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Abstract. The vision of humans and robots working together as peers to 
accomplish complex tasks has motivated many recent research endeavors with a 
variety of applications ranging from lunar construction to soccer. However, much 
of this research is still at an early stage, and many challenges still remain in 
realizing this vision. A key requirement for enabling robustness and efficiency in 
human-robot teams is the ability to dynamically adjust the level of autonomy to 
optimize the use of resources and capabilities as conditions evolve. While sliding 
autonomy is well defined and understood in applications where a single human is 
working with a single robot, it is largely unexplored when applied to teams of 
humans working with multiple robots. This paper highlights the challenges of 
enabling sliding autonomy in peer-to-peer human-robot teams and extends the 
current literature to identify and extend six key capabilities that are essential for 
overcoming these challenges. These capabilities are requesting help, maintaining 
coordination, establishing situational awareness, enabling interactions at different 
levels of granularity, prioritizing team members, and learning from interactions. 
We demonstrate the importance of several of these characteristics with results 
from a peer-to-peer human-robot team engaged in a treasure hunt task. 
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Introduction 

The vision of humans and robots working together to accomplish complex team tasks is 
driving much of the current research in the area of autonomous teamwork. As robots 
become more capable they can handle increasingly complex tasks and highly uncertain 
environments, but the robotic capabilities in many domains are still insufficient to 
execute these tasks robustly and efficiently. In these scenarios, robots can still 
accomplish the tasks with human assistance as human capabilities are often better-
suited for some tasks and complement robot capabilities in many situations.  Thus, for 
robots to become an integral part of society, human-robot teams must be effective in a 
variety of settings.   
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In most of the published work on human-robot teams, the human’s role is limited 
to either a supervisor  [6] or end-user  [9] when interacting with a single or multiple 
robots or agents  [10].  While this hierarchical relationship between human and robot is 
appropriate in some domains, there are many applications where a peer-to-peer 
relationship enables more effective use of the complimentary capabilities of humans 
and robots.  In this work, we focus on peer-to-peer human-robot teams where humans 
and robots can assign tasks to each other through direct requests/commands, or through 
automated task allocation systems. Several research efforts are emerging in this area [7] 
with applications ranging from lunar construction  [4] to soccer  [2]. Within the topic of 
human-robot teams, we are especially interested in pickup teams  [5] where the 
composition of the team is not previously known and where members joining the team 
can vary in their capabilities, expertise, and knowledge of the task.  Pickup teams 
should absorb this wide variety of members to quickly form effective teams, and 
improve over time as the strengths and weaknesses of different members are 
discovered and accounted for in the team strategy.  

An important aspect of enabling effective human-robot pickup teams is allowing 
the team to adjust its level of autonomy as necessary.  Sliding autonomy2 was 
introduced to optimize performance by allowing a system to adapt its level of 
autonomy during execution to accommodate dynamic conditions. The agent and 
robotics literature are populated with many studies on sliding autonomy applied in 
different scenarios.  However, this work has not been extended to peer-to-peer human-
robot teams to date. This paper explores the challenges in applying sliding autonomy in 
peer-to-peer human-robot team settings and proposes a set of guidelines for 
accomplishing this task.  The proposed guidelines are used to implement a system of 
humans and robots engaged in a treasure hunt task. 

1. Sliding Autonomy in Peer-To-Peer Human-Robot Teams 

“Autonomy” is defined in terms of a system’s ability to function effectively without 
human intervention.  For example, a fully autonomous system (or “pure autonomy”) is 
said to require no human intervention to complete a task  [6].  “Sliding autonomy” is 
similarly defined in terms of the system’s ability to incorporate human intervention 
when needed (and to otherwise operate independently)  [10].  Both of these definitions 
must change when humans are a part of the “system” or team and where the humans 
and robots interact as peers. We extend the definition of autonomy presented by 
Maheswaran et al.  [9] where the ability to decide transfer (or sharing) of control 
governs the level of autonomy.  Thus, sliding autonomy in peer-to-peer teams means 
that members of the team (humans, robots, and software agents) can actively decide if 
and when to transfer control to (or share control with) another member of the team or, 
in some cases, to some entity outside the team.  Because the team members are 
heterogeneous, some team members may not be capable of making their own decisions.  
Hence, the decision-making control can shift between different members of the team as 
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needed, but all team members may not possess this capability equally.  We also allow 
prioritization of different team members such that higher priority members can seize 
control from lower priority members if deemed necessary.  

