Learning Robot Motion Control
from Demonstration and Human Advice

Brenna D. Argall, Brett Browning and Manuela Veloso

Abstract— As robots become more commonplace within so-
ciety, the need for tools that enable non-robotics-experts to
develop control algorithms, or policies, will increase. Learning
from Demonstration (LfD) offers one promising approach,
where the robot learns a policy from teacher task executions.
In this work we present an algorithm that incorporates human
teacher feedback to enable policy improvement from learner
experience within an LfD framework. We present two imple-
mentations of this algorithm, that differ in the sort of teacher
feedback they provide. In the first implementation, called
Binary Critiquing (BC), the teacher provides a binary indication
that highlights poorly performing portions of the execution. In
the second implementation, called Advice-Operator Policy Im-
provement (A-OPI), the teacher provides a correction on poorly
performing portions of the student execution. Most notably,
these corrections are continuous-valued and appropriate for low
level motion control action spaces. The algorithms are applied
to validation domains, one simulated and one a Segway RMP
platform. For both, policy performance is found to improve
with teacher feedback. Specifically, with BC learner execution
success and efficiency come to exceed teacher performance.
With A-OPI task success and accuracy are shown to be similar
or superior to the typical LfD approach of correcting behavior
through more teacher demonstrations.

I. INTRODUCTION

As robots become more prevalent within general society,
the need for programming techniques that are accessible
to non-experts increases. To develop a control policy, or
mapping from world observation to action selection, tra-
ditional approaches first model world dynamics and then
derive the policy mathematically. Though theoretically well-
founded, these approaches depend heavily on the accuracy
of the world model, which requires considerable expertise to
develop. Most other approaches to policy development are
similarly restricted in use to robotics-experts.

One potential exception is policy development through
Learning from Demonstration (LfD), e.g. [5], [10]. In this
paradigm, a teacher first demonstrates a desired behavior to
the robot. The robot then generalizes from these examples to
derive a policy. Demonstration has the attractive feature of
being an intuitive communication medium for humans, who
already use demonstration to teach other humans. Since it

B. Argall and B. Browning are with the Robotics In-
stitute, and M. Velsoso the Computer Science Department,
at Carnegie Mellon University, Pittsburgh, PA 15213, USA.

<bargall,brettb,mveloso>@cs.cmu.edu

This research was sponsored in part by the Boeing Company under
Grant No. CMU-BA-GTA-1. The views and conclusions contained in
this document are those of the authors and should not be interpreted as
necessarily representing official policies or endorsements, either expressed
or implied of the Boeing Company. The authors Brenna Argall and Brett
Browning were partially supported by Carnegie-Mellon University in Qatar
and the Qatar Foundation.

does not require expert mathematical knowledge of the sys-
tem dynamics, demonstration also opens policy development
to non-robotics-experts.

A desirable feature in any learning system is the ability
to improve a policy based upon learner experience. Though
not an explicit part of classical LfD, many LfD systems do
take policy improvement steps. The most common approach
is to add more teacher demonstration data in problem areas
of the state space, and then re-derive the policy [7], [8].

In this work we present an algorithm for policy improve-
ment within an LfD framework. Within this algorithm, a
teacher is employed not only for demonstration, but also for
later evaluations of the learner executions. Furthermore, the
techniques we present are appropriate for policy improve-
ment within low level motion control domains. We discuss
two implementations of this algorithm, that differ in the type
of human teacher feedback provided.

In the first implementation, named Binary Critiquing (BC),
the human teacher flags poor performing areas of the learner
executions. The learner uses this information to modify its
policy, by penalizing the underlying demonstration data that
supported the flagged areas. We argue that this sort of
feedback is well-suited for human teachers. That is, humans
are generally good at assigning credit to a given performance,
but have less intuition about assigning credit to the underly-
ing algorithm. Furthermore, under this formulation, a robot
mechanism does not need to be performable or understood
by the human teacher to receive credit.

In the second implementation, named Advice-Operator
Policy Improvement (A-OPI), the human teacher provides
corrections on the learner executions. This is in contrast to
BC, in which poor performance is flagged, but the correct
action to take instead is not indicated. The learner uses these
corrections to synthesize new data based on its own execu-
tions, and then updates its policy. This alternative source for
data, that does not derive from teacher demonstrations, is a
key novel feature of the A-OPI algorithm.

