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Abstract. Traffic flow on a unidirectional roadway in the presence of traffic lights is modeled.
Individual car responses to green, yellow, and red lights are postulated and these result in rules
governing the acceleration and deceleration of individual cars. The essence of the model is that only
specific cars are directly affected by the lights. The other cars behave according to simple follow-
the-leader rules which limit their speed by the spacing between them and the car directly ahead.
The model has a number of desirable properties; namely, cars do not run red lights, cars do not
smash into one another, and cars exhibit no velocity reversals. In a situation with multiple lights
operating in-phase, we get, after an initial start-up period, a constant number of cars through each
light during any green-yellow period. Moreover, this flux is less by one or two cars per period than
the flux obtained in discretized versions of the idealized Lighthill–Whitham–Richards model which
allows for infinite accelerations.
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1. Introduction, model description, and statement of results. In this
note we examine the behavior of traffic on a unidirectional highway when multiple
traffic lights are present. For simplicity we assume the lights operate in-phase.

The model postulates the dynamics of individual cars but may also be thought
of as a coarse discretization of a continuum model introduced recently by Greenberg
[1], Aw and Rascle [2], Aw, Klar, Materne, and Rascle [3], and Zhang [9] (details of
this correspondence may be found in section 4, (4.6)–(4.8)).

We assume we are presented with an empirically determined function s → V(s)
on L ≤ s which satisfies

V(L+) = 0,(1.1)

dV
ds

(s) > 0 and
d2V
ds2

(s) < 0, L ≤ s < ∞,(1.2)

and

lim
s→∞

(
V(s), dV

ds
(s),

d2V
ds2

(s)

)
= (V∞ > 0, 0, 0).(1.3)

The independent variable s is interpreted as the spacing between cars, L is the
minimum car spacing (a lower bound for L is the length of typical car), and V∞ > 0
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is the maximum allowable speed of a car. A typical function, and one we shall use in
simulations, is

V(s) = V∞

(
1− L

s

)
, L ≤ s < ∞.(1.4)

In this classic Lighthill–Whitham–Richards model [4, 5, 6, 7] the function V(·) gives
the velocity of individual cars; in ours it provides an upper bound for the velocity of
an individual car. An extensive discussion of suitable functions V(·) may be found in
[8, Chapter 4] and the references contained therein. Suffice it to say that the functions
V(·) in our model are consistent with those used in practice.

In this model xk(t), 1 ≤ k ≤ N , denotes the position of the kth car at time t, and
0 ≤ uk(t) is the velocity of the kth car. Throughout,

dxk

dt
= uk, 1 ≤ k ≤ N,(1.5)

and the cars are ordered so that (xk+1 − xk)(t) ≥ L, 1 ≤ k ≤ N − 1. During time
intervals where the lights are green we assume that

uk = V((xk+1 − xk)(t)) + αk, 1 ≤ k ≤ N, 1(1.6)

where αk(t) ≤ 0 satisfies

ε
dαk

dt
= −αk, 1 ≤ k ≤ N.(1.7)

The parameter ε > 0 may be thought of as a relaxation time. Equations (1.6) and
(1.7) imply that during the green light periods the velocities, uk, satisfy

(1.7a)
duk

dt
= V ′(xk+1 − xk)(uk+1 − uk) +

(V(xk+1 − xk)− uk)

ε
, 1 ≤ k ≤ N − 1,

and

(1.7b)
duN

dt
=

(V∞ − uN )

ε
.

The interesting feature of our model is how yellow or red lights effect the dynamics
of an individual car. Our traffic lights cycle from green to yellow to red, and the
numbers 0 < TG, 0 < TY , and 0 < TR denote the duration of the green, yellow, and
red lights. At time t = 0 we assume we have a sequence of N cars located at

xk(0) = (k − k0)L1, 1 ≤ k ≤ N,(1.8)

where L1 ≥ L (again L is the minimum allowable auto spacing), and we assume these
cars are all at rest; i.e.,

uk(0) = 0, 1 ≤ k ≤ N.(1.9)

Finally, we assume they are at traffic lights located at x = lI , 1 ≤ I ≤ M , where

(N − k0)L1 < l1 < l2 < · · · < lM .(1.10)

1When k = N , uN = V∞ + αN .
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We further assume that each intersection is of width w > 0 and let

tm = (m− 1)(TG+ TY + TR), m = 1, 2, . . . ,(1.11)

denote the start of the mth light cycle.
During the time interval tm ≤ t ≤ tm + TG all cars satisfy (1.5)–(1.7). At time

ty
def
= tm +TG, the green lights turn yellow, and this will have an effect on the traffic

flow.
We start by describing what happens to the lead car, the one indexed by N , when

it encounters a light at x = l. We assume that

xN (ty) < l.(1.12)

