefit in terms of the number of ports. This result is
useful in proving that the MTP problem is also NP-complete,
and it will also be used several times when we discuss specific
algorithms in the following sections.

Lemma 1: Any solution to the MTPS problem using W >
�Wmin� wavelengths can be converted in polynomial time
into a solution using exactly �Wmin� wavelengths without
increasing the number of ports.

Proof: Given a solution to the MTPS problem (i.e. a
time-slot assignment) using W > �Wmin� wavelengths. We
show that this can be converted into a time-slot assignment
using W − 1 wavelengths without increasing the number of
ports. The lemma then follows by iterating this argument.

Suppose that the nth time-slot has W circuits assigned to it.
Then there must be some other time-slot, m, with W − 2 or
fewer circuits. We can assume that time-slot m has exactly
W − 2 circuits (if this is not the case, we can add extra
“dummy” circuits to this time-slot). Consider the multi-graph1

H constructed as follows. Identify a node in H with each
transceiver of each node i assigned to the time-slots n or m.
Thus if node i has Xi ports, there will be at most Xi nodes
in H identified with this node, and possibly fewer if some
of these ports are not used in these time-slots. Place an edge
in H between the corresponding ports for each bi-directional
circuit assigned to one of these time-slots. This graph will have
a maximum degree of 2 since each port can be used at most
once in each time-slot. Thus it will consist of one or more
disjoint components where each component is either a cycle
or a path (a sequence of edges with no repeated nodes). As
in Theorem 1, the original time-slot assignment corresponds
to a proper edge coloring of H using 2 colors. Therefore,
each cycle must have an even length. If this were not the case
then there is no way the corresponding edges could have been
colored with 2 colors. Finally, note that this graph will have
an even number (W − 2 + W ) of edges; hence, the number
of paths with odd lengths must be even. We construct a new

1A multi-graph is a graph that may have multiple parallel edges between
some of the nodes; H will have multiple edges if there is a circuit between
the same pair of transceivers in both time-slots.



edge coloring of this subgraph using the same 2 colors in the
following manner. Each cycle and each even length path can
be colored using an equal number of each color. Since there
are an even number of paths with odd lengths, these paths can
also be colored so that each color is used an equal number
of times. This results in exactly W − 1 edges being assigned
each color; thus, the corresponding time-slot assignment will
require no more than W − 1 wavelengths for these two time-
slots and no additional ports as desired. Furthermore, the above
reduction can be done in polynomial time and will be repeated
at most g (W − �Wmin�) times.

An example of the construction used in this proof is
given next. Consider the time-slot assignment using W = 3
wavelengths shown in Table IV; this assignment is for a ring
with �Wmin� = 2 and N = 3 nodes. One possible version of

TABLE IV

EXAMPLE TIME-SLOT ASSIGNMENT

λ1 λ2 λ3

Slot 1 (1-2) (1-3) (2-3)
Slot 2 (2-3)

the corresponding graph H is shown in Fig. 3.2 Each node is
represented by 2 nodes in the graph since 2 transceivers per
node are required for the above assignment. The graph consists
of two disjoint paths– one of length 3 and one of length 1.
The edges are labeled with the original time-slot assignment
as well as the new time-slot assignment given by the above
lemma. The original assignment results in 3 edges labeled “1”
and only one edge labeled “2.” Changing the label on the path
of length 1, results in �Wmin� = 2 edges with each label. The

1

1’ 3

2

2’ 3’

1(1)

2(2)

1(2)
1(1)

Fig. 3. The graph H corresponding to the time-slot assignment in Table IV.
Each edge is labeled with x(y), where x is the original time-slot assignment
and y is the new assignment.

new time-slot assignment is shown in Table V and requires
only 2 wavelengths as desired.

TABLE V

THE NEW TIME-SLOT ASSIGNMENT AFTER APPLYING THE APPROACH IN

LEMMA 1.