We validate these approaches to providing human teacher
feedback with simulated and real world implementations.
In particular, BC is implemented on a realistic simulation
of a differential drive robot, modelled on the SegwayRMP,
performing a ball interception task. Our results show that
human teacher critiquing does improve task performance,
as measured by interception success and efficiency. A-OPI
is implemented on a real Segway RMP robot performing a
spatial positioning task. We show that A-OPI enables similar
or superior performance when compared to the typical LfD
approach to behavior correction that provides more teacher

demonstrations. Furthermore, by concentrating new data
exclusively to the areas visited by the robot and needing
improvement, A-OPI produces noticeably smaller datasets.

In the following section we motivate LfD policy improve-
ment with a review of related work. Section III introduces
our general algorithm. The BC implementation is presented
in Section IV, along with validation details and results
in Section V. The same treatment is given to the A-OPI
implementation, in Sections VI and VII respectively. In
Section VIII we conclude.

II. MOTIVATION AND RELATED WORK

The problem of learning a mapping between world ob-
servations and proper action selection lies at the heart of
many robotics applications. Here we present an overview of
the Learning from Demonstration approach to this problem,
followed by a motivation for policy improvement based on
learner experience within such a framework.

A. Learning from Demonstration

During an LfD teacher execution, world state observation
and action selection is recorded. Formally, our world consists
of states S and actions A, with the mapping between states
by way of actions being defined by the probabilistic transition
function T'(s'|s,a) : S x A x S — [0,1]. We assume
that state is not fully observable. The learner instead has
access to observed state Z, through a mapping S — Z.
A teacher demonstration d; € D is represented as t; pairs
of observations and actions such that d; = {(zé,a})} €
D.z; € Z,a; € Aji = 0---n;. Within the typical L{D
paradigm, the set D of these demonstrations is then provided
to the learner. No distinction is made within D between the
individual executions however, and so for succinctness we
notate (zy,ay) = (zé, aé»). A policy 7 : Z — A, that selects
actions based on an observation of the current world state or
query point, is then derived from D.

LfD has found success on a variety of robot platforms and
applications. Key design decisions include the demonstration
approach that produces the data, and then how a policy is
derived from that data.

Approaches for executing and recording teacher demon-
strations range from teleoperating a passive robot plat-
form [12] to recording sensors worn by a human [7]. We
teleoperate our robot while recording from its own sensors, as
this minimizes correspondence issues between demonstrator
and learner, and employ both human and automated demon-
strators, as the algorithm is general to any sort of teacher.

The most popular approaches for deriving a policy from
demonstration data are to (a) directly approximate the under-
lying function mapping observations to actions [5], (b) use
the data to determine the world dynamics model T'(s'|s, a)
[11] or (c) provide a planner with a learned model of action
pre- and post-conditions [10]. Our work derives a policy
using the first, mapping function approximation, approach.

B. Policy Improvement within Learning from Demonstration

An attractive feature for any learning system is the ability
to update the policy based on learner executions. Though
not a part of the classical LfD formulation, a variety of LfD
systems do update the policy based on learner experience.
For example, when a policy is derived under the world
dynamics model approach, execution experience may update
T(s'|s,a) [1], or reward-determined state values [13].

When a policy is derived by approximating the underlying
mapping function, which is the approach we explore, a
common technique for improvement is to provide more
demonstration data. Algorithms driven by learner requests for
more data [8], [9], and teacher initiation of further demon-
stration [7], have been shown to improve policy performance.

In this work, we consider two alternative approaches to
LfD policy improvement. The first (BC) attaches a valuation,
based on teacher feedback, to the demonstration data points,
and considers this valuation when deriving the policy. The
second (A-OPI) provides more data to the policy, but derives
this data from learner executions modified by advice from
a human teacher (Fig. 1).

Teacher Data Policy s
Execution Derivation
Student Data
Execution
Data Data Policy ™
/S Synthesis Derivation
Teacher | Operators
Advice
Fig. 1. Generating demonstration data. Typical approaches provide demon-

stration data from teacher executions (top). Our A-OPI approach introduces
a novel technique for generating data based upon learner executions and
teacher advice (bottom, shaded box).

III. GENERAL ALGORITHM

We now detail our general teacher feedback algorithm. The
approach consists of two phases. During the demonstration
phase, a set of teacher demonstrations is provided to the
learner. From this the learner generalizes an initial policy.
During the advising phase, the learner executes this initial
policy. Advice on the learner execution is offered by a human
advisor, and is used by the student to update its policy.
Psuedo-code for the algorithm is provided in Figure 2.

The first phase consists of teacher demonstration, during
which state-action pairs are recorded. From the set of these
exeuctions D an initial policy is derived (line 1). The second
phase consists of learner practice. For each practice run, an
observed goal state z9°% € Z is provided (line 2). To begin
the robot performs the task (Execute, lines 4-9).