If

xN (ty) + uN (ty)TY ≥ l + w + L,(1.13)

then the lead car will be able to completely clear the intersection if it travels at its
current speed uN (ty). We allow it to clear the intersection by following its standard
dynamics; that is, over the time interval ty ≤ t ≤ tm+1 the Nth car satisfies

dxN

dt
= uN ,(1.14)

where

uN = V∞ + αN(1.15)

and αN ≤ 0 satisfies

ε
dαN

dt
= −αN .(1.16)

Following these dynamics the lead car accelerates through the intersection.
On the other hand, if

xN (ty) + uN (ty)TY < l + w + L,(1.17)

then it will be impossible for the Nth car to clear the intersection during the yellow
phase if it continues to travel at its current speed. If

xN (ty) + uN (ty)(TY + TR) ≤ l,(1.18)

then over the time interval ty ≤ t ≤ tm+1 we require it satisfies the modified dynamics

dxN

dt
= uN and

duN

dt
= 0;(1.19)

i.e., we insist that it travels at its current speed. This strategy avoids the Nth car
accelerating and then possibly having to decelerate as it nears the light.

If (1.17) holds and (1.18) is violated, the lead car will have to slow down and
possibly stop. When it satisfies the additional inequality

xN (ty) + uN (ty)(TY + TR)/2 > l,(1.20)
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the lead car is mandated to satisfy

dxN

dt
= uN and

duN

dt
=




−u2
N (ty)

2(l − xN (ty))
, ty ≤ t ≤ ty +

2(l − xN (ty))

uN (ty)

0, ty +
2(l − xN (ty))

uN (ty)
≤ t ≤ tm+1.

2

(1.21)

This constant deceleration strategy brings the Nth car to rest at x = l at t = ty +
2(l−xN (ty))

uN (ty) ≤ tm+1, and it then sits at the light until t = tm+1.

Finally, when

xN (ty) + uN (ty)(TY + TR) > l and xN (ty) + uN (ty)(TY + TR)/2 ≤ l,(1.22)

the lead car is mandated to satisfy

dxN

dt
= uN (t) and

duN

dt
=

−2(xN (ty) + uN (ty)(TY + TG)− l)

(TY + TG)2

over the whole interval ty ≤ t ≤ tm+1. This strategy brings the car to the light at
x = l at tm+1 with velocity

uN (tm+1) =
2(l − xN (ty))

(TY + TR)
− uN (ty) > 0.(1.23)

We note that if the lead car satisfies (1.17), then the cars with indices k ≤ N − 1
follow their standard dynamics (1.5)–(1.7) over [ty, tm+1] unless they happen to be
influenced by some other light at x = l′ < l.

Having described what happens when the lead car encounters a yellow light at
x = l, we turn our attention to what happens when other cars encounter the same
light. We let kl ≤ N − 1 be the largest integer so that

xkl
(ty) < l,(1.24)

and we let pl ≤ kl be the largest integer so that

xpl
(ty) + min

pl≤j≤kl

uj(ty)TY < l + w + L.(1.25)

The plth car will be the first one that does not get through the light at x = l.
We first consider the situation when pl < kl. We assume the existence of a number

λ ≥ 1 such that cars travelling with the maximum speed V∞ can safely brake at a

constant deceleration rate a =
−V2

∞
2λL over a road segment of length λL.

We first focus our attention on the situation in which

xpl
(ty) < l − λL.(1.26)

2The dynamics described by (1.21) are equivalent to

dxN

dt
=

uN (ty)(l − xN (t))1/2

2(l − xN (ty))1/2
, ty ≤ t ≤ ty +

2(l − xN (ty))

uN (ty)

and

dxN

dt
= 0, ty +

2(l − xN (ty))

uN (ty)
≤ t ≤ tm+1.



A TRAFFIC MODEL WITH LIGHTS 153

Our basic strategy is to let cars with indices k ≥ pl+1 follow their standard dynamics
(1.5)–(1.7) over ty ≤ t ≤ tm+1. The cars with indices pl + 1 ≤ k ≤ kl will clear

the intersection by tm + TG + TY
def
= tr; i.e., they will satisfy xk(tr) ≥ l + w +

L. This follows from the observation that local spatial minima in the velocity are
nondecreasing in t (for details see (2.79)–(2.81)).

Rules for the plth car. So long as ty ≤ t ≤ tr and xpl
(t) < l − λL we let the

plth car follow its standard dynamics (1.5)–(1.7). If there is a first tpl
< tr so that

xpl
(tpl

) = l − λL, then the driver must decide what to do. In the unlikely event that

upl
(tpl

)(tm+1 − tpl
) ≤ λL,(1.27)

then over the interval [tpl
, tm+1] the plth car is required to satisfy

dxpl

dt
= min (upl

(ty), Upl
(t))

def
= upl

(t)

and

dUpl

dt
= V ′ (xpl+1 − xpl

) (upl+1 − Upl
)

+
(V (xpl+1 − xpl

)− Upl
)

ε

and

Upl
(ty) = upl

(ty).