λ1 λ2

Slot 1 (1-2) (1-3)
Slot 2 (2-3) (2-3)

A direct corollary of Lemma 1 is that the MTPS problem
remains NP-complete when the wavelength limit is set to the

2In general, H is not unique but depends on the assignment of circuits to
the available transceivers; any such assignment can be used.

minimum value. The next lemma shows that when Wmin is an
integer, the MTP problem and MTPS problem have the same
solution.

Lemma 2: If Wmin is an integer3, then any solution to the
MTP problem using W = �Wmin� = Wmin wavelengths must
also be a solution to the MTPS problem.

The proof of this is given in Appendix I. The basic idea is
that when Wmin is an integer, it can be shown that the only
way to accommodate the entire traffic requirement on Wmin

wavelengths is if a symmetric assignment is used. Using this
lemma, it can be shown that the MTP problem is also NP-
complete.

Theorem 2: The MTP problem with a wavelength limit of
�Wmin� is NP-complete.

The proof of this theorem is given in Appendix II. As in
the proof of Theorem 1, we again use a correspondence with
the EDGE COLORING problem.

V. MTP WITHOUT WAVELENGTH LIMITATION

We have shown that the MTP problem with a wavelength
limit of �Wmin� is NP-complete. In this section we show
that without this wavelength limitation, the MTP problem
can be efficiently solved and the solution requires exactly the
minimum possible number of ports. The discussion of this
section serves two purposes. First, it facilitates the discussion
of the next section where we consider the problem with the
restriction of using �Wmin� wavelengths. Second, all of the
results of this section are not topology dependent and so can
be applied to a general network topology. We first state this
result for the case where each node generates no more than
one wavelength worth of traffic. As in Sect. IV, the proof relies
on a relationship between EDGE COLORING and the MTP
problem; however, here a different correspondence between
these problems is used.

Theorem 3: If a network has no wavelength limitation and
Wi ≤ 1 for all i = 1, . . . , N , then each node requires only one
tunable transceiver. Moreover, a optimal time-slot allocation
can be found in polynomial time.

Proof: For this proof we represent the traffic requirement
using a bipartite multi-graph, B = (C,D,E), where C and D
are two disjoint sets of nodes and E is a multi-set consisting
of edges between nodes in C and nodes in D. Here C and
D will each correspond to the set of nodes, {1, . . . , N},
and there will be Ri,j edges between node i ∈ C and
j ∈ D. Note each edge in B represents a unidirectional circuit,
while in Sect. IV an edge in the graph G represented a bi-
directional pair of circuits. For a bi-partite multi-graph, it is
known that the chromatic index is equal to the maximum
degree [23]. For Wi ≤ 1, the maximum degree of B must
be less than or equal to g. Hence, an edge coloring of B
can be found that uses at most g colors. In such a coloring,
each color can again be identified with a particular time-slot
during which the corresponding circuit will be transmitted.
This is accomplished by having the transmitter and receiver

3Recall that Wmin was defined in units of fractional wavelengths.



both tune to an unused wavelength during the time-slot. Since
the number of wavelengths is not limited, a free wavelength
can always be found. Also, since no two adjacent edges have
the same color, each node will not have to send or receive on
more than one wavelength at any time, and so each requires
at most one tunable transceiver. Therefore, finding an optimal
solution to the MTP problem requires finding an optimal edge-
coloring of B. In a bipartite graph, an optimal edge coloring
can be found in polynomial time [22–24].

In the proof of Theorem 3, an assignment of circuits to time-
slots is identified with an edge coloring in the bipartite graph
B. Equivalently, this can be thought of as a decomposition of
B into a set of matchings, where each matching is assigned
to one time-slot. Also notice that the solution given in this
proof is not a “symmetric assignment” as required for the
MTPS problem (i.e., traffic from i to j is not carried on the
same wavelength/time-slot as traffic from j to i). In fact, only
one unidirectional circuit is assigned to each wavelength/time-
slot. This simplification results from not having a wavelength
limitation and allows us to solve an otherwise NP-complete
problem in polynomial time. Next, we extend this result to
the case where some nodes may generate more than one
wavelength worth of traffic.