During the Execute portion of a practice run, the learner
first executes the task, producing trace tr. The learner
executes until achieving goal state 29°%. At each timestep
the learner selects action a’ according to w(z!) (line 6).

0 Given D, Z

1 initialize 7 <« policyDerivation(D)

2 Given z9°% ¢ Z

3 initialize tr — {}

4 Execute

5 while z* | = z9°4

6 select a' «— m(z')

7 execute a'

8 record tr — {z' a'}

9 end

10 Update

11 update D «— adviseDataset(tr, D)

12 rederive 7 «— policyDerivation(D)
Fig. 2. Psuedo-code for the general teacher feedback algorithm.

This action is recorded in the execution trace tr, along with
observation z! (line 8).

The advisor then provides feedback on this performance
(line 11). The exact form taken by this advice, and how it
is used by the learner to update its policy, is determined
by each algorithm distinctly and will be discussed further
in Sections IV and VI for BC and A-OPI respectively. The
learner updates its policy 7 in response to the data feedback
of the advisor (Update, lines 12-15).

Lastly, in our implementation the policy is derived using
regression techniques. This is due jointly to the continuous
action space of our domains and that we employ the mapping
function approximation approach to policy derivation. A
wealth of regression approaches exist, and we emphasize that
many are compatible with this algorithm. Regression tuning
is external to this algorithm and tied to policy derivation,
occurring for initial derivation (line 1) and possibly for re-
derivations (line 12).

IV. ALGORITHM: BINARY CRITIQUING

We now present the details of the Binary Critiquing
implementation of our algorithm.

A. Algorithm Details

Within BC, how teacher feedback influences the policy
update depends upon the regression approach used. In par-
ticular, teacher feedback is used to credit the underlying
demonstration data. We use 1-Nearest Neighbors (1-NN)
regression because it is straightforward to determine which
datapoints were involved in a particular prediction, a key
requirement for this algorithm.

Updating the control policy depends on an internal data
representation, that is constructed by associating a scaling
factor m; with each training set observation-action pair
(z;,a;) € D. This factor scales the distance computation
during the 1-NN prediction. Formally, given a current ob-
servation z!, the scaled distance to each observation point
z; € D is computed, according to some metric ||z" — z;||.
The minimun is determined, and the action in D associated
with this minimum

t
A = Qargmin, ||zt —2;||m; > (Ziaai) €D (1)

is executed. In our implementation the distance computation
is Euclidean and observation dimensions are scaled inversely
with range. The values m; are initially set to 1.

Psuedo-code for dataset updating based on human advice
within the BC algorithm is presented in Figure 3. This code
chunk ties to line 11 of Figure 2, and will be discussed within
the following section.

0 adviseDataset(¢r,D)

1 Advise

2 { d} — teacherFeedback(tr)

3 Modify

4 foreach (zk,ak’) ed

5 choose (z;,a;,m;) € D that recommended a*
6 update m; — m; + ||zt —z;|| 7!

7 end

8 returnD

Fig. 3. Psuedo-code for dataset advising within the BC algorithm.

B. Teacher Feedback: A Binary Valuation

Within the BC algorithm, teacher feedback consists of
a binary critique. For each learner execution, the teacher
selects chunks d of the trajectory to flag as poorly performing
(Fig. 3, line 2). Chunk sizes are determined dynamically by
the teacher, and may range from a single point to all points
in the trajectory (typical sizes in this work are 20-30 points).

For each point k flagged by the teacher, the algorithm
determines the point (z;,a;, m;) € D that recommended the
action a* executed by the learner (line 5). The value m; of
this point is then increased according to line 6, where x > 0
is some constant. The amount by which m; is increased
is scaled inversely with distance, so that points will not
be unjustly penalized if recommending for remote areas of
the observation space. To update m; in this manner means
that datapoints whose recommendations gave poor results
(according to the critique of the teacher) will be seen as
farther away during the nearest neighbor distance calculation.

We conclude this section with a comparison of our teacher
feedback to traditional Reinforcement Learning (RL) reward.
In BC, poor performance flags provided by the teacher result
in a devaluation of state-action points within the demon-
stration dataset; effectively, a decrease in accumulated state
reward, or value. This valuation is different from traditional
RL reward however, both in how it is provided and how it is
used. First, BC feedback is provided by a human teacher,
whose evaluations may provide richer feedback than the
simple sparse reward functions that typically provide RL
rewards. Second, accumulated reward is not considered in
a predictive sense, as it is in RL where the action that leads
to the highest valued state is selected. Rather, state value
is used to modify the support of the demonstration dataset,
such that low-value data points are no longer considered to
support the state-space in which they reside. Note that a
similar approach to value use is taken by Bentivegna [6],
where the Q-value of a combined state-action-query point is
automatically decreased if the point resulted in task failure.

