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Abstract Robust motion control algorithms are fundamental to the successful, au-
tonomous operation of mobile robots. Motion control is known to be a difficult
problem, and is often dictated by a policy, or state-action mapping. In this chapter,
we present an approach for the refinement of mobile robot motion control policies,
that incorporates corrective feedback from a human teacher. The target applica-
tion domain of this work is the low-level motion control of a mobile robot. Within
such domains, the rapid sampling rate and continuous action space of policies are
both key challenges to providing policy corrections. To address these challenges,
we contribute advice-operators as a corrective feedback form suitable for providing
continuous-valued corrections, and Focused Feedback For Mobile Robot Policies
(F3MRP) as a framework suitable for providing feedback on policies sampled at a
high frequency. Under our approach, policies refined through teacher feedback are
initially derived using Learning from Demonstration (LfD) techniques, which gen-
eralize a policy from example task executions by a teacher. We apply our techniques
within the Advice-Operator Policy Improvement (A-OPI) algorithm, validated on a
Segway RMP robot within a motion control domain. A-OPI refines LfD policies by
correcting policy performance via advice-operators and F3AMRP. Within our valida-
tion domain, policy performance is found to improve with corrective teacher feed-
back, and moreover to be similar or superior to that of policies provided with more
teacher demonstrations.
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1 Introduction

Whether an exploration rover in space or recreational robot for the home, successful
autonomous mobile robot operation requires an algorithm for motion control. A
control policy provides such an algorithm, by mapping an observation of the world
to an action available on the robot. This mapping is fundamental to many robotics
applications, yet in general is complex to develop.

Even with a carefully crafted policy, a robot often will not behave as the de-
veloper expects or intends in all areas of the execution space. One way to address
behavior shortcomings is to update a policy based on execution experience, which
can increase policy robustness and overall performance. For example, such an up-
date may expand the state-space areas in which the policy is valid, or increase the
likelihood of successful task completion.

This chapter contributes our approach for refining mobile robot policies with
human feedback. The feedback consists of policy corrections, which are provided
based on human teacher observations of policy executions by the robot. The tar-
get domain of this work is low-level motion control on a mobile robot. Challenges
to providing corrective feedback within this domain include the continuous state-
action space of the policy, and the rapid rate at which the policy is sampled. We
introduce techniques to address both of these challenges.

1.1 Mobile Robot Motion Control

A motion control policy defines a mapping from world state to robot action. Motion
control policies are able to represent actions at a variety of control levels:

Low-level actions: Low-level actions directly control the movement mechanisms
of the robot. These actions are in general continuous-valued and of short time du-
ration, and a low-level motion policy is sampled at a high frequency. An example
low-level action is a command for wheel speed that updates at SOHz.

High-level actions: High-level actions encode a more abstract action representa-
tion, which is then translated through other means to affect the movement mech-
anisms of the robot; for example, through another controller. These actions are
in general discrete-valued and of longer time duration, and their associated con-
trol policies are sampled at a low frequency. An example high-level action is to
approach and pick up an object, executing over tens of seconds.

The focus of this chapter is on low-level motion control policies. The continuous
action-space and high sampling rate of low-level control are both key considerations
during policy development and refinement.

The state-action mapping represented by a motion control policy is typically
complex to develop. One reason for this complexity is that the target observation-
action mapping is unknown. What is known is the desired robot motion behavior,
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which must somehow be represented through an unknown observation-action map-
ping. A second reason for this complexity are the complications of motion policy
execution in real world environments. The world is observed through sensors that
are typically noisy; models of world dynamics are only an approximation to the true
dynamics; and actions are motions executed with real hardware, which depends on
physical considerations like calibration accuracy and inevitably executes with some
level of imprecision.

The development of control policies therefore generally requires a significant
measure of effort and expertise, and frequently demands extensive prior knowl-
edge and parameter tuning. The required prior knowledge ranges from details of
the robot and its movement mechanisms, to details of the execution domain and
how to implement a given control algorithm. Any successful application typically
has the algorithm highly tuned for operation with a particular robot in a specific
domain. Furthermore, existing approaches are often applicable only to simple tasks
due to computation or task representation constraints.