Our work builds on the methodology for sliding autonomy in multi-agent teams 
proposed by Sellner et al.  [6] and work on mixed-initiative teams reported by 
Bruemmer and Walton  [11].  Specifically, we identify six necessary capabilities for 
enabling sliding autonomy in peer-to-peer human robot teams3.  The first three of these 
capabilities are extended forms of characteristics presented by Sellner et al.  [6] as 
major issues that affect human awareness in multi-agent teams.  They are the ability to 
request help, the ability to maintain team coordination during interventions, and the 
ability to provide situational awareness.  The second set of characteristics are 
augmented versions of capabilities identified by Bruemmer and Walton  [11] in the 
context of robots in mixed-initiative teams. They are the ability to interact at different 
granularities, the ability to prioritize team members, and the ability to learn from 
interactions.  We next discuss how these six characteristics enable sliding autonomy in 
a peer-to-peer team setting of humans and robots.   

In peer-to-peer teams no single member is necessarily aware of the entire team 
state.  Hence, these teams are more effective when individual agents and sub-teams can 
identify situations where they need to request help from other members of the team. 
These requests for help primarily occur in situations where an agent discovers a failure 
it cannot rectify without the help of another agent and hence must adjust its level of 
autonomy  [8].  In some situations a team member may not be capable of asking for 
help or assisting in a recovery process from a failure  [8].  In this event, other team 
members will need to recognize this failure and adapt the team strategy as needed.  
Monitoring teammates becomes more difficult in pickup teams since team composition 
can change over time and unfamiliarity with identifiable characteristics that indicate 
faults in new team members can impede the process of fault recognition and 
identification. Another type of help request can occur when an agent is assigned a task 
that requires resources or capabilities that the agent doesn’t possess.  In this case, the 
agent needs to recruit others to assist with the task and, in some cases, may need to 
adjust its level of autonomy to accomplish the task. 

Maintaining coordination during interventions is important for effective team 
performance.  For example, if one robot in the team suffers a failure during the 
execution of a team task, the rest of the team should maintain their coordination while 
re-strategizing to assist in the recovery from the failure. The team may continue to 
execute the task despite the failure, or discover that they are unable to complete the 
task due to the failure and hence request further assistance from an entity outside the 
team.  Therefore, autonomy may be adjusted for some tasks that require external 
intervention while other tasks are carried out autonomously.  Furthermore, if the team 
is able to overcome the failure without external intervention, it is important that 
coordination is maintained while the failure is addressed by the relevant team members 
and that other members of the team continue with their tasks. 

Gaining and maintaining situational awareness is perhaps the biggest relevant 
challenge in a team setting.  Situational awareness is a key factor in executing early and 
successful interventions, and in decisions for adjusting autonomy.  In teams with 
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multiple mobile humans, it is not sufficient to capture information in a single graphical 
interface (GUI), and customization of the state information for the different members 
of the team may be required.  Furthermore, the state of the humans and the dialog and 
gestures that are a natural part of human-to-human communication must be captured 
and made transparent to the robots on the team since interventions might be carried out 
by robots.  Situation awareness in pickup teams is also difficult because we must be 
able to accommodate new capabilities and resources as members join the team, and we 
must be able to expose the state of the current team to the new member quickly and 
effectively.  Several research efforts are focused on a variety of communication 
strategies for human-robot teams that include tools such as GUIs, 3-D interactive 
environments, dialog, and gestures ( [1],  [3],  [4],  [5],  [6],  [11]).  However, there is still 
much to be accomplished in this area of research. 

The granularity of interaction must often be flexible in peer-to-peer teams and 
this also translates to sliding autonomy.  This primarily impacts exposure to 
information and interactions between team members.  The level of granularity of the 
information presented to any team member will often need to be adaptable for 
individual components of the system for effective comprehension by different team 
members. This directly correlates to the previous requirement for effective situational 
awareness.  In terms of interactions among team members, the most effective teams 
allow for some members to interact in a tightly-coordinated manner to accomplish 
some tasks, while others act independently. In the case of sliding autonomy, this is also 
important because autonomy might be adjusted by a single agent’s intervention or by a 
sub-team intervention.  For example, two or more agents may coordinate to assist a 
robot that is stuck in the mud by tightly coordinating in a sub-team, but once the robot 
is out of the mud, they may coordinate more loosely to accomplish other tasks.  