(1.28)

On the other hand, if

upl
(tpl

)(tm+1 − tpl
) > λL,(1.29)

then the plth car will have to slow down and possibly stop.
When the plth car satisfies the additional inequality

upl
(tpl

)(tm+1 − tpl
)/2 > λL,(1.30)

the plth car is required to satisfy

dxpl

dt
= min

(
upl

(tpl
)(l − xpl

)1/2

2(λL)1/2
, Upl

)
def
= upl

,(1.31)

where

dUpl

dt
= V ′(xpl+1 − xpl

)(upl+1 − Upl
) +

(V(xpl+1 − xpl
)− Upl

)

ε
(1.32)

and

xpl
(tpl

) = l − λL and Upl
(tpl

) = upl
(tpl

).(1.33)

When (1.31) reduces to

dxpl

dt
=

upl
(tpl

)(l − xpl
)1/2

2(λL)1/2
def
= vpl

,(1.34)



154 ARGALL, CHELESHKIN, GREENBERG, HINDE, AND LIN

we see that

dvpl

dt
= −u2

pl
(tpl

)

2λL
≤ − V2

∞
2λL

,(1.35)

and thus we apply this constant braking strategy over tpl
≤ t ≤ tpl

+ 2λL
upl

(tpl )
and the

strategy xpl
(t) = l over tpl

+ 2λL
upl

(tpl )
≤ t ≤ tm+1.

If instead of (1.30) the plth car satisfies

upl
(tpl

)(tm+1 − tpl
)/2 ≤ λL,(1.36)

the plth car is required to satisfy

dxpl

dt = min
(
upl

(tpl
) +

2λL−upl
(tpl )(tm+1−tpl )

(tm+1−tpl )
2 (t− tpl

) , Upl

)
def
= upl

, tpl
≤ t ≤ tm+1

(1.37)

and (1.33), and again Upl
satisfies (1.32) and (1.33)2.

The dynamics for Upl
postulated in (1.28) and (1.32) might seem a bit strange.

What we are insisting is that the plth car must travel no faster than the minimum
of its braking speed and the speed that it would travel at if it disregarded the light
and allowed its velocity to be determined by the car ahead. The latter speed Upl

is
computed from the standard dynamics equation (see (1.6), (1.7), (1.7a), and (1.7b)).

If there is no such time tpl
< tr so that xpl

(tpl
) = l − λL, then we know that

xpl
(tr) ≤ l− λL. In this situation we replace tpl

in (1.27)–(1.37) by tr and the terms
λL in all inequalities and identities by l − xpl

(tr).
Finally, if (1.26) does not hold, i.e., if

l − λL ≤ xpl
(ty) < l,(1.38)

we set tpl
to ty in (1.27)–(1.37) and replace λL in these formulas by l − xpl

(ty).
The rules when pl = kl are similarly amended.
The cars with indices pl−1 ≤ k ≤ pl − 1 are required to satisfy their standard

dynamics over [ty, tm+1].
Our first result deals with the model’s consistency; we shall show that for all

t ≥ 0 and all indices, L ≤ (xk+1 − xk)(t) and 0 ≤ uk(t) < V((xk+1 − xk)(t)). We
also have the theorem that no cars run any red lights. With two in-phase lights, the
number of cars through an intersection during the green and yellow phases is, after
a start-up period, a constant. This constant is less than the constant obtained with
models which allow for infinite accelerations, i.e., discrete Lagrangian versions of the
Lighthill–Whitham–Richards model [4, 5, 6, 7].

One surprising observation about the model just described is that the largest
decelerations are not necessarily associated with the cars indexed by pl but rather
cars with indices k ≤ pl − 1 which are forced to slow down because the plth car has
stopped. Equation (1.7a) implies that the latter cars’ decelerations are determined
by the negative velocity gradients uk+1 − uk.

Finally, we note that though we have been quite specific in postulating our stop-
ping rules for the plth car, it would have sufficed to have chosen any rule of the
form

dxpl

dt
= min (vpl

, Upl
)
def
= upl

, tpl
≤ t ≤ tm+1,
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where Upl
satisfies

dUpl

dt
= V ′(xpl+1

− xpl
)(upl+1

− Upl
) + (V(xpl+1

− xpl
)− Upl

)ε

and Upl
(ty) = upl

(ty) if pl ≤ N − 1, and

dUN

dt
=

(V∞ − UN )

ε
and UN (ty) = upl

(ty)

if pl = N , and where vpl
≥ 0 is chosen so that if

dxpl

dt
= vpl

, ty ≤ t ≤ tm+1 and xpl
(ty) < l,

then xpl
(t) ≤ l, ty ≤ t ≤ tm+1.

2. Model consistency. In this section we turn our attention to the issue of
model consistency. The central issue before us is to show that for 1 ≤ k ≤ N − 1 and
0 ≤ t

L ≤ (xk+1 − xk)(t) and 0 ≤ uk(t) < V((xk+1 − xk)(t))(2.1)

and that for k = N and 0 ≤ t

0 ≤ uN (t) ≤ V∞.(2.2)

We are also interested in knowing that the distinguished cars indexed by pl do

not run the red lights over the intervals tr
def
= (m− 1)(TG+TY +TR)+TG+TY ≤

t ≤ m(TG+ TY + TR)
def
= tm+1 and that the (pl +1)st car clears the intersection by

tr, i.e., satisfies

xpl+1(tr) ≥ l + w + L.(2.3)

Once again x = l is supposed to be the leading edge of the intersection, w the width
of the intersection, and L the length of a car.