Traditional approaches to robot control model the domain dynamics and derive
policies using those mathematical models [35]. While theoretically well-founded,
these approaches typically depend heavily upon the accuracy of the model, which
can require considerable expertise to develop and becomes increasingly difficult to
define as robot become more complex. Other approaches, such as Reinforcement
Learning (RL) [37], guide policy learning by providing reward feedback about the
desirability of visiting particular states. To define a function to provide these re-
wards, however, is known to be a difficult problem that also requires considerable
expertise to address. Furthermore, building the policy necessitates gathering infor-
mation by visiting states to receive rewards, which is non-trivial for a mobile robot
executing physical actions.

The experience of personally developing numerous motion behaviors by hand for
this robot [5], and subsequent desire for more straightforward policy development
techniques, was a strong motivating factor in this work. Similar frustrations have
been observed in other roboticists, further underlining the value of approaches that
ease the policy development process. Another, more hypothetical, motivating factor
is that as familiarity with robots within general society becomes more prevalent, it is
expected that future robot operators will include those who are not robotics experts.
We anticipate a future requirement for policy development approaches that not only
ease the development process for experts, but are accessible to non-experts as well.

1.2 Learning from Demonstration

Learning from Demonstration (LfD) is one policy development technique with
the potential for both application to non-trivial tasks and straightforward use by
robotics-experts and non-experts alike [4, 11]. Under the LfD paradigm, a teacher
first demonstrates a desired behavior to the robot, producing an example state-action
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trace. The robot then generalizes from these examples to derive a policy, thus learn-
ing a state-action mapping.

1.2.1 Support for Demonstration Learning

LfD has many attractive points for both learner and teacher. To develop a policy
within a LfD paradigm typically does not require expert knowledge of the domain
dynamics, which removes the performance dependence on model accuracy. The
relaxation of the expert knowledge requirement also opens policy development to
those who are not robotics-experts, satisfying a need that we expect to increase as
robots become more commonly available. Furthermore, demonstration has the at-
tractive feature of being an intuitive medium for communication from humans, who
already use demonstration to teach other humans.

More concretely, the application of LfD to motion control has many advantages:

Implicit behavior to mapping translation. By demonstrating a desired motion
behavior, and recording the encountered states and actions, the translation of a
behavior into a representative state-action mapping is immediate and implicit.

Robustness under real world uncertainty. The uncertainty of the real world
means that multiple demonstrations of the same behavior will not execute iden-
tically. Generalization over demonstration examples thus produces a policy that
does not depend on a strictly deterministic world, and therefore should execute
more robustly under real world uncertainty.

Focused policies. Demonstration has the practical feature of focusing the dataset
of examples to areas of the state-action space actually encountered during be-
havior execution. This is particularly useful in continuous action space domains,
with an infinite number of state-action combinations.

The LfD approach to obtaining a policy is in contrast to other techniques in which
a policy is learned from experience, for example building a policy based on data
acquired through exploration, as in RL. Furthermore a policy derived under LfD is
necessarily defined only in those states encountered, and for those actions taken,
during the example executions.

1.2.2 Formalism

Our approach to policy development derives an initial policy from teacher demon-
strations. Within this chapter, we formally define the world to consist of states S and
actions A, with the mapping between states by way of actions being governed by
the probabilistic transition function T(s'|s,a) : § X A x § — [0, 1]. We assume that
state is not fully observable, and instead the learner has access to observed state Z,
through a mapping S — Z. A teacher demonstration d € D is represented as 7 pairs
of observations and actions, such that d = {(z;,a;)} € D, z,€Z, a,€ A, i=0---n.
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Within the typical LfD paradigm, the set D of these demonstrations is provided to
the learner. A policy 7 : Z — A, that selects actions based on an observation of the
current world state, or query point, is then derived from the dataset D.

1.2.3 Related Work

LfD has found success on a variety of robot platforms and applications [4, 11].
Since demonstration for real robots involves executing actions in physical environ-
ments, differences in embodiment between the learner and teacher become of crucial
importance. The challenges that arise from these differences, where teacher demon-
strations may not map directly to the learner due to differences in sensing or motion,
are broadly referred to as correspondence issues within the LfD literature [12, 26].
Key design decisions therefore include the choice of teacher controlling, and plat-
form executing, the demonstration, as well as how the demonstration is recorded.