Corollary 1: If a network has no wavelength limitations,
then each node requires �Wi� tunable ports. Moreover, a time-
slot allocation that achieves this can be found in polynomial
time.

Proof: If Wi ≤ 1, then this is follows from Theorem
3. When Wi > 1, for some i, the corresponding node in the
bipartite graph B will have a degree greater than g. Hence
an edge coloring of B will require more than g colors. 4

In this case, case we construct a new bipartite graph B′ =
(C ′,D′, E′) as follows: for each node i ∈ C, we put �Wi�
“children” nodes in C ′; likewise, for each node j ∈ D, we
put �Wj� “children” nodes in D′. For each edge (i, j) ∈ E,
we place an edge in B′ between one of the children of i and
one of the children of j such that no node in B′ has a degree
larger than g. This can be done because the total amount traffic
to be assigned to the �Wi� children of a node i must be less
than �Wi� g by definition. The graph B′ will again have a
chromatic index less than or equal to g. Given a coloring of
this graph using g colors, we again identify each color with
a time-slot. Each node i will now need one tunable port for
each of its �Wi� children in the graph B′. In this case, finding
an optimal solution to the MTP problem requires constructing
the graph B′ and finding an edge coloring in this graph, both
of which require only polynomial complexity.

As an example, consider a ring with N = 5 nodes, and
assume that there is a uniform traffic demand of one circuit
between each pair of nodes. The bipartite graph B in Theorem
3 for this example is shown in Fig. 4. This graph has a

4At first one might think that an edge coloring of G could directly be used
to find a time-slot assignment, by assigning no more than �Wi� colors to
each time-slot. The problem with this approach is that if the �Wi�’s are not
equal for all i it is not straightforward to do this in way that ensures no node
will need more than �Wi� ports.

maximum degree of N−1 = 4 and hence can be colored using
4 colors. If g ≥ 4, this coloring can be used to provide a time-
slot assignment using one tunable port per node. However, if
g = 3, then Wi = 4/3 and from Corollary 1, each node
will require �Wi� = 2 tunable ports. Following the proof of
Corollary 1, each node is split into 2 children. A corresponding
graph5 B′ is shown in Fig. 5; this graph has maximum degree
of 3 and so can be colored using g = 3 colors.

 1 2 4 3 5 

1 2 4 3 5 

Fig. 4. Example of bipartite graph, B, corresponding to uniform traffic
between N = 5 nodes.

 1 2 4 3 5 

1 2 4 3 5 

1’ 2’ 4’ 3’ 5’ 

1’ 2’ 4’ 3’ 5’ 

Fig. 5. Example of the graph B′ used in Corollary 1. The two children of
each node i in B are labeled by i and i′ in B′.

In a unidirectional ring, the above approach requires∑
i �Wi� wavelengths. This follows because each child of a

node as given in Corollary 1 will require one wavelength.
Furthermore,

∑
i �Wi� ≥ 2Wmin, with equality when Wi is

an integer for all i. In other words, approximately twice the
minimum number of wavelengths is required for this approach.
This is because the algorithm only assigns one circuit to
each wavelength during each time-slot. In the next section
we consider algorithms that use wavelengths more efficiently
by packing more than one circuit into a wavelength/time-slot
pair.

Also, notice that in the above approach, the assignments can
be arranged so that each node (child) in the graph B′ always
transmits on the same wavelength. This is because there is
only one transmission on each wavelength/time-slot pair and
so which wavelength this occurs on does not matter. Hence,
this solution can be realized if each node has fixed tuned
transmitters and only tunable receivers. Alternatively, it is also
possible for each node to have fixed tuned receivers and only
tunable transmitters. Finally, we note that the above solutions
extend directly to the case where the network does not have
a unidirectional ring architecture, or even a ring architecture
for that matter.