There are two natural approaches that one can take to establish the above claims.
The first is to show that the desired conclusions follow directly from the governing
differential equations and initial and constraining conditions while the second is to
show that approximate solutions, generated by numerical discretization, satisfy the
desired consistency results. Noting then that these consistency results are sufficient
to guarantee that the approximate solutions converge (as ∆t → 0) to solutions of
the original model, we are guaranteed that these limiting solutions satisfy the same
consistency results. We adopt the latter procedure here since in the next section we
shall perform computations with the discrete approximating system.

Throughout, ∆t will denote our time step and the quantities (xn
k , u

n
k , α

n
k ) will

denote the values of the approximate solutions at tn = n∆t. To keep matters simple
we shall assume that the numbers TG/∆t, TY/∆t, TR/∆t, and ε/∆t are all integers
and we shall assume that ∆t ≤ min (ε, (V ′(L) = maxL≤s V ′(s))−1).

Our first result deals with the traffic flow over the time intervals

tm
def
= (m− 1)(TG+ TY + TR) ≤ tn = n∆t ≤ ty

def
= tm + TG(2.4)
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when all lights are green. Over such intervals we replace (1.5) by

xn+1
k = xn

k + un
k∆t, 1 ≤ k ≤ N,(2.5)

and this yields

sn+1
k = snk + (un

k+1 − un
k )∆t, 1 ≤ k ≤ N − 1,(2.6)

where

snk = (xn
k+1 − xn

k ) and sn+1
k = (xn+1

k+1 − xn+1
k ).(2.7)

The u’s and s’s are related by

un
k = V(snk ) + αn

k(2.8)

and

un+1
k = V(sn+1

k ) +

(
1− ∆t

ε

)
αn
k .(2.9)

These updates hold for indices n satisfying

(m− 1)(TG+ TY + TR)/∆t
def
= nm ≤ n ≤ nm + TG/∆t− 1.(2.10)

Theorem 1. Suppose that

L ≤ snm

k and 0 ≤ unm

k ≤ V(snm

k ), 1 ≤ k ≤ N − 1,(2.11)

and

0 ≤ unm

N ≤ V∞ = lim
s→∞V(s).(2.12)

Then, the same inequalities hold for

nm ≤ n ≤ nm + TG/∆t
def
= ny.(2.13)

Proof. The identity (2.6) implies that if snk ≥ L and un
k+1 − un

k ≥ 0, then sn+1
k ≥

snk ≥ L. In the situation in which un
k+1 − un

k < 0, (2.6) implies that

sn+1
k = snk + (un

k+1 − αn
k − V(snk ))∆t(2.14)

and the natural induction hypotheses αn
k ≤ 0, 0 ≤ un

k ≤ V(snk ), and snk ≥ L imply
that un

k+1−αn
k ≥ 0. In the situation in which 0 ≤ un

k+1−αn
k < V∞ we are guaranteed

a unique s̄nk+1 ∈ [L,∞) satisfying

un
k+1 − αn

k = V(s̄nk+1),(2.15)

and here (2.14) reduces to

sn+1
k = snk +

(V(s̄nk+1)− V(snk )
)
∆t(2.16)

or

sn+1
k = (1− V ′(s∗)∆t)snk + V ′(s∗)∆ts̄nk(2.17)
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for some s∗ ∈ (min (snk , s̄
n
k+1), max (snk , s̄

n
k+1)). The latter identity, together with

∆tV ′(L) ≤ 1 and min (snk , s̄
n
k+1) ≥ L,(2.18)

yields sn+1
k ≥ L. When un

k+1 − un
k < 0 and un

k+1 − αn
k ≥ V∞, the identity (2.14)

implies that

sn+1
k ≥ snk + (V∞ − V(snk ))∆t.(2.19)

The inequality (2.18)1 guarantees that s → s + (V∞ − V(s))∆t is strictly increasing
on [L,∞) and thus (2.19) implies that sn+1

k ≥ L+ V∞∆t ≥ L as desired.
The induction hypothesis αn

k ≤ 0 together with ∆t/ε ≤ 1 and (2.9) guarantees
that un+1

k ≤ V(sn+1
k ). What remains to be shown is that un+1

k ≥ 0. To establish this
assertion we combine (2.8) and (2.9) to obtain

un+1
k = V(snk + (un

k+1 − un
k )∆t) +

(
1− ∆t

ε

)
(un

k − V(snk )).

Noting that

V(snk + (un
k+1 − un

k )∆t) = V(snk ) + V ′(s#)(un
k+1 − un

k )∆t

for some s# ≥ L, we find that

un+1
k = V ′(s#)∆tun

k+1 +
∆t

ε
(V(snk )− un

k ) + (1− V ′(s#)∆t)un
k .