Explicit prioritization of team members is important in peer-to-peer teams because 
we cannot assume an inherent hierarchy.  The prioritization of the team members is 
ideally adjustable and specifiable along different dimensions. For example, human 
members might be prioritized in safety considerations, but a robot with powerful 
computing capability might be prioritized for planning tasks.  These priorities can 
change when the team composition changes, and also due to other dynamic conditions 
and should also translate to sliding autonomy.  Higher priority members of the team 
might be eligible for earlier interventions when there is contention for limited 
resources. Another possibility is that higher priority members can override the 
autonomy of lower priority members and temporarily seize control for certain tasks.    

Finally, learning from interactions is important for effective team performance.  
For example, in pickup teams, the prioritization of new members for different tasks and 
concerns may not be initially known and instead have to be learned based on 
interactions over time. Also, in terms of sliding autonomy, team members may need to 
learn to detect indicators of failure so that autonomy can be adjusted when necessary. 

In summary, we have discussed six necessary capabilities for sliding autonomy in 
human-robot peer-to-peer teams: Requesting help, maintaining coordination, 
establishing situational awareness, enabling interactions at different levels of 
granularity, prioritizing team members, and learning from interactions. Next, we 
describe an initial implementation of some of these capabilities for a peer-to-peer 
human-robot team engaged in a treasure hunt task. 



2. Approach and Implementation Details 

Our implementation (described in further detail in previous publications  [3] and 
 [5]) supports two different granularities for tasking human-robot teams. First, a high-
level task objective is issued to the system. The system responds by autonomously 
selecting a plan that is potentially multi-agent and tightly-coordinated to accomplish 
the objective.  A pickup sub-team is created from available team members with the 
necessary capabilities to efficiently execute this plan.  Once the pickup team has been 
selected, the agents coordinate via simple communication protocols during execution, 
handle errors, and report status to each other. Occasionally errors occur or new 
information is discovered that cannot be addressed by the robotic agents alone.  In 
these cases, the robots request help from a human peer who may or may not have been 
part of the original sub-team team.  The human can join the team and seize control of 
the system, physically intervene, or issue low-granularity commands to the robot 
participants. Currently, we use a fixed prioritization technique on the robots where 
low-level commands from humans override robot commands. We do not yet address 
learning (an area of future work). Finally, the flow of information between robots and 
humans is directed through a GUI application. Each human can use a tablet PC that 
runs the somewhat customizable GUI so that they are aware of the current system state. 
Human actions are explicitly communicated to robots in the current implementation. 

 

 
Figure 1: The four components of our system, with arrows indicating the flow of information. The pathway 
for high-level tasks and resulting high-level status is shown in grey arrows.  The pathway for low-level 
commands directly to robots for error recovery is shown by black arrows.  The dotted arrow represents 
information supplied by the robots to be used in high-level planning and allocation.  

 

Our system consists of four main components, as shown in Figure 1: a human 
interface tool (OPERATOR TOOLS), a distributed market-based planning and 
allocation system (TRADING SYSTEM), a component for synchronized tightly-
coordinated multi-agent plan execution (PLAY MANAGER), and robot software that 
supports sensing and acting in the environment (ROBOTS). The operator tools, allow 
an operator or human peer to issue both high- and low-level tasks and to process status 
messages in addition to displaying state information of the robots.  These are our 
primary method for supporting visual situational awareness for the humans. Tasks can 
be autonomously allocated via the Trading System, or can be issued directly to specific 
agents.  The Trading System uses an instantaneous allocation approach, where agents 



will only participate in the formation of a new sub-team if they are not actively 
involved in another high-level task.  Multiple sub-teams can simultaneously address 
different tasks and errors are reported to both humans and robots. We use a tiered 
auction approach, where individual agents attempt to generate plans and recruit other 
agents’ participation in those plans; the trading system selects the most efficient plan 
and allocation from the submitted bids. Agents provide information about their 
capabilities and other cost data that helps the trading system determine plan efficiency.  
Capability information is used to determine which agents can best fill particular roles in 
a possible plan.  Cost data is used to differentiate between different capable agents 
when determining which agents can most efficiently fill a particular role. The trading 
system provides the ability to dynamically form sub-teams that will be maximally 
efficient in addressing high-level objectives and maintaining coordination even if team 
composition changes during operation. Currently, humans do not participate in the 
auctions for tasks but instead are explicitly enrolled in relevant tasks. 