V. EMPIRICAL VALIDATION: BINARY
CRITIQUING

In this section we present results from applying the BC
algorithm to a simulated motion interception task.

A. Simulated Motion Interception

Empirical validation of the BC algorithm is performed
within a simulated ball interception domain. We first present
the task and domain, and then our evaluation measures.

1) Task and Domain: A differential drive robot is tasked
with intercepting a moving ball. Task execution ends when
the robot either intercepts the ball or the ball travels out
of bounds. Care was taken to keep the simulated domain
realistic to a real world domain; further domain and imple-
mentation details are described in [2].

Policy executions begin from an initial world configuration
of relative ball position and velocity. During execution the
robot directly observes its own state and the ball position.
We define (d*,¢') as the distance and angle to the ball in
the robot-centric frame, and (d%, ¢%,) as the distance traveled
by and heading of the robot within the global world frame.
The observations computed by the robot are 6-dimensional:
[dt7 ¢t7 (dt - dt_l)? (¢t - ¢t_1)7 (dl}% - d%’,ﬁl)v (3% - 3%71)]'
The actions predicted by the robot are 2-dimensional: change
in rotational speed and change in translational speed.

Teacher demonstrations are performed via teleoperation
of the robot by a hand-written suboptimal controller able
to select changes in rotational and translational speed. This
teacher was chosen for two reasons: the first being the
ease with which a large number of demonstrations could be
provided (here 100), and the second to highlight the ability
of our algorithm to improve upon teacher suboptimality.
For teacher demonstrations, initial world configurations are
uniformly sampled.

2) Evaluation: To measure the performance of our algo-
rithm, trajectory executions are evaluated for success and
efficiency. A successful interception is defined by (a) the
relative distance to the ball falling below some threshold
and (b) the ball and robot both remaining within bounds.
Execution efficiency is measured by trajectory length.

Performance evaluations occur on an independent test set
containing n; randomly sampled initial world conditions
(ny = 100). Execution on this test set is carried out after
every n, practice executions, or critiquing rounds (n, = 20,
120 critiquing rounds in total). We define a critiquing round
as execution from a single randomly sampled initial world
condition (not found within the test set). Note that during
the test evaluations, the learner executes using its most
recent policy , but no teacher critiquing or policy updating
occurs. For comparative purposes, the performance of the
demonstration teacher on this test set is evaluated as well.

B. Empirical Results

In this section we show learner performance to improve
with critiquing. This performance improvement is shown
through an increase in interception successes, as well as the
more efficient execution of successful trajectories. On both

of these measures, learner performance not only improves,
but comes to exceed the performance of its teacher. An
example cycle of learner execution and teacher critique,
along with the subsequent improvement in learner execution,
is demonstrated in Figure 4.

<+ Robot Trajectory
<+ Ball Trajectory
@ Critique

) No Critique

(A) Pre-critique Execution

(B) Teacher Advice

X

(C) Post-critique Execution

Fig. 4. Example learner execution made more efficient by critiquing.
(A) The robot initially intercepts the ball, but the loop in its trajectory
is inefficient. (B) The teacher critiques this trajectory, flagging the loop as
poor. (C) The robot repeats the execution successfully without a loop. Arrow
heads indicate direction of travel, and the red circle the distance threshold
for successful interception.

1) More Successful Executions: Learner performance was
found to improve with teacher critiquing. This improvement
was seen on advised executions, as well as under validation
by an independent test set.

Policy development was marked by rounds of critiquing
practice. Testing with the independent test set was performed
intermittently between rounds, to mark learner progress.
Figure 5 shows learner improvement, where each data point
represents the average result of executing from all test set
initial conditions. Learner percent success, using the initial
and final policies, are shown in Table 1.

Test Set Percent Success
70
68
66
6 \Robol
4 ' Teacher

62 — — —

Percent Success

60
58

56

0 20 4 60 80 100 120
Number of Critiquing Rounds
Fig. 5. Improvement in learner performance on the test set with critiquing

rounds (solid line). (Hand-written teacher policy test set performance
provided for comparison, dashed line).