VI. LIMITED WAVELENGTHS

When wavelengths are limited, the time-slot allocation of
the previous section will no longer be feasible and the circuits

5There are many different ways to construct the graph B′; Fig. 5 illustrates
one possible construction.



must be more efficiently packed onto the available wave-
lengths. We consider this case in the following; in particular,
we focus on the case with the tightest wavelength restriction,
i.e., W = Wmin. We assume that the traffic requirement is
symmetric and consider slot assignment algorithms that use
symmetric assignments, as required for the MTPS problem.
From Lemma 2, we know that if Wmin is an integer then
there is no loss in performance by restricting ourselves to such
an assignment. For non-integer Wmin, symmetric assignments
may not be optimal for the MTP problem, but this restriction
simplifies the problem considerably. First, we show that in a
number of special cases the optimal slot-assignment can be
efficiently found. We then consider heuristics for the general
case.

A. Uniform all-to-all traffic

Our first result applies to the case of uniform traffic, i.e.,
there are exactly r circuits between each pair of nodes,
r = Ri,j , i �= j. The following theorem states that in this
important special case, if the number of nodes is even then
each node need only be equipped with the minimum number
of transceivers.

Theorem 4: In a ring with a uniform traffic requirement,
N even and �Wmin� wavelengths, each node requires �Wi�
tunable transceivers. Moreover, an optimal time-slot allocation
can be found in polynomial time.

Proof: Similar to the proof of Theorem 1, we again
use a correspondence between the traffic requirement and a
graph G. In this case, since there may be multiple circuits
between a pair of nodes, G may be a multi-graph. Each node
in G again corresponds to a node in the ring and there is
an edge between each pair of nodes corresponding to each bi-
directional circuit required between the nodes. Since the traffic
demand is uniform, G will be a complete multi-graph, with
r = Ri,j edges between each pair of nodes. A complete multi-
graph with an even number of nodes has a chromatic index
equal to its degree [26]. Thus, we can find an edge coloring for
this graph using (N − 1)r colors. Since the traffic is uniform,
each node will have one edge incident to it with each of the
(N − 1)r colors. Each edge is shared by two nodes, so there
will be a total of N/2 edges of each color. Such a coloring
can be found in polynomial time. We next show how to use
this coloring to find the desired time-slot allocation.

First, assume that there are Ŵ = (�Wi�) (N/2) wave-
lengths available. Since there are N/2 edges of each color, it
follows that using Ŵ wavelengths, all of the traffic correspond-
ing to �Wi� distinct colors can be assigned to a single time-
slot. Also, since �Wi� (N/2)g > Wi(N/2)g = N(N −1)r/2,
we can assign all of the traffic in this way. This results in
a time-slot allocation using �Wi� transceivers per node. If
Wi is an integer then, since N is even, Ŵ = �Wmin� and
we are done. If Wi is not an integer, then Ŵ > �Wmin�
and this allocation uses more than the required number of
wavelengths. However, from Lemma 1, the allocation can be
transformed in polynomial time into an allocation using only
�Wmin� wavelengths.

In Theorem 4, each node meets the lower bound on the
required number of ports. Therefore, we have found a solution
to both the MTPS problem as well as the MTP problem,
i.e., there is no loss from requiring all assignments to be
symmetric. This theorem only applies when there is an even
number of nodes in the ring. A complete graph with an odd
number of nodes does not have a chromatic index equal to its
degree; this case will be addressed in Section VI.C.

Example: Consider a ring with N = 6 nodes, a granularity
of g = 3, and assume that there is a uniform demand of one
circuit between each pair of nodes. In this case, Wi = 5/3
and Wmin = 5. The corresponding graph G has a chromatic
index of 5. Applying an edge coloring algorithm from [26],
we get the coloring of G using 5 colors shown in Table VI.