A variety of approaches exist for executing and recording teacher demonstra-
tions. At one extreme lies feleoperation, where the passive robot platform records
from its own sensors while under direct teacher control [9, 13]. This approach is
very effective at reducing teacher-learner correspondence issues, but does require
actively controlling the robot during the task, which might not be manageable for
example if controlling a high-DoF humanoid for low-level motion control. Another
approach has the robot learner actively mimic the teacher during the demonstration
executions, again while recording from its own sensors [18, 29]. This has the advan-
tage of not requiring the teacher to actively control the robot, but does require that
the learner be able to identify and track the teacher; furthermore, the observations
made by the feacher during the execution are not directly recorded.

Other demonstration techniques do not employ the actual learner platform during
the demonstration. One such technique has the feacher wear sensors during task
execution with her own body [14, 21, 23]. This requires specialized sensors and
introduces another level of teacher-learner correspondence, but does not require that
the learner platform be actively operated or able to track the teacher during task
execution. Lastly, at the opposite extreme to teleoperation, sensors external to the
teacher’s body may record his execution of the task with his own body [8, 10]. This
has the lowest requirements in terms of specialized sensors or actively operating the
robot, but is the most likely to encounter correspondence issues when transferring
the recorded teacher demonstrations to the learner platform.

Once the dataset is recorded, a policy must be derived from it. A variety of policy
derivation techniques are employed within LD, the majority of which fall into three
categories. The first category directly approximates the function mapping states to
actions f() : Z — A, using regression or classification techniques. Successful LfD
implementations of this policy derivation approach include tasks with humanoids
[10, 14, 20], Sony AIBOs [15, 19] and a variety of other platforms [25]. The second
category learns a state-action transition model T(s'|s,a) from the demonstration
data, pairs this with a reward function R(s) (either hand-engineered or learned) and
derives a policy using RL techniques. Successful LfD applications under this ap-
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proach span tasks with autonomous helicopters [1, 9, 27] to small quadriped robots
[22, 32], humanoids [24] and robotic arms [8]. The third category learns task plans
from the demonstration set, including small wheeled robot [29] and companion
robot [33] applications. Note that each of these techniques are employed for the
derivation of policies with high-level actions, while only the first two are used to
derive policies with low-level actions.

Our work takes the policy derivation approach of directly approximating the un-
derlying function mapping states to actions. Since our action space is continuous,
regression techniques are employed. During the empirical validation of our tech-
niques, teleoperation is the approach that will be used for gathering demonstrations.

1.3 Policy Refinement within LfD

LfD is inherently linked to the information provided in the demonstration dataset.
As a result, learner performance is heavily limited by the quality of this informa-
tion. Though LfD has enabled successful policy development for a variety of robot
platforms and applications, this approach is not without its limitations.

1.3.1 Potential Dataset Limitations

One common cause for poor learner performance is dataset sparsity, or the existence
of state space areas in which no demonstration has been provided. Dataset sparsity
is a trade off to focusing the dataset to areas visited during task execution, since the
learner is provided with an indication of which action to take only in those states
visited during demonstration. In all but the most simple domains the teacher will
be unable to demonstrate from every state, and so there will be areas of the state
space absent from the demonstration set. Note however that dataset sparsity may be
overcome to a certain extent by the generalization ability of the policy derivation
technique.

A second cause is poor quality of the dataset examples. Poor quality examples
can result from the demonstration abilities of the teacher, who may in fact provide
suboptimal or ambiguous demonstrations. Poor quality examples also can results
from poor correspondence between the teacher and learner, who may differ in sens-
ing or motion capabilities.

To summarize, common sources of LfD limitations include:

1. Uncovered areas of the state space, absent from the demonstration dataset.
2. Suboptimal or ambiguous teacher demonstrations.
3. Poor translation from teacher to learner, due to correspondence issues.