For comparison, the teacher also executed from the test
set initial world conditions (Fig. 5, Tbl. I). That the learner
was able to perform better than the demonstrator underlines
the benefits of critiquing within this domain. The hand-coded
demonstration controller is not optimal for the domain. By
critiquing the robot’s executions, BC is able to correct for
some demonstration error and improve the robot’s perfor-
mance beyond the capabilities of the demonstration teacher,
and all in a simple and straightforward manner.

2) More Efficient Executions: Critiquing also improved
learner execution efficiency. That is, the robot learned to
intercept the ball faster, indicated by a reduction in trajectory
length. Efficiency results on the independent test set, from
the learner executing with its initial and final policies, as well
as the teacher executions, are presented in Table I. Note that
to decouple this measure from success, we compare only
those runs in which both learner and teacher are successful
(since the out of bounds success measure otherwise taints the
comparison, as a successful interception is necessarily faster
than an unsuccessful one).

Learner Initial w | Learner Final = | Teacher
Success 56% 70 % 62%
Length 2.73 1.96 2.87
TABLE I. Execution Percent Success

C. Discussion

The evaluation criteria of the feedback teacher was a
combination of ball interception success and human intuition.
These criteria depended heavily upon the teacher determining
when the execution began to *go wrong’, and passing judge-
ment on whether the robot was doing something ’smart’.
For example, taking a very convoluted path to the ball
would be considered 'not smart’, even if the interception
was successful (Fig. 4). To formally define a metric for credit
assignment which determines wrongness’ and ’smartness’,
however, could be quite difficult, thus underlining the worth
in having the critiquing teacher be human.

One weakness of this algorithm is that points in D might
be unduly penalized by critiquing, since where query points
are in relation to training data points is not considered
when updating m,. Consider two query points located at
identical distances, but orthogonal directions with respect,
to a given training point. The training point’s recommended
action might be appropriate for one query point but not the
other. Its execution by each would incur different successes,
and therefore also conflicting critiques. The incorporation
of query point orientation into the update of m; is thus a
potential improvement for this algorithm.

Providing a binary critique, like providing RL reward,
gives the learner an indication of where poor action selection
occurred. It does not, however, provide any sort of indication
about what should have occured instead. We posit that more
informative, corrective, feedback would prove useful to the
learner, and upon this ground our development of teacher
feedback within the A-OPI implementation.

VI. ALGORITHM: ADVICE-OPERATOR POLICY
IMPROVEMENT (A-OPI)

We next present the details of the Advice-Operator Policy
Improvement implementation of our algorithm. We begin
with a brief discussion on correcting behavior within L{D.
Typical approaches have the teacher demonstrate the correct
behavior, and then rederive the policy with this new data.
Within A-OPI we take the novel approach of synthesizing
new demonstration data based on student executions and
teacher advice. The following considerations motivate our
interest in alternatives to teacher demonstration:

e No need to recreate state. This is especially useful if
the world states where demonstration is needed are
dangerous (e.g. lead to a collision), or difficult to access
(e.g. in the middle of a motion trajectory).

o When unable to demonstrate. Further demonstration
may actually be impossible (e.g. rover teleoperation
over a 40 minute Earth-Mars communications lag).

e Not limited by demonstrator. A demonstrated training
set is inherently limited by the demonstrator’s perfor-
mance, which may be suboptimal.

A. Algorithm Details

Within A-OPI, the policy is updated by considering new
data, which has been synthesized from teacher advice and
learner executions. Unlike BC, the incorporation of teacher
feedback does not depend on the particulars of the regres-
sion technique, and any may be used. Our implementation
employs a form of Locally Weighted Learning [4]. Given
current observation z!, action a’ is predicted through an
averaging of data points in D, weighted by their kernelized
distance to z‘. Thus,

t t t z;—z"
a’ = E wy - a;, w; = elz=7l 2)

(zi,a;)€D

where the weights w! have been normalized over i. In
our implementation the distance computation is Euclidean,
observation dimensions are scaled by constant parameters
(tuned through cross-validation) and the kernel is Gaussian.

Psuedo-code for dataset updating based on human advice
within the BC algorithm is presented in Figure 6. This code
chunk also ties to line 11 of Figure 2, and will be discussed
within the following section.

B. Teacher Feedback: A Continuous Correction

The purpose of advice within A-OPI is to correct the
robot’s policy. Though this policy is unknown to the human
advisor, it is represented by observation-action mapping
pairs. To correct the policy, our approach therefore offers cor-
rective information about observation-action pairings from a
learner execution. A key insight to the A-OPI approach is that
pairing a modified observation (or action) with the executed
action (or observation) now represents a corrected mapping.
Assuming accurate policy derivation techniques, adding this
data point to the demonstration set and re-deriving the policy
will thus also correct the policy.