The last identity, when combined with

∆tV ′(s#) ≤ 1, ∆t/ε ≤ 1, un
k ≥ 0, un

k+1 ≥ 0, and V(snk )− un
k ≥ 0,

yields un+1
k ≥ min (un

k , u
n
k+1) ≥ 0 as desired.

We now turn our attention to what happens over the yellow and red phases, i.e.,
when

ty
def
= (m− 1)(TG+ TY + TR) + TG ≤ tn = n∆t < tm+1

def
= m(TG+ TY + TR).

(2.20)

The results of Theorem 1 imply that when n = ny
def
= (m−1)(TG+TY +TR)+TG/∆t

the following inequalities are valid:

L ≤ s
ny

k and 0 < u
ny

k ≤ V(sny

k ), 1 ≤ k ≤ N − 1,(2.21)

and

0 ≤ u
ny

N ≤ V∞ = lim
s→∞V(s).(2.22)

Our next goal is to show that (2.21) and (2.22) hold for indices

ny ≤ n ≤ nm+1
def
= m(TG+ TY + TR).(2.23)

For definiteness we assume the lights are located at l1 < l2 < · · · < lM whereM << N
and that L << lI+1 − lI , 1 ≤ I ≤ M − 1. For 1 ≤ I ≤ M , kI will be the largest
integer less than or equal to N , so that

x
ny

kI
< lI(2.24)
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and pI will be the largest integer less than or equal to kI so that

xny
pI

+

(
min

pI≤j≤kI

u
ny

j

)
TY < lI + w + L.(2.25)

It can and does happen that for some I < M

pI = pI+1 = · · · = pM = N.(2.26)

Our first task is to establish the desired inequalities for indices (pI−1 + 1) ≤ k ≤
pI = N for ny ≤ n ≤ nm+1. This is the situation that is obtained when the lead car,
indexed by N , has passed the (I − 1)st light but not the Ith light.

The rules laid out in (1.17)–(1.23) imply that xN (·) satisfies
dxN

dt
= min (vN , UN )

def
= uN , ty ≤ t ≤ tm+1,(2.27)

where UN satisfies

dUN

dt
=

(V∞ − UN )

ε
and UN (ty) = uN (ty),(2.28)

and vN (·) ≥ 0 is chosen so that if xN (·) satisfies
dxN

dt
= vN and xN (ty) < lI ,(2.29)

then xN (tm+1) ≤ lI . We replace this system with its discrete analogue,

xn+1
N = xn

N + un
N∆t, ny ≤ n ≤ nm+1 − 1,(2.30)

Un+1
N = V∞ +

(
1− ∆t

ε

)
(Un

N − V∞) , ny ≤ n ≤ nm+1 − 1,(2.31)

and these are solved subject to the initial conditions

x
ny

N < lI and 0 ≤ u
ny

N ≤ U
ny

N ≤ V∞.(2.32)

The discrete velocity un
N is given by

un
N = min (vnN , Un

N ),(2.33)

and vnN ≥ 0 is a discretization of vN with the property that if

xn+1
N = xn

N + vnN∆t and x
ny

N < lI(2.34)

for ny ≤ n ≤ nm+1 − 1, then

x
nm+1

N ≤ lI .(2.35)

The identities (2.31), (2.32)2, and (2.33) guarantee that

0 ≤ un
N ≤ V∞, ny ≤ n ≤ nm+1.(2.36)
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If we assume that (pI−1 + 1) ≤ N − 1, then the (N − 1)st car will follow the
standard dynamics (1.5)–(1.7) on ty ≤ t ≤ tm+1, and thus for ny ≤ n ≤ nm+1 − 1 we
have the approximating discrete system:

xn+1
N−1 = xn

N−1 + un
N−1∆t, un

N−1 = V(snN−1) + αn
N−1,

and un+1
N−1 = V(sn+1

N−1) +
(
1− ∆t

ε

)
αn
N−1,

(2.37)

where

snN−1 = xn
N − xn

N−1 and sn+1
N−1 = xn+1

N − xn+1
N−1 = snN−1 + (un

N − un
N−1)∆t.(2.38)

The inequalities (2.21) and (2.22) imply that α
ny

N−1 ≤ 0, α
ny

N ≤ 0, and s
ny

N−1 ≥ L.
The identities (2.37) and (2.38) imply that

sn+1
N−1 = snN−1 +

(
un
N −

(
1− ∆t

ε

)n

α
ny

N−1 − V(snN−1)

)
∆t,(2.39)

and (2.37)2 and (2.39), together with

L ≤ s
ny

N−1, α
ny

N−1 ≤ 0, un
N ≥ 0, ∆tV ′(L) ≤ 1, and ∆t ≤ ε(2.40)

and the arguments used to establish Theorem 1, imply that

L ≤ snN−1, ny ≤ n ≤ nm+1.(2.41)

The arguments used to establish Theorem 1 along with (2.40) and (2.41) also yield
0 ≤ un

N−1 ≤ V(snN−1), ny ≤ n ≤ nm+1. An induction on k for indices (pI−1 + 1) ≤ k
then yields

L ≤ snk = (xn
k+1 − xn

k ) and 0 ≤ un
k ≤ V(snk ), ny ≤ n ≤ nm+1.(2.42)

This situation when pI−1 = N − 1 is handled similarly, provided that one adopts
the proper first order integration scheme for UN−1. The governing equation for UN−1

is

dUN−1

dt
= V ′(xN − xN−1)(uN − UN−1) +

(V(xN − xN−1)− UN−1)

ε
,(2.43)

where

d(xN − xN−1)

dt
= uN − uN−1,(2.44)

and vN−1 ≥ 0 is chosen so that if

dxN

dt
= vN−1 and xN−1(ty) < lI ,(2.45)

then

xN−1(tm+1) ≤ lI .(2.46)

Additionally

uN−1
def
= min (vN−1, UN−1).(2.47)
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The integration scheme we use is

Un+1
N−1 = V(snN−1 + (un

N − Un
N−1)∆t) +

(
1− ∆t

ε

)
(Un

N−1 − V(snN−1)),
3(2.48)

where

snN−1 = xn
N − xn

N−1.(2.49)

To complete the proof one does an induction on the index I, first replacing I by
I−1. One knows that the car with index (pI−1+1) has a velocity un

(pI−1+1) satisfying

0 ≤ un
(pI−1+1) ≤ V(snpI−1+1), ny ≤ n ≤ nm+1.(2.50)

We first focus on the pI−1st car and note that

dxpI−1

dt
= min (vpI−1

, UpI−1
)
def
= upI−1

,(2.51)

and

dspI−1

dt
= (u(pI−1+1) − upI−1

).(2.52)

The rules laid out in (1.7)–(1.23) imply that

dUpI−1

dt
= V ′(s(pI−1))(u(pI−1+1) − UpI−1

) +
(V(s(pI−1+1))− UpI−1

)

ε
(2.53)

and that the velocity field 0 ≤ vpI−1
is chosen so that if xpI−1

evolves as

dxpI−1

dt
= vpI−1

and xpI−1
(ty) < lI ,(2.54)

then

xpI−1
(tm+1) ≤ lI−1.(2.55)

The discretization we apply to the pI−1st car is

xn+1
pI−1

= xn
pI−1

+ un
pI−1

∆t and sn+1
pI−1

= snpI−1
+
(
un

(pI−1+1) − un
pI−1

)
∆t(2.56)

for ny ≤ n ≤ nm+1 − 1. Moreover, for some ny ≤ n0 ≤ ny + TY/∆t− 1

un+1
pI−1

= V(sn+1
pI−1

) +

(
1− ∆t

ε

)
(un

pI−1
− V(snpI−1

))(2.57)

and

Un+1
pI−1

= un+1
pI−1

,(2.58)

3This scheme is essentially a first order Euler scheme applied to (2.43). The scheme implies that

Un+1
N−1 = Un

N−1 + ∆ tV ′ (snN−1

) (
un
N − Un

N−1

)
+

∆t

ε

(V (snN−1

)− Un
N−1

)
+ 0(∆t)2.
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whereas for n0 ≤ n ≤ nm+1 − 1

un
pI−1

= min (vnpI−1
, Un

pI−1
),(2.59)

Un+1
pI−1

= V(snpI−1
+ (un

(pI−1+1) − Un
pI−1

)∆t) +

(
1− ∆t

ε

)
(Un

pI−1
− V(snpI−1

)), 4(2.60)

and

Un0
pI−1

= un0
pI−1

and xn0
pI−1

< lI .(2.61)

Finally vnpI−1
is chosen so that if

xn+1
pI−1

= xn
pI−1

+ vnpI−1
∆t, n0 ≤ n ≤ nm+1 − 1,(2.62)

then

xnm+1
pI−1

≤ lI .(2.63)

The arguments employed to establish Theorem 1 guarantee that for ny ≤ n ≤ n0

L ≤ snpI−1
and 0 ≤ un

pI−1
≤ V(snpI−1

)(2.64)

and that for n = n0

0 ≤ un0
pI−1

≤ Un0
pI−1

≤ V(sn0
pI−1

).(2.65)

Lemma 1. For n0 ≤ n ≤ nm+1

L ≤ snpI−1
and 0 ≤ un

pI−1
≤ Un

pI−1
≤ V(snpI−1

).(2.66)

Proof. The identities (2.56) and (2.60) imply that

V(sn+1
pI−1

)− Un+1
pI−1

= V(snpI−1
+ (un

(pI−1+1) − un
pI−1

)∆t)

−V(snpI−1
+ (un

(pI−1+1) − Un
pI−1

)∆t)

+

(
1− ∆t

ε

)
(V(snpI−1

)− Un
pI−1

)