Once a plan is selected and roles assigned the information is passed to the Play 
Manager to coordinate the execution of actions by the sub-team of multiple agents.   
The Play Manager sends a series of low-level commands to the agents assigned to 
participate in the coordinated plan.  If execution concludes successfully, status is 
reported to all participating agents.  In some cases, due to the highly unstructured and 
dynamic nature of the environment and the realities of robot hardware, agents may fail 
and may have no contingency plan.   In this case they report errors and directly request 
help.  Help requests primarily take the form of visual cues on the operator GUI (as 
shown in Figure 2), but we have also experimented with dialog-based error notification 
 [3]. Intervention to recover from failures can take two primary forms – physical 
interaction and direct low-granularity commands.  When resolving failures physically, 
a human directly interacts with robot hardware.  For instance, a robot may experience a 
problem with its laser range finder that can only be resolved by power cycling the laser 
unit; if a human performs this action in a timely manner, execution of the original plan 
resumes.  In direct robot command, the human can use the operator tools to issue low-
granularity commands to a particular robot.  For instance, a robot may become trapped 
or lost.  In these situations a human can issue a series of relative waypoints to free the 
robot or to move it back to a known area, after which plan execution can continue.  
Thus, sliding autonomy increases robustness and adaptability.  

The final component of our system is the robot/agent software.  The pickup team 
formulation depends on abstracting away many elements of robot software 
implementation in order to support the seamless integration of new team members.  We 
represent robots in terms of their capabilities, the actions they can perform, and the 
sensor data and errors they can produce. If agents can represent themselves in this 
manner our system can easily accommodate pickup teams, with members fluidly 
participating in sub-team formation and execution of tasks.    

3. Experiments, Results, and Discussion in the Treasure Hunt Domain 

We demonstrate the effectiveness of our approach in the “Treasure Hunt” domain  [5], 
which is motivated by applications such as de-mining where human exposure to danger 
must be minimized but humans are needed to deal with safe maneuvering of the 
discovered items. The task requires a human-robot team to locate and retrieve items of 



interest or “treasure” (visual fiducials) in an unknown environment. The key tasks 
include exploration, mapping, search and localization of treasure, and retrieval of 
treasure to a “home” location.  We use heterogeneous platforms with complimentary 
capabilities: Pioneer IIDX robots equipped with SICK LiDar and fiber optic gyros, and 
Segway RMPs and ER1s equipped with cameras. Pioneers build maps and maintain an 
accurate pose while Segways can locate Pioneers and treasure, and localize based on 
the observed position and report location of the Pioneers. ER1s are similar in 
capabilities to the Segways but are teleoperated. Humans cannot directly observe the 
operational area from the home location, interact with robots via GUIs, and perform 
retrievals by following Pioneers to the treasure location and back home. The team 
requires coordination to achieve the task since no team member can perform all 
operations.  Figure 2 shows a screen shot from the GUI, which provides situational 
awareness to the humans. Three types of errors are identified and reported. Laser errors 
relate to a problem with the Pioneer laser, pose errors occur when a robot’s localization 
becomes corrupted, and arc errors occur when a robot cannot independently discover a 
safe path. The experiments were performed in a large, complex, cluttered, and dynamic 
indoor environment (see Figure 3).    

 

 
 

Figure 2: A screenshot from a GUI showing the fused map built from the Pioneer robots. Shown is the recent 
trajectory of a pioneer (red trail), with a pose/laser error. Other errors show up in a similar manner. A human 
can issue commands and monitor the state of the team. 

 

Figure 3: (a) Overhead view of the operating environment where 7 “treasures” are randomly placed, (b) 
“Home” location, (c) A human team member observing the map being built by the Pioneer robots, (d) An 
ER1 robot teleoperated to follow a Pioneer robot to search for treasure, (e) A Segway robot autonomously 
following a Pioneer robot to search for treasure (an item of “treasure” is seen between the two robots), (f) A 
human being lead back to the “home” location after successfully retrieving an item of treasure.  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 



We measure performance based on the number of successfully identified and retrieved 
treasure items in a limited time-frame. The first two experiments compare team 
performance with sliding autonomy enabled versus disabled, while keeping the task 
parameters constant. In the third and fourth configuration of the system, we replace the 
autonomous Segway with a teleoperated ER1 robot, and increase the number of 
humans to evaluate the adaptability of the approach.  

 

 
Figure 4: Laser map of Highbay area with different treasure configuarations 

  

We perform initial experiments with 3 different treasure configurations (see Figure 
4). Each run is conducted over a fixed time period of 15 minutes with a total of 7 
“treasure” items scattered throughout the environment. The first set of experiments was 
performed for a team consisting of 2 humans, 1 pioneer and 1 Segway robot. Table 1 
shows the experimental results with sliding autonomy enabled. During these runs, 
requests for help were generated and handled by the system, while maintaining 
coordination during intervention. In contrast, Table 2 shows the experimental results 
with sliding autonomy disabled. For this experiment, no requests for help were 
generated by the system. The time at which each error occurred is also shown. For all 
experiments, a combination of errors was either randomly artificially generated (G) or 
occurred naturally over the course of operation (N). A comparison of the results in 
Table 1 and Table 2 show that the productivity of the team, measured by the number of 
treasure items identified and retrieved, decreases in the absence of sliding autonomy.  