0 adviseDataset(ir,D)

1 Advise

2 { op,d } — teacherFeedback(tr)
3 Modify

4 foreach (zk,ak) ed

5 if op is observation-modifying
6 record D «— { op (zk) , ak}
7 else op is action-modifying

8 record D « { z*, op (ak) }
9 end

10 end

11 return D

Fig. 6. Psuedo-code for dataset advising within the A-OPI algorithm.

To have a human provide this corrective information,
however, represents a significant challenge. Specifically, our
work focuses on robot motion control within continuous
state/action spaces. Correcting the state-action mapping of
a policy involves indicating the correct action or state. For
continuous spaces, this requires providing a continuous-
valued correction. Expecting the human teacher, however,
to know an appropriate continuous value that corrects these
data points is neither reasonable nor efficient.

To circumvent this, we have developed advice-operators
as a language through which the human teacher provides
advice to the robot student. We concretely define an advice-
operator as a mathematical computation performed on an
observation input or action output. Key characteristics of
advice-operators are that they:

o Perform mathematical computations on data points.

o Are defined commonly between the student and advisor.

« May be applied to observations or actions.

We have developed a set of 9 advice-operators for motion
control (see [3] for full details).

Like in BC, the teacher first indicates a chunk d of
the learner execution trajectory requiring improvement. The
teacher additionally selects an advice-operator op, from a
finite list, to correct the execution within this chunk (Fig. 6,
line 2). For each point k selected by the teacher, the
algorithm modifies either its observation (line 6) or action
(line 8), depending on the indicated advice-operator type.
The modified data points are then added to the set D.

To illustrate, consider as an example that the operator
“Translational acceleration” is indicated along with a chunk
of 10 execution data points. This operator functions by
augmenting actions by linearly increasing percentages of the
executed speed; for example updating the translational speed
a® of point 0 to a® —1.1-4a°, point 1 to at — 1.2-qa', and
so forth through to the final point 9 to a® « 2.0 - a°.

We again conclude with a comparison of this teacher
feedback to traditional RL reward. In A-OPI, teacher advice
provides a correction on the executed state-action mapping.
By contrast, RL reward provides only an indication of the
desirability of visiting a particular state; to determine the
correction (i.e. the more desirable state) alternate states must
be visited. This can be unfocused and intractable to optimize

when working on real robot systems with an infinite number
of world state-action combinations.

VII. EMPIRICAL VALIDATION: A-OPI
In this section we present the results of applying the A-
OPI algorithm to a motion task using a Segway RMP robot.
A. Segway RMP Spatial Positioning

Empirical validation of the A-OPI algorithm is performed
through spatial positioning with a Segway RMP robot
(Fig. 7). We first present the task and domain, and then our
evaluation measures.

hf‘; .

Segway RMP robot performing the spatial positioning task.

Fig. 7.

1) Task and Domain: The Segway RMP is a dynamically
balancing differential drive robot produced by Segway LLC.
The platform accepts wheel speed commands, but does
not allow access to its balancing control mechanisms. The
inverted pendulum dynamics of the robot present an addi-
tional element of uncertainty for low level motion control.
Furthermore, for this task smoothly coupled rotational and
translational speeds are preferred, in contrast to turning on
spot to 6, after attaining (z4,%,). To mathematically define
such trajectories for this specific robot platform is thus non-
trivial, encouraging the use of alternate control approaches
such as A-OPI. That the task is straightforward for a human
to evaluate and correct further supports A-OPI as a candidate
approach. While the task was chosen for its suitability to
validate A-OPI, to our knowledge this work also constitutes
the first implementation of such a motion task on a real
Segway RMP platform.

The spatial positioning task consists of attaining a 2D
planar target position (zg4,y,), with a target heading 6,.
The observations and actions for this task are 3- and 2-
dimensional, respectively. Let the current robot position and
heading within the world be represented as (2, ¥, 6,), and
the vector pointing from the robot position to the goal
position be (x,,y,) = (x4 — Zr,yg — Yr). An observation
consists of: squared Euclidean distance to the goal (22 +y2),
the angle between the vector (z,,y,) and robot heading
0,-, and the difference between the current and target robot
headings (6, — 6,.). An action consists of: translational and

rotational speeds. The robot samples these values from wheel
encoders at 30 Hz.

2) Policy Development: The set D is seeded with demon-
strations recorded as the teacher teleoperates the robot learner
(here 9 demonstrations, 900 data points). The initial policy
derived from this dataset we refer to as the Baseline Policy.