TABLE VI

AN EDGE COLORING FOR UNIFORM TRAFFIC.

Color Node pairs
C1 (1-6), (5-2), (4-3)
C2 (2-6), (1-3), (5-4)
C3 (3-6), (2-4), (1-5)
C4 (4-6), (3-5), (2-1)
C5 (5-6), (4-1), (3-2)

Since �Wi� = 2, each node needs 2 transceivers and so we
can assign two colors per time-slot. With Ŵ = 6 wavelengths,
a valid time-slot assignment results by assigning colors C1 and
C2 to time-slot 1, C3 and C4 to time-slot 2, and C5 to time-
slot 3. The resulting assignment is shown in Table VII. Using
Lemma 1, this can be transformed into an assignment using
Wmin= 5 wavelengths, as shown in Table VIII. Notice that in
both cases, each node appears at most twice in each time-slot
and hence requires �Wi� = 2 tunable transceivers.

TABLE VII

TIME-SLOT ASSIGNMENT USING 6 WAVELENGTHS.

λ1 λ2 λ3 λ4 λ5 λ6

Slot 1 (1-6) (5-2) (4-3) (2-6) (1-3) (5-4)
Slot 2 (3-6) (2-4) (1-5) (4-6) (3-5) (2-1)
Slot 3 (5-6) (4-1) (3-2)

TABLE VIII

TIME-SLOT ASSIGNMENT USING Wmin = 5 WAVELENGTHS

λ1 λ2 λ3 λ4 λ5

Slot 1 (1-6) (5-2) (4-3) (2-6) (1-3)
Slot 2 (3-6) (2-4) (1-5) (4-6) (3-5)
Slot 3 (5-6) (4-1) (3-2) (5-4) (2-1)

B. Egress Traffic

Another important class of traffic for which the optimal
time-slot assignment can be found is a ring with “egress”
traffic. That is a traffic demand where all circuits are either to
or from a single “hub” node in the ring, i.e. Ri,j > 0 only if



either i = h or j = h, where node h is the hub node. This
traffic demand is particularly relevant in metro area networks
where most of the traffic on the ring goes to one or two
central office hubs. We note that without tunable transceivers
the traffic grooming problem for egress traffic is NP-complete
[1]. However, with tunability, the MTP problem for egress
traffic can be solved optimally in polynomial time.

Theorem 5: In a ring with egress traffic and �Wmin� wave-
lengths, each node requires �Wi� tunable ports and an optimal
time-slot allocation can be found in polynomial time.

Proof: As in Theorem 4, let the traffic requirement
be represented by a multi-graph G. With egress traffic, this
graph will be a bipartite multi-graph (where one set of nodes
corresponds to the hub node(s) and the other to the non-hub
nodes). As noted in Sect. V, the chromatic index of a bi-
partite multi-graph is always the maximum degree and an edge
coloring achieving this can be found in polynomial time. Once
again this edge coloring can be used to find the desired time-
slot assignment.6

Theorem 5 does not require that the ring have a unidi-
rectional topology and applies to bi-directional rings as well
(with Wmin appropriately re-defined). It also extends directly
to a traffic pattern with multiple egress nodes, where there is
no traffic between the egress points, or to any other traffic
requirement for which the corresponding graph is bi-partite
(i.e., the nodes can be divided into two groups and traffic
only flows between the groups but there is no traffic within
a group). Finally, we note that with a single egress node, the
hub node must be able to receive traffic on all wavelengths; so,
tunable components are only needed at the non-egress nodes.

Example: Consider a ring with N nodes, a granularity of
g, and assume that there is uniform egress traffic to a single
hub, i.e. the traffic requirement is for r bi-directional circuits
between each non-hub node and the hub. In this case, for each
non-hub node Wi = r/g and for the hub node, h, Wh = (N−
1)r/g. Hence from Theorem 5, the traffic can be supported
using ⌈

(N−1)r
g

⌉
+ (N − 1)

⌈
r
g

⌉
(7)

tunable ports. With fixed tuned transceivers, the minimum
number of transceivers for uniform egress traffic is found in
[1]. Comparing (7) to the results in [1], it can be shown that
tunable ports can reduce the number of transceivers required
at the hub by up to 50%.