One way to address dataset limitations is to extend LfD by having the robot update
its policy based on execution experience.
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1.3.2 Related Work

One popular approach for dealing with poor or ambiguous teacher demonstrations
is to provide more demonstration data in response to execution experience with
the policy. There are approaches that acquire new demonstrations by enabling the
learner to evaluate its confidence in selecting a particular action, based on the con-
fidence of the underlying classification algorithm. For example, the robot can indi-
cate to the teacher its certainty in performing various elements of the task [19], or
request additional demonstration in states that are either very different from previ-
ously demonstrated states or for which a single action cannot be selected with cer-
tainty [16]. Other approaches rely on teacher observation of the policy performance
alone, for example to provide a robot with new demonstrations through kinesthetic
teaching that moves passive joints through desired position trajectories [14].
Another approach is to pair LfD with RL techniques, which is particularly rel-
evant for implementations that already derive their policies using RL. The goal of
RL is to maximize cumulative reward over time, and typically each state s is asso-
ciated with a value according to the function V (s) (or associating state-action pair
s,a with a Q-value according to the Q(s,a)) [37]. By updating the state values V (s)
with rewards received during execution [36], a policy derived under LfD also up-
dates. We note that these are rewards seen during learner execution, and not during
demonstration. To visit and evaluate new states not seen in the demonstration set, an
exploration policy may be employed [30, 34], though we note that in general tak-
ing exploratory steps on a real robot can be inefficient and even dangerous. Finally,
execution experience may also update a learned transition function 7' (s'|s,a) [2].

2 Corrective Feedback for Policy Refinement

Our approach to the improvement of LfD policies through experience is to pro-
vide corrections on policy executions. Corrective feedback is provided by a human
teacher, in response to policy executions by a robot learner. In particular, feedback
corrects state-action mappings produced during a student execution to generate new
examples for the LfD policy. We begin by motivating and discussing corrective feed-
back for the improvement of LfD policies (Sec. 2.1), followed by a detailing of the
contributed techniques that enable a human teacher to provide continuous-valued
corrections (Sec. 2.2) to policies sampled at a high frequency (Sec. 2.3). We then
present an algorithm that employs our corrective feedback techniques (Sec. 2.4).

2.1 Policy Corrections

To address potential LfD limitations, the approach of correcting poor policy predic-
tions we argue is particularly direct. While overall performance evaluations or state
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rewards can provide an indication of the quality of a policy prediction, they do not
provide any guidance on what might have been a more suitable alternate prediction.
Providing a correction on poor predictions therefore provides more focused and de-
tailed policy improvement information. Furthermore, while more demonstrations
can populate sparse areas of the state space or demonstrate a corrected behavior,
they require state re-visitation, which can be impractical within real world domains.

Policy correction has seen limited attention within LfD however. The selection of
a policy correction in general is sufficiently complex to preclude it being provided
with a simple function. Approaches that do correct policy predictions therefore pro-
vide corrections through human teachers, which our techniques do as well. Fur-
thermore, since the correction involves selecting a preferred state or action, within
the existing literature corrections are only provided within action spaces that are
discrete and with actions of significant time duration, and therefore sampled with
low frequency. For example, the correct action from a discrete set is provided by
a human teacher to update a high-level action classifier [15], and the structure of a
hierarchical Neural Network of robot behaviors [29].

Approaches that correct policies within continuous action-spaces sampled at high
frequency are absent from the existing LfD literature. These considerations have
prompted our development of a corrective feedback form that is appropriate for
continuous-valued action domains (Sec. 2.2). We furthermore develop a feedback
framework (Sec. 2.3) that is suitable for domains with rapidly sampled policies.

2.2 Advice-Operators

To address the challenge of providing continuous-valued corrections, we introduce
advice-operators [3] as a language through which a human teacher provides policy
corrections to a robot student.

Concretely defined, an advice-operator is a mathematical computation performed
on an observation input or action output. Given a policy execution by the learner,
an operator is indicated by the teacher and applied to a state-action pair recorded
during the execution. Key characteristics of advice-operators are that they:

1. Perform mathematical computations on datapoints.
2. Are defined commonly between the student and advisor.

3. May be applied to observations or actions.

Figure 1 presents a diagram of data synthesis from student executions and teacher
feedback (bottom, shaded area); for comparison, LfD data from teacher executions
is also shown (top). To illustrate with an example, consider a simple operator that
modifies translational acceleration by a static amount §. Suppose the teacher indi-
cates this operator for application over 15 data points from the learner execution.
The translational speed a° of executed point 0 then updates to 4° — a® + §, point 1
to a' « a' + 8, and so forth until point 14 updates to ' «— a'* + 8.
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Fig. 1 Generating demonstration data under classical LfD (top) and advice-operators (bottom).