Policy improvement proceeds as follows. A goal
is selected (without replacement) from a practice
set consisting of (x,y,0) goals drawn uniformly
within the bounds of the demonstration dataset
([-0.33,4.5]m, [—4.0,0.17)m, [-3.1,1.1]rad). The robot
executes its current policy to attain this goal. The advisor
observes this execution. If the execution is considered poor,
the advisor offers policy improvement information. The
policy is re-derived. Drawing a new goal then initiates
another practice cycle.

Three policies are developed using distinct techniques, dif-
fering in what is offered as policy improvement information.
The first provides advice exclusively, in the form of advice-
operators (A-OPI Advised Policy). The second involves an
initial phase of exclusively more teleoperation, followed by
a phase of exclusively offering advice (A-OPI Hybrid Policy).
The third provides further teleoperation teacher demonstra-
tions exclusively (Teleoperation Policy). We refer to these
collectively as the improvement policies.

3) Evaluation: Policy performance is evaluated on a test
set, consisting of 25 (z,y,0) goals, again drawn from a
uniform distribution within the bounds of the demonstration
dataset. The test set is independent, and no executions
associated with it receive policy improvement information.

Policies are evaluated for accuracy and success. Accuracy
is defined as Euclidean distance between the final robot and
goal positions e, , = |(zg — 2r,ys — ¥r)||, and the final
robot and goal headings ey = |0, — 6,.|. We define success
generously as e, , <1.0m A eg < 3 rad.

B. Empirical Results

Policy performance improved with A-OPI advising, in
both execution success and accuracy. When compared to
the approach of providing more teleoperation data, final
improvement amounts were found to be similar or superior.
Furthermore, this performance was achieved with a similar
number of practice executions, but smaller final dataset D.

For each policy improvement approach, the policy im-
provement phase was halted once performance on the test set
no longer improved. The final A-OPI Advised, A-OPI Hybrid
and Teleoperation Policies contained data from 69, 68 and
60 executions, respectively (with the first 9 demonstrations
for each attributable to seeding with the Baseline Policy).

1) Increase in Successful Executions: Figure 8 presents
the percent execution success of each policy on the inde-
pendent test set. When compared to the Baseline Policy, all
policy improvement approaches display increased success.
Both the advised A-OPI policies additionally achieve higher
success than the Teleoperation Policy.

Test Set Percent Success
| A-OPI Advised | A-OPI Hybrid | Teleop | Baseline |
] 88% \ 92% \ 80% \ 32% \

Fig. 8. Percent successfully attained test set goals.

2) Improved Accuracy: Figure 9 plots the average position
and heading error on the test set goals, for each policy.
For positional error, all improvement policies display sim-
ilar performance, which is a dramatic improvement over
the Baseline Policy. For heading, A-OPI Advised reduces
more error than A-OPI Hybrid, with both showing marked
improvements over the Baseline Policy. By contrast, the
Teleoperation Policy displays no overall improvement in
heading error.

Test Set Error, Final Policies

2.1 __ 0.5
L B 0.4
_ i [
e £
- 03 -
g 1.2 %o
8 09 — 2 02 —
Z Q
A 06 N
0.1 -
0'3'.7 B
ol

04

‘ [l A-OPI Advised [l A-OPI Hybrid [Teleoperation [] Baseline

Fig. 9. Average test set error on target position (left) and heading (right),
with the final policies.

That heading error proved in general more difficult to
improve than positional error is consistent with our prior
experience with this robot platform being highly sensitivity
to rotational dead reckoning error accumulation.

A sampling of the intermediate policies’ performance is
provided in Figure 10. For a more complete discussion of
these results, we refer the reader to [3]. Do note, however,
that these results are plotted against the number of executions
contributing to the set D, and not the number of data points.

3) More Focused Improvement: How many data points
are added with each execution varies greatly depending upon
whether the execution is advised or teleoperated (Fig. 11).
This is because, in contrast to teleoperation, only subsets
of an advised execution are added to D; in particular, only
those execution points which actually receive advice. States
visited during good performance portions of the student
execution are not redundantly added to the dataset. In this
manner, the final policy performances shown in Figure 9 are
achieved with much smaller datasets for both A-OPI policies,
in comparison to the Teleoperation Policy.