C. Heuristics Algorithms for arbitrary traffic demands:

We next present heuristic time-slot assignment algorithms
for an arbitrary (symmetric) traffic demand. First, we consider
a “0-1” traffic requirement, where Ri,j is either 0 or 1 for all
i and j; i.e. at most one circuit is established between each
pair of nodes. In this case the corresponding graph G will be a
simple graph7. For simple graphs, from Vizing’s theorem, the

6In fact, with a single hub node the time-slot assignment can be found
directly using a simple greedy algorithm.

7A simple graph is a graph with no parallel edges between the same pair
of nodes, i.e. it is not a multi-graph

chromatic index is at most ∆ + 1, where ∆ is the maximum
degree of the graph. Moreover, polynomial time algorithms for
coloring any simple graph with ∆ + 1 colors are known [25].
We use this fact to develop time-slot assignment algorithms
for the ring. To begin we construct the graph G based on the
traffic requirement. Following a similar approach to Corollary
1, we then construct a new graph G′ by replacing each node
i in G with �Ri/(g − 1)� “children nodes” in G′, and each
edge in G with an edge between two of the corresponding
children in G′ so that no node in G′ has a degree greater than
g − 1. In this case G′ can be colored using at most g colors
and this coloring can be used for a time-slot assignment, where
each node in G’ requires one tunable transceiver. Hence, using
this time-slot assignment, each node will need �Ri/(g − 1)�
tunable transceivers. With �Ri/(g − 1)� tunable transceivers,
each node will transmit on at most �Ri/(g − 1)� wavelengths
and the total number of wavelengths required will be at most
1
2 (

∑
i �Ri/(g − 1)�) wavelengths. This may be greater than

Wmin, but, using Lemma 1, it can be transformed into an
assignment using Wmin, wavelengths without increasing the
number of ports. To summarize, we have shown the following:

Theorem 6: For any 0-1 traffic requirement, a time-slot
assignment using Wmin wavelengths can be found (in poly-
nomial time) where each node i uses �Ri/(g − 1)� tunable
transceivers.

The optimal time-slot assignment requires at least �Wi� =
�Ri/g� transceivers. Hence, the performance ratio of the above
heuristic is bounded by

�Ri/(g − 1)�
�Ri/g�

for each node i. This is at most 2 and in many cases will be
equal to one.

Example: Consider a ring with N= 5 nodes a granularity
of g = 3, and assume that the traffic is a uniform demand
of one circuit between each pair of nodes. In this case,
Wi = 4/3 and Wmin = 10/3. Since N is odd, Theorem
4 does not cover this case; hence, we apply the heuristic in
Theorem 6. Following this procedure we split each node into
�Ri/(g − 1)� = 2 children and form the graph G′ where each
node has a degree no greater than 2(g − 1), as shown in Fig.
6. A proper edge coloring of G′ using at most g = 3 colors
is also indicated in the figure. This coloring translates into the
time-slot assignment shown in Table IX, which uses 2 tunable
transceivers per node and �Wmin� = 4 wavelengths. Notice that
in this case �Wi�=2, and therefore, this is in fact the optimal
time-slot assignment.

TABLE IX

TIME-SLOT ASSIGNMENT CORRESPONDING TO FIG. 6

λ1 λ2 λ3 λ4

Slot 1 (1-2) (1-4) (2-4)
Slot 2 (2-3) (4-5) (3-4) (2-5)
Slot 3 (1-3) (1-5) (3-5)
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Fig. 6. Example graphs. On the left is the original graph G; on the right is
the derived graph G′ which has a maximum degree of 2. The two “children”
of each node i in G are labeled by i and i′ in G′. An edge coloring of G′
using three colors (C1, C2,C3) is also shown.