Policy correction under advice-operators does not rely on teacher demonstration
to indicate a corrected behavior. The advice-operator approach thus includes the
following strengths:

No need to recreate state. This is especially useful if the world states where cor-
rective demonstration is needed are dangerous (e.g., lead to a collision), or diffi-
cult to access (e.g., in the middle of a motion trajectory).

Not limited by the demonstrator. Corrections are not limited to the execution
abilities of the demonstration teacher, who may be suboptimal.

Unconstrained by correspondence. Corrections are not constrained by physical
differences between the teacher and learner.

Possible when demonstration is not.  Further demonstration may in fact be im-
possible (e.g., teleoperation over a 40 minute Earth-Mars communications lag).

We thus contribute a formulation for corrective feedback, as a predefined list
of mathematical functions. Advice-operators enable the translation of a statically-
defined high-level correction into a continuous-valued, execution-dependent, low-
level correction. Moreover, when combined with our techniques for providing feed-
back (Sec. 2.3), a single piece of advice corrects multiple execution points. The se-
lection of a single advice-operator thus translates into multiple continuous-valued
corrections, and therefore is suitable for modifying low-level motion control poli-
cies sampled at high frequency.

2.3 Focused Feedback For Mobile Robot Policies

To address the challenge of providing feedback to policies sampled at a rapid rate,
we introduce Focused Feedback For Mobile Robot Policies (F3MRP) [6] as a frame-
work through which portions of a policy execution are selected to receive feedback.
The target application domain for F3MRP is mobile robot motion control.
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At the core of the F3AMRP framework is a visual presentation of the 2-D path
physically taken by the mobile robot on the ground.! For experiments with a sim-
ulated robot, the 2-D path is represented in real-time as the robot executes. For
experiments with a real robot, the 2-D path is played back, at true speed, after the
learner execution completes, to mitigate inaccuracies due to network lag.

The visual path presentation is a key component of the interface for the identi-
fication of those portions of the learner execution that require correction. Through
this interface, the teacher selects segments of the 2-D ground path that correspond
to those portions of the execution during which the policy performed poorly. An
overview of the F3MRP interface is shown in Figure 2, which expands the shaded
area in Figure 1 with the details of segment selection.

Teacher Advice-operator
Feedback

Position Visual Subset Data Data
Data (x, y} | Presentation (x, ¥ Synthesis

v
Student | |
Execution Prediction R Data Subset
Data |z, a| Association (z,a},

F3MRP

Fig. 2 Path visualization, subset selection and data association under the FAMRP framework.

Corrective feedback provided under the FAMRP framework must associate closely
with the underlying learner execution, since the feedback corrects specific execution
points. By contrast, consider an overall performance measure, that need only asso-
ciate with the execution as a whole and thus links to the data at a fairly coarse scale.
To accomplish close feedback-execution association under F3MRP, the teacher se-
lects problem segments of the graphically displayed ground path. Segment sizes are
determined dynamically by the teacher, and may range from a single point to all
points in the trajectory.

The F3MRP framework then associates the selected segment of the position
trace, i.e. the ground path, with the corresponding segment of the prediction trace,
i.e. the state-action sequence, recorded during the learner execution. This process is
the tool through which the human flags state-action pairs for modification: by se-
lecting segments of the displayed ground path, which the framework then associates
with the state-action trace of the policy.

! The F3MRP framework was designed specifically for mobile robot applications. To apply the
framework to non-mobile robots would require an alternative to the 2-D ground path, to serve as
the visualization component of the interface for segment selection.
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2.4 Algorithm Advice-Operator Policy Improvement

The Advice-Operator Policy Improvement (A-OPI) algorithm [3] refines a motion
control policy, initially derived from LfD, by providing corrections through advice-
operators and the F3AMRP framework. The algorithm operates in two phases. During
the demonstration phase, a set of teacher demonstrations is provided to the learner.
This demonstration set D consists of example executions of the target behavior,
during which state-action pairs are recorded. From this set the learner generalizes
an initial policy. During the feedback phase, the learner executes with this initial
policy. Feedback on the learner execution is offered by a human teacher, and is used
by the learner to update its policy. The learner then executes with the updated policy,
and the execute-feedback-update cycle continues to the satisfaction of the teacher.

Algorithm 1 Advice-Operator Policy Improