
Run your Research
On the Effectiveness of Lightweight Mechanization

C Klein, J Clements, C Dimoulas, C Eastlund, M Felleisen, M Flatt,
J A McCarthy, J Rafkind, S Tobin-Hochstadt, R B Findler

1

 and the Walrusthe Orangutan,The Koala,

ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]

One day, Koala decided to build an ftp server

Moral: bugs are
everywhere

2

 and the Walrusthe Orangutan,The Koala,
ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]and made the unfortunate choice to use the programming language C.

Moral: bugs are
everywhere

3

 and the Walrusthe Orangutan,The Koala,
ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]We must not be surprised by this choice, however, as C is well-known to be a programming language that is effective for building systems

software.

Moral: bugs are
everywhere

4

 and the Walrusthe Orangutan,The Koala,
ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]After a few months of effort, Koala produced a functioning server that was rapidly adopted across the internet and widely used.

Moral: bugs are
everywhere

5

 and the Walrusthe Orangutan,The Koala,
ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]One day, Orangutan decided to apply a new, automated testing technique to Koala’s ftp server and, sure enough, found multiple bugs —

Moral: bugs are
everywhere

6

 and the Walrusthe Orangutan,The Koala,
ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}p == 0 ∨ *p == *q

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]unsurprising for software of that complexity implemented in a programming language like C. After all, C is designed for performance and

provides no help to maintain invariants of data structures or to detect errors early, when they are easy to fix.

Moral: bugs are
everywhere

7

 and the Walrusthe Orangutan,The Koala,

ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}p == 0 ∨ *p == *q

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]

So, Orangutan decided to write a paper that explained the mathematical techniques it used to uncover the bugs and made the unfortunate

choice to use the programming language LaTeX.

Moral: bugs are
everywhere

8

 and the Walrusthe Orangutan,The Koala,

ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}p == 0 ∨ *p == *q

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]

We must not be surprised by this choice, however, as LaTeX is well-known to be a programming language that is effective for typesetting

mathematical formulas.

Moral: bugs are
everywhere

9

 and the Walrusthe Orangutan,The Koala,

ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}p == 0 ∨ *p == *q

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]

After a few months of effort, Orangutan produced a paper extolling the virtues of its new techniques, and the ideas were adopted across

the software engineering community and the paper was widely cited.

Moral: bugs are
everywhere

10

 and the Walrusthe Orangutan,The Koala,

ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}p == 0 ∨ *p == *q

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]

One day, Walrus decided to apply a new, lightweight mechanized metatheory technique to Orangutan’s paper and, sure enough, found

multiple bugs —

Moral: bugs are
everywhere

11

 and the Walrusthe Orangutan,The Koala,

ftp> user anonymous
331 Guest login ok
Password:
230-Welcome to λ.com
int main () {
 if (!(q = 0))
 ((int)p)=12;
}p == 0 ∨ *p == *q

\[\Gamma\ \vdash\
 (\lambda x:\tau_2.e)
 : \tau_1\rightarrow
 \tau_2 \]

unsurprising for a piece of mathematics of that complexity implemented in a programming language like LaTeX. After all, LaTeX is

designed for beautiful output and provides no help to check invariants of mathematical formulas or to run examples to ensure they

illustrate the intended points.

Moral: bugs are
everywhere

12

Moral: bugs are
everywhere

13

A niche for mechanized metatheory:

• lightweight: high level of expressiveness (think scripting
language)

• supports the entire semantics lifecycle:
Write-up Robust

model

Prototype
model

14

The Semantics Lifecycle

Write-up Robust
model

Prototype
model

15

misrenamed
non-terminal

Write-up Robust
model

Prototype
model

The Semantics Lifecycle

16

misrenamed
non-terminal

forgot
typing
rule

Write-up Robust
model

Prototype
model

The Semantics Lifecycle

17

misrenamed
non-terminal

forgot
typing
rule

lost a case
in a helper
function

Write-up Robust
model

Prototype
model

The Semantics Lifecycle

18

misrenamed
non-terminal

forgot
typing
rule

lost a case
in a helper
function

added a
case to

wrong fn

Write-up Robust
model

Prototype
model

The Semantics Lifecycle

19

misrenamed
non-terminal

forgot
typing
rule

lost a case
in a helper
function

added a
case to

wrong fn

Write-up Robust
model

Prototype
model

swappped args

The Semantics Lifecycle

20

misrenamed
non-terminal

forgot
typing
rule

lost a case
in a helper
function

added a
case to

wrong fn

Write-up Robust
model

Prototype
model

swappped args

misused the
inductive hyp.