C. Discussion

The empirical results confirm that a human teacher was
able to effectively provide advice within continuous action
spaces. This occurred without the teacher providing the
continuous-values for these corrections, or requiring value-

Test Set Error, Intermediate Policies

1.2

1N
—_
= \/\
~ 0.8
g o @
£ 061 == -
=z w \
& >
o 04

0.2

0 T T T 1

T .
10 20 30 40 50 60 70
Number of Demonstrations

0.7
= 0.6 5,
iE/ OVS’ 077 T & ﬁ
2 04 -
% 0_3,%%\7
T 02 -

0.1

0 T T T 1

10 20 30 40 50 60 70
Number of Demonstrations

@ A-OPI Advised ¢» A-OPI Hybrid <& Teleoperation

Fig. 10. Average test set error on target position (top) and heading (bottom),
with intermediate policies (shown against the number of advised and/or
teleoperated demonstrations).

Dataset Size

7500 4
a
g 6500
o .
Ay 5500 == A_OPI
o]
E 4500 ¢ Advised
[T %= A-OPI Hybrid
= 3500 =
E 2500 i < Teleoperation
2 5
g el
1500 —Wg
Z. A
500 T T T T T T

T 1
0 10 20 30 40 50 60 70 80
Number of Demonstrations

Fig. 11. Dataset size growth with demonstration number.

based execution details (e.g. speed) to select operators. The
robot, and not the human, applied the operator.

The teacher was able to provide advice quickly, because
the algorithm is robust to fuzzy selections of execution
points. Since regression treats each data point independently,
a point added to the dataset does not depend upon whether
nearby points from the execution were also added. Further-
more, operators are “smart” enough to check for particular
data point qualities when necessary. For example, a point
which already had zero rotational speed would be skipped
by the “No turning” operator.

We finish with comments on the hybrid policy. The hybrid
policy was seeded with an intermediate Teleoperation Policy
and then advised, in an attempt to exploit the strengths of
each approach. One direction for future work could interleave

providing advice and more teleoperation. Alternately, a suffi-
ciently populated demonstration set could be provided at the
start. This is fundamentally different from providing more
teleoperation in response to student executions, however. It
requires prior knowledge of all states the student will visit;
generally impossible in continuous-state real worlds.

VIII. CONCLUSION

We have presented an algorithm for policy improvement
based on human advice within a Learning from Demon-
stration framework. We discuss two implementations of this
algorithm, that differ in the type of feedback provided. The
first implementation, Binary Critiquing (BC), provides the
learner with an indication of poor performance areas. We
validate this implementation in a realitic robotic simulation
and demonstrate BC to improve task performance. In both
execution success and efficiency, learner performance not
only improved but came to exceed the performance of its
demonstration teacher. The second implementation, Advice-
Operator Policy Improvement (A-OPI), is distinguished by
providing continuous corrections on learner executions, as
well as an alternative data source to teacher demonstrations.
We validate this implementation on a real robot system.
Policy modifications due to A-OPI were shown to improve
policy performance on a Segway RMP robot, both in exe-
cution success and accuracy. Furthermore, performance was
found to be similar or superior to the typical LfD approach
of correcting behavior through more teacher demonstrations.

REFERENCES

[1] P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in
reinforcement learning. In Proceedings of ICML °05, 2005.

[2] B. Argall, B. Browning, and M. Veloso. Learning from demonstration
with the critique of a human teacher. In Proceedings of HRI 07, 2007.

[3] B. Argall, B. Browning, and M. Veloso. Learning robot motion control
with demonstration and advice-operators. In Proceedings of IROS 08,
2008.

[4] C.G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning
for control. Artificial Intelligence Review, 11:75-113, 1997.

[5] D. C. Bentivegna. Learning from Observation Using Primitives. PhD
thesis, College of Computing, Georgia Institute of Technology, 2004.

[6] D. C. Bentivegna. Learning from Observation using Primitives. PhD
thesis, Georgia Institute of Technology, 2004.

[7]1 S. Calinon and A. Billard. Incremental learning of gestures by
imitation in a humanoid robot. In Proceedings of HRI 07, 2007.

[8] S. Chernova and M. Veloso. Confidence-based learning from demon-
stration using Gaussian Mixture Models. In Proceedings of AAMAS
’07, 2007.

[9] D. H. Grollman and O. C. Jenkins. Dogged learning for robots. In
Proceedings of ICRA ’07, 2007.

[10] M. N. Nicolescu and M. J. Mataric. Methods for robot task learn-
ing: Demonstrations, generalization and practice. In Proceedings of
AAMAS 03, 2003.

[11] E. Oliveira and L. Nunes. Learning by exchanging Advice. Springer,
2004.

[12] P. K. Pook and D. H. Ballard. Recognizing teleoperated manipulations.
In Proceedings of ICRA "93, 1993.

[13] M. Stolle and C. G. Atkeson. Knowledge transfer using local features.
In Proceedings of ADPRL ’07, 2007.