The third set of experiments demonstrated an alternative human-robot sub-team 
capable of performing the treasure hunt task.  The Pioneer robot in this experiment was 
autonomous while the ER1 robot was teleoperated by a human.  Table 3 shows the 
experimental results with a sub-team consisting of 3 humans, one Pioneer and one ER1. 
Table 4 shows the experimental results with error handling turned off for the ER1-
Pioneer team. In order to avoid human-biasing as a result of familiarity with the 
environment and the system, the experiments were performed by two-different humans 
with no prior experience and one human with prior experience dealing with the robots. 
During these runs, requests for help were generated and handled by the system, while 
maintaining coordination during intervention. In the case of experiments where the 
sliding autonomy was turned off, no human intervention was provided when the robots 
fail to autonomously handle errors.  

 



Table 1: Results of 3 runs with sliding autonomy enabled.  Type of Errors – Arc (A), Laser (L), and Pose (P). 
# Error Generated Type – Artificial/manually induced (G) or naturally occurring as part of the 
system/environment (N)  # Robots – R1: leader/explorer Pioneer, R2: retriever Pioneer. 

Run Treasure seen (recovered) Error Types Error Source Error per Robot 

T_1 4 (2) Total: 5 [L(1), A(2), P(2)] N(5) R1(2), R2(3) 

T_2 3 (2) Total: 6 [L(4), A(1), P(1)] G(2), N(4) R1(2), R2(4) 

T_3 2 (0) Total: 2 [P(1), L(1)] N(2) R1(1), R2 (1) 

Table 2: Results of 3 runs with sliding autonomy disabled 

Table 3: Results of 3 runs with a sub-team of humans, a Pioneer and an ER1. Labeling as in Table 1. 

Run Treasure seen (recovered) Error Types Error Source Error per Robot 

T_1 4 (4) (Skill level - Novice) Total: 2 [L(1), P(1)] G(2) R1(1), R2(1) 

T_2 6 (3) (Skill level - Expert Total: 5 [L(1), A(3), P(1)]    G(2), N(3) R1(3), R2(2) 

T_3 4 (2) (Skill level - Novice) Total: 3 [L(1), A(1), P(1)] G(2), N(1) R1(2), R2(1) 

Table 4: Results of 3 runs with for Pioneer, ER1, human team with sliding autonomy disabled. 

Run Treasure seen (recovered) Error Types Error Source Error per Robot 

T_1 3 (2) (Skill level - Novice) Total: 1[ L (1)] G(1) R1(1) 

T_2 0 (0) (Skill level – Novice) Total: 1 [A (1)]         N(1) R1(1) 

T_3 4 (2) (Skill level - Novice) Total: 1 [L(1)] G(1) R1(1) 

 
Overall, these experiments primarily demonstrate that sliding autonomy can 

improve team performance and that the implemented system can be flexible in 
accommodating different team configurations for accomplishing the same task.  

4. Conclusions and Future Work 

The ability to dynamically adjust the level of autonomy during execution can enhance 
the performance of human-robot teams.  This paper extends the framework for sliding 
autonomy to address peer-to-peer human-robot teams. We highlight six important 

Run Treasure seen (recovered) Error Types Error Source Error per Robot 

T_1 2 (2) Total: 1 [L (6.5 min)] G(1) R1(1) 

T_2 1 (1) Total: 2 [P (2 min), L (5 min)] G(2) R1(1), R2(1) 

T_3 0 (0) Total: 1 [P (7.5 min)] G(1) R1(1) 



characteristics in this context: requesting help, maintaining coordination, establishing 
situational awareness, enabling interactions at different levels of granularity, 
prioritizing team members, and learning from interactions. We implement several of 
these characteristics and demonstrate them in a peer-to-peer human-robot team 
engaged in a treasure hunt task. While initial experiments show promising results, the 
current implementation can be improved in several ways.  Situational awareness should 
be enhanced for the robots and humans by capturing human state and communication 
among human team members.  The prioritization of team members should be 
dynamically adapted to allow for changes in team composition and task priorities.  
Finally, the system does not currently incorporate any learning.  If team members can 
learn to perform better based on their interactions and other performance metrics, the 
overall team performance should improve. Ongoing work addresses these extensions. 
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