The Semantics Lifecycle

21

misrenamed
non-terminal

forgot
typing
rule

lost a case
in a helper
function

added a
case to

wrong fn

Write-up Robust
model

Prototype
model

swappped args

misused the
inductive hyp.

didn’t
recheck a

lemma

The Semantics Lifecycle

22

misrenamed
non-terminal

forgot
typing
rule

lost a case
in a helper
function

added a
case to

wrong fn

Write-up Robust
model

Prototype
model

swappped args

misused the
inductive hyp.

didn’t
recheck a

lemma

transcribed
math wrong

The Semantics Lifecycle

23

misrenamed
non-terminal

forgot
typing
rule

lost a case
in a helper
function

added a
case to

wrong fn

Write-up Robust
model

Prototype
model

swappped args

misused the
inductive hyp.

didn’t
recheck a

lemma

transcribed
math wrong

forgot
to recheck
example

The Semantics Lifecycle

24

Redex
our tool designed to fill this niche

25

Our study:

• Can random testing find bugs in an existing,
well-tested Redex model?

• Can Redex find bugs in published papers?

26

Our study:

• Can random testing find bugs in an existing,
well-tested Redex model?

Yes

• Can Redex find bugs in published papers?

Yes

27

10 10 papers in Redex
9 ICFP ’09 papers
8 written by others
2 mechanically verified

28

10 papers with
errors

10 10 papers in Redex
9 ICFP ’09 papers
8 written by others
2 mechanically verified

29

10 Your
papers
have
errors
too10

30

Copy & Paste Typesetting Error:

31

Copy & Paste Typesetting Error:

32

Copy & Paste Typesetting Error:

Typesetting should be automatic

33

Erroneous Example:

34

Erroneous Example:

35

Erroneous Example:

36

Erroneous Example:

Examples can be tested

37

Unexpected Behavior:

select(c, c)

38

Unexpected Behavior:

compile
select(c, c)

⊙c |
~

select(c, c)

39

Unexpected Behavior:

compile
select(c, c) – stuck

⊙c |
~

select(c, c) – loops forever

Deadlock in source but busy waiting in target

40

Unexpected Behavior:

compile
select(c, c) – stuck

⊙c |
~

select(c, c) – loops forever

Deadlock in source but busy waiting in target

Found this by playing with examples

41

False Theorem:

If a term reduces with a memo store, then the program
without the memo store reduces the same way

42

False Theorem:

If a term reduces with a memo store, then the program
without the memo store reduces the same way

Counterexample:
If σ = {(δ,1) → 2} then

(λδ x. x) 1, σ ⇒* 2, σ,

but (λδ x. x) 1 ↦ 1

Not a fly-by-night
proof; 12 typeset
pages in a dissertation
chapter

43

False Theorem:

If a term reduces with a memo store, then the program
without the memo store reduces the same way

Counterexample:
If σ = {(δ,1) → 2} then

(λδ x. x) 1, σ ⇒* 2, σ,

but (λδ x. x) 1 ↦ 1

Not a fly-by-night
proof; 12 typeset
pages in a dissertation
chapter

Random testing easily finds this

44

Recap:

• Automatic typesetting

• Unit Testing

• Exploring Examples

• Random testing

45

p ::= (e ...)
e ::= (e e ...)

 | (λ (x:t ...) e)
 | x
 | (+ e ...)
 | number
 | (amb e ...)

t ::= (→ t ... t) | num

P ::= (e ... E e ...)
E ::= (v ... E e ...)

 | (+ v ... E e ...)
 | []

v ::= (λ (x:t ...) e)
 | number

Γ ::= · | (x : t Γ)

P[((λ (x:t ...1) e) v ...1)] [βv]
P[e{x:=v ...}]
P[(+ number1 ...)] [+]
P[Σ[[number1, ...]]]
(e1 ... E[(amb e2 ...)] e3 ...) [amb]
(e1 ... E[e2] ... e3 ...)

Γ ⊢ e1 : (→ t2 ... t3) Γ ⊢ e2 : t2 ...
Γ ⊢ (e1 e2 ...) : t3

(x1 : t1 Γ) ⊢ (λ (x2:t2 ...) e) : (→ t2 ... t)
Γ ⊢ (λ (x1:t1 x2:t2 ...) e) : (→ t1 t2 ... t)

Γ ⊢ e : t
Γ ⊢ (λ () e) : (→ t)

(x : t Γ) ⊢ x : t

Γ ⊢ x1 : t1 x1 ≠ x2
(x2 : t2 Γ) ⊢ x1 : t1

Γ ⊢ e : num ...
Γ ⊢ (+ e ...) : num

Γ ⊢ number : num

Γ ⊢ e : num ...
Γ ⊢ (amb e ...) : num

(x : t Γ) ⊢ x : t

Γ ⊢ x : t x ≠ x
(x : t Γ) ⊢ x : t

Γ ⊢ e : num ...
Γ ⊢ (+ e ...) : num

Γ ⊢ number : num

Γ ⊢ e : num ...
Γ ⊢ (amb e ...) : num

P[((λ (x:t ...1) e) v ...1)] [βv]
P[e{x:=v ...}]
P[(+ number1 ...)] [+]
P[Σ[[number1, ...]]]
(e1 ... E[(amb e2 ...)] e3 ...) [amb]
(e1 ... E[e2] ... e3 ...)

p ::= (e ...)
e ::= (e e ...)

 | (λ (x:t ...) e)
 | x
 | (+ e ...)
 | number
 | (amb e ...)

t ::= (→ t ... t) | num

p ::= (e ...)
e ::= (e e ...)

 | (λ (x:t ...) e)
 | x
 | (+ e ...)
 | number
 | (amb e ...)

t ::= (→ t ... t) | num

46

p ::= (e ...)
e ::= (e e ...)

 | (λ (x:t ...) e)
 | x
 | (+ e ...)
 | number
 | (amb e ...)

t ::= (→ t ... t) | num

P ::= (e ... E e ...)
E ::= (v ... E e ...)

 | (+ v ... E e ...)
 | []

v ::= (λ (x:t ...) e)
 | number

Γ ::= · | (x : t Γ)

P[((λ (x:t ...1) e) v ...1)] [βv]
P[e{x:=v ...}]
P[(+ number1 ...)] [+]
P[Σ[[number1, ...]]]
(e1 ... E[(amb e2 ...)] e3 ...) [amb]
(e1 ... E[e2] ... e3 ...)

Γ ⊢ e1 : (→ t2 ... t3) Γ ⊢ e2 : t2 ...
Γ ⊢ (e1 e2 ...) : t3

(x1 : t1 Γ) ⊢ (λ (x2:t2 ...) e) : (→ t2 ... t)
Γ ⊢ (λ (x1:t1 x2:t2 ...) e) : (→ t1 t2 ... t)

Γ ⊢ e : t
Γ ⊢ (λ () e) : (→ t)

(x : t Γ) ⊢ x : t

Γ ⊢ x1 : t1 x1 ≠ x2
(x2 : t2 Γ) ⊢ x1 : t1

Γ ⊢ e : num ...
Γ ⊢ (+ e ...) : num

Γ ⊢ number : num

Γ ⊢ e : num ...
Γ ⊢ (amb e ...) : num

(x : t Γ) ⊢ x : t

Γ ⊢ x : t x ≠ x
(x : t Γ) ⊢ x : t

Γ ⊢ e : num ...
Γ ⊢ (+ e ...) : num

Γ ⊢ number : num

Γ ⊢ e : num ...
Γ ⊢ (amb e ...) : numP[((λ (x:t ...1) e) v ...1)] [βv]

P[e{x:=v ...}]
P[(+ number1 ...)] [+]
P[Σ[[number1, ...]]]
(e1 ... E[(amb e2 ...)] e3 ...) [amb]
(e1 ... E[e2] ... e3 ...)

p ::= (e ...)
e ::= (e e ...)

 | (λ (x:t ...) e)
 | x
 | (+ e ...)
 | number
 | (amb e ...)

t ::= (→ t ... t) | num

p ::= (e ...)
e ::= (e e ...)

 | (λ (x:t ...) e)
 | x
 | (+ e ...)
 | number
 | (amb e ...)

t ::= (→ t ... t) | num

47

Recap:

✓ Automatic typesetting

✓ Unit Testing

✓ Exploring Examples

✓ Random testing

48

Takeaways:

• Nobody will produce error-free papers

• Errors introduce friction into our communication

• Redex can help reduce the errors — with about as
much effort as LaTeX requires

49

Thank
you.

50