= ∆tV ′(s#)
(
Un
pI−1

− un
pI−1

)
+

(
1− ∆t

ε

)
(V(snpI−1

)− Un
pI−1

)

(2.67)

for some s# ≥ min (snpI−1
+ (un

(pI−1+1) − un
pI−1

)∆t, snpI−1
+ (un

(pI−1+1) − Un
pI−1

)∆t). If

we now make the induction hypotheses that

L ≤ snpI−1
and 0 ≤ Un

pI−1
≤ V(snpI−1

),(2.68)

then (2.59) implies that

0 ≤ un
pI−1

≤ Un
pI−1

≤ V(snpI−1
)(2.69)

4See Footnote 3.
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and (2.69) and (2.42) with k = pI−1 + 1 implies that

min (snpI−1
+ (un

(pI−1+1) − un
pI−1

)∆t, snpI−1
+ (un

(pI−1+1) − Un
pI−1

)∆t)

≥ snpI−1
− V(snpI−1

)∆t
def
= F(snpI−1

).
(2.70)

This constraint ∆tV ′(s) ≤ 1, L ≤ s guarantees F(·) in nondecreasing on L ≤ s, and
this fact, together with F(L) = L, guarantees that sn+1

pI−1
and s# are both greater than

or equal to L. Moreover, (2.67) also yields Un+1
pI−1

≤ V(snpI−1
). The defining relation

(2.60) and (2.70) and un
(pI−1+1) ≥ 0 also implies that

Un+1
pI−1

= ∆tV ′(s∗)un
(pI−1+1) + (1−∆tV ′(s∗))Un

pI−1
+

∆t

ε
(V(snpI−1

)− Un
pI−1

)(2.71)

for some s∗ ≥ L and (2.71) guarantees that Un+1
pI−1

≥ 0. The last inequality and (2.59),
with n+ 1, guarantees that

0 ≤ un+1
pI−1

≤ Un+1
pI−1

≤ V(sn+1
pI−1

),(2.72)

and this completes the proof of Lemma 1.
Once again an induction on k for indices (pI−2 + 1) ≤ k yields

L ≤ snk = (xn
k+1 − xn

k ) and 0 ≤ un
k ≤ V(snk )(2.73)

and additionally yields the following theorem.
Theorem 2. For ny ≤ n ≤ nm+1 = m(TG+ TY + TR)

L ≤ snk and 0 ≤ un
k ≤ V(snk ), 1 ≤ k ≤ N − 1,(2.74)

and

0 ≤ un
N ≤ V∞ = lim

s→∞V(s).(2.75)

Moreover, for 1 ≤ I ≤ M

xnm+1
pI

≤ lI .(2.76)

Theorems 1 and 2 go a long way towards establishing the consistency of our
model. What remains to be shown is that cars with index pI + 1 clear the light, i.e.,
that they satisfy

x
ny+TY

∆t

(pI+1) ≥ lI + w + L.(2.77)

The reader should recall that the cars with these indices satisfy

x
ny

(pI+1)
< lI and x

ny

(pI+1) +

(
min u

ny

j
(pI+1)≤j≤kI

)
TY ≥ lI + w + L(2.78)

and that cars with indices (pI +1) ≤ k ≤ kI evolve by the standard discrete dynamics
for ny ≤ n ≤ ny + TY/∆t− 1; i.e.,

xn+1
k = xn

k + un
k∆t and un

k = V(snk ) +
(
1− ∆t

ε

)n−ny

(u
ny

k − V(sny )),
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where

0 ≤ u
ny

k ≤ V(sny

k ) and L ≤ snk .

It is a straightforward calculation to show that cars with these indices also satisfy

un+1
k = V(snk + (un

k+1 − un
k )∆t) +

(
1− ∆t

ε

)
(un

k − V(snk ))

= ∆tV ′(s#)un
k+1 + (1−∆tV ′(s#))un

k +
∆t

ε
(V(snk )− un

k )

from some s# ≥ L, and that this identity, along with

∆tV ′(L) ≤ 1, ∆t ≤ ε, and 0 ≤ V(snk )− un
k

implies

un+1
k ≥ min (un

k , u
n
k+1).(2.79)

We now note that at t = ty (equivalently n = ny) the cars with indices pI ≤ k
typically satisfy

min
pI≤j≤kI

u
ny

j = u
ny

k0
, where (pI + 1) ≤ k0 ≤ kI ,(2.80)

and

u
ny

k+1 − u
ny

k ≥ 0, k0 ≤ k ≤ k#,(2.81)

where k# is greater than kI . Moreover, if the spacing of the lights is sufficiently
large, then the spatial monotonicity of the velocities is preserved for ny ≤ n ≤ ny +
TY/∆t and k0 ≤ k ≤ k#. When this is the case, the inequalities (2.78)–(2.81)
guarantee (2.77).

3. Simulations. In this section we present some simulations of the system out-
lined in section 1. We chose

V∞ = 50f/s, L = 20f, L1 = 25f, λ = 5, ε = 5s and N = 600.