For a general traffic requirement, the graph G will not be
a simple graph. For a multi-graph, Vizing’s theorem does not
apply, but two other upper bounds on the chromatic index
are known. The first, also due to Vizing [25], states that the
chromatic index is less than or equal to ∆+m, where ∆ is the
maximum degree and m is the maximum number of parallel
edges between any two nodes. The second upper bound, due to
Shannon [27], is (3/2)∆. Cases can be found where either of
these is the tighter. Next, we consider a heuristic for a general
traffic matrix that uses Shannon’s bound (a similar approach
can be developed using Vizing’s bound). Once again we begin
the traffic graph G and construct a new graph G′. This time
we replace each node i in G with �(3Ri)/(2g)� “children”
nodes in G′, and each edge in G with an edge between two
of the corresponding children in G′ so that no node is G′ has
a degree greater than (2/3)g. Hence, G′ can be colored using
no more than g colors and this can again be mapped into a
time-slot assignment. Therefore, we have the following:

Theorem 7: For any symmetric traffic requirement, a (sym-
metric) time-slot assignment can be found (in polynomial
time) where each node uses �(3Ri)/(2g)� tunable transceivers
and Wmin wavelengths.

D. Numerical examples

We present some numerical examples that compare the
number of tunable ports required to the number of fixed tuned
ports needed. Figure 7 shows the number of ports in a ring
with g = 4 and a uniform demand of r = 1 circuit for
different values of N . Three curves are shown in the figure.
The top curve is a lower bound on the number of ports
required in a ring with fixed-tuned transceivers given in [1];
we note that in general this bound is not tight. The middle
curve is the number of ports needed with tunable transceivers
and Wmin wavelengths. When N is even this is given by
Theorem 4; when N is odd, the heuristic algorithms in Sect.
VI.C are used. The bottom curve is the number of tunable
ports needed without any wavelength restrictions; this is found
using Theorem 3 and Corollary 1 in Sect. V. In this case with
tunability, the number of ports can be reduced by over 40%.
Also note that there is little difference between the case with

wavelength limitation and without. This is expected because
when N is even we know the two cases should be equal. Fig.
8 shows an analogous set of curves for the case where g = 16;
here, tunability reduces the number of ports by up to 60%.
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Fig. 7. Number of ports vs. N for a ring with uniform demand of r = 1
circuits and g = 4.
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Fig. 8. Number of ports vs. N for a ring with uniform demand of r = 1
circuits and g = 16.

VII. CONCLUSIONS

In this paper we considered the problem of traffic grooming
in a WDM/TDM network with tunable transceivers. While
we show that the problem is generally NP-complete, we are
able to solve it for many cases of interest. When the number
of wavelengths in the network is not limited, we show that
each node only needs as many transceivers as the number
of wavelength worth of traffic that it generates. This results
holds regardless of the network topology or the traffic pattern.
When the number of wavelengths is limited, we show that the
same holds for uniform and hub traffic in a ring network. We
also provide heuristic algorithms for general traffic in a ring.
In all cases we observe transceiver savings of up to 60% as
compared to fixed-tuned transceivers.

One goal of this work is to quantify the benefits of tunable
optical components. While presently tunable transceivers are



much more costly than their fixed tuned counterparts, the fact
that they can significantly reduce the amount of hardware
required in the network (both optical and electronic) may
justify their use. Our work is preliminary, in that for the most
part we focus on a unidirectional ring topology. However, the
promising results that we observe open up many new avenues
for future research. For example, we would like to generalize
this work to topologies other than rings. One avenue of possi-
ble research is to examine the trade-off between the number of
available wavelengths and the number of transceivers needed.
Another possible avenue is to examine the effects of limited
tunability (e.g., tunable transmitters and fixed tuned receivers
or vise versa). In all cases our objective is to tradeoff additional
complexity in optical hardware for a significant reduction in
the electronic hardware. As the cost and capabilities of optical
hardware improve, such a trade-off may become extremely
beneficial.

APPENDIX I
PROOF OF LEMMA 2

Proof: To prove this lemma, we simply need to show
that any traffic assignment that uses the minimum number
of wavelengths must be symmetric. Define the length of a
circuit to be the number of links crossed by the circuit, (e.g.
a circuit between nodes i and i+1 has a length of 1). We say
a circuit of length L takes up L/N of a full wavelength/time-
slot around the ring. Since each bi-directional pair takes up
one full wavelength/time-slot around the ring, the number of
full wavelength/time-slots occupied by a given traffic matrix
is equal to

r =
N∑

i=1

N∑
j=1

Ri,j/2 = gWmin.

Therefore, when W = Wmin is an integer, there are ex-
actly r full wavelength/time-slots available, all of which
must be occupied. Consider a traffic assignment to these r
wavelength/time-slots and let ri be the number of unidirec-
tional circuits assigned to wavelength/time-slot i. Since each
wavelength/time-slot must be fully occupied, ri ≥ 2 for each
i. Also let Lj

i be the length of the jth circuit assigned to the
ith ring. Then the total length of calls around the ring is

L =
r∑

i=1

ri∑
j=1

Lj
i = rN.

Since the traffic is symmetric, this number must equal the
length of adjacent circuits around the ring, where the circuit
from j to i is defined to be adjacent to the circuit from i to
j. Moreover, if a circuit from i to j has length l, then the
adjacent circuit will have length N − l. Hence counting the

length of adjacent circuits we obtain,

Ladj =
r∑

i=1

ri∑
j=1

(N − Lj
i )

=
r∑

i=1

ri∑
j=1

N −
r∑

i=1

ri∑
j=1

Lj
i

=
r∑

i=1

ri∑
j=1

N − rN ≥ 2rN − rN = rN.

The last inequality holds because ri ≥ 2 and equality is
obtained if and only if ri = 2, for all i. However, the
only traffic assignment that satisfies ri = 2 is a symmetric
assignment.

APPENDIX II
PROOF OF THEOREM 2

Proof: To prove this theorem, we again use a reduction
from EDGE COLORING. Given a graph G with maximum
degree ∆, we use the correspondence from the proof of
Theorem 1 to map this graph into a traffic matrix for the MTP
problem in a ring with g = ∆. Hence, Wmin =

∑
i

di

2g , where
di is the degree of node i.

First, consider the case where Wmin is an integer and
assume that there are Wmin wavelengths. In this case from
Lemma 2, the solution to the the MTP problem is N if
and only if the solution to the MTPS problem with Wmin

wavelengths is N . Following the proof of Theorem 1, G has a
chromatic index of g if and only if the solution MTPS problem
with W = �N/2� wavelengths is N . Finally, from lemma 1,
the solution to MTPS problem with W = �N/2� wavelengths
is N if and only if the solution to the MTPS problem with
Wmin wavelengths is N . Combining these observations we
have that the solution to the MTP problem is N if and only
if G has a chromatic index of g.

Next, assume Wmin is not an integer. In this case, we
cannot directly use lemma 2. Instead, define a new graph G′

as follows. Let G′ be a graph with 2g disconnected compo-
nents, where each component is isomorphic to G. Clearly the
maximum degree of G′ is also g and the chromatic index
of G′ is equal to the chromatic index of G. Consider the
instance of the MTP problem with traffic corresponding to
G′ in a ring with granularity g and W = W ′

min =
∑

i d′i/(2g)
wavelengths, where d′i is the degree of the ith node in G′.
Therefore, W ′

min = Wmin(2g) is an integer, and, by the same
arguments as above, the solution to the MTP problem is 2Ng
if and only if G has a chromatic index of g.
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