Our maximal velocity was given by

V(s) = V∞

(
1− L

s

)
, L ≤ s.

We restrict our attention to a roadway with two in-phase lights located at

l1 = 1 mile = 5280f and l2 = 2 miles = 10, 560f,

and we assume that the width of each intersection is

w = 20f.

Finally, the durations of the green, yellow, and red lights were chosen to be

TG = 25s, TY = 5s, and TR = 30s.
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Fig. 1.

Our initial data are taken to be

xk(0) = 25(k − 400) and uk(0) = 0, 1 ≤ k ≤ 600.

Snapshots of the solution are shown at times 30, 147, 151, 179, and 191 seconds
in Figures 1–5, respectively, and a film may be seen at http://www.math.cmu.edu/
users/plin/21380/traffic.html.

In the first frame of each snapshot we plot the auto velocity uk (in miles/hour)
versus current auto position xk (in miles), and in the second frame we plot the em-
pirical density ρk = 1

xk+1−xk
(in cars/mile) versus current auto position xk (in miles).

After an initial startup period we are able to get 18 cars through each light during
each green-yellow-red cycle. This number should be contrasted with what one obtains
in the singular limit, where ε = 0+, TY = 0s, TG = 30s, w = 0f , and λ = 5. In this
limit

uk ≡ V∞

(
1− L

xk+1 − xk

)
,

and if, perchance, we have a car satisfying

xk((tm + TG)−) = lI , I = 1 or 2,

and

uk((tm + TG)−) > 0,
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Fig. 2.

Fig. 3.
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Fig. 4.

Fig. 5.
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then for times tm + TG < t ≤ tm + TG+ TR,

xk(t) = l and uk(t) ≡ 0.

For this singular model we declare a car through the light at l if xk(ty) > l. The
singular model has the potential for infinite accelerations. In steady state the singular
model allows us to get 20 cars through an intersection during each green-red cycle.

We note that our choice of which car must stop is made at times ty = tm + TG
(when a green light turns yellow) and is conservative when the car chosen to stop
satisfies xpl

(ty) < l−λL. A more aggressive strategy would have been to allow the plth
car to follow its standard dynamics until time tpl

< ty +TY , where xpl
(tpl

) = l−λL,
and then reevaluate whether the plth car can get through the light in the remaining
time ty + TY − tpl

, i.e., check whether

xpl
(tpl

) + min
pl≤k≤kl(tpl )

uk(tpl
)(ty + TY − tpl

) ≥ l + w + L.

If the latter inequality holds, the aggressive strategy would allow the plth car through
and stop the (pl − 1)st car. We avoided this strategy because it did not seem to be
worth the effort to get one more car through the intersection during the green-yellow-
red cycle.

The attentive reader will by now realize that once we have determined which
car will slow down or stop at a given light the particular braking strategy adopted
is immaterial; all that is required is that the velocity associated with the braking
strategy, vpl

, be such that if xpl
satisfies

dxpl

dt
= vpl

and xpl
(ty) < l,

then xpl
(tm+1) ≤ l. We adopted constant braking strategies here because they were

simple and realistic.

4. Concluding remarks. There are some obvious connections between the dis-
crete model studied in this paper and the continuum or macroscopic models of Aw,
Klar, Materne, and Rascle [3].

If one assumes that the maximal velocity V(·) introduced in (1.1)–(1.3) is actually
a function of γ = s

L defined on γ = s
L ≥ 1, i.e.,

V(s) = W
( s
L

)
,(4.1)

then (1.1) and (1.7) take the form

dxk

dt
= uk and

duk

dt
= W ′(γk)

(
uk+1 − uk

L

)
+

(W (γk)− uk)

ε
,(4.2)

where again

γk =
(xk+1 − xk)

L
(4.3)

and

dγk
dt

=
uk+1 − uk

L
.(4.4)



168 ARGALL, CHELESHKIN, GREENBERG, HINDE, AND LIN

The connection between the follow-the-leader system (4.1)–(4.4) is now clear. One
introduces reference coordinates

Xk = kL,(4.5)

lets

X (Xk, t) = xk(t) and u(Xk, t) = uk(t),(4.6)

and interprets γk and uk+1−uk

L as the downwind finite difference approximations to
∂X
∂X and ∂u

∂X at the reference point Xk; i.e.,

∂X
∂X

(Xk, t) = γk =
xk+1 − xk

L
and

∂U

∂X
(Xk, t) =

uk+1 − uk

L
.(4.7)

With these identifications one obtains, at least formally, the Lagrangian traffic equa-
tions

∂X
∂t

(X, t) = u(X, t) and
∂X
∂X

= γ(X, t),(4.8)

where

∂γ

∂t
=

∂u

∂X
and

∂u

∂t
= W ′(γ)

∂u

∂X
+

(W (γ)− u)

ε
.(4.9)

This correspondence is faithful if one restricts one’s attention to initial value problems
exclusively. We have not seen how to incorporate the traffic light problem into a
continuum format.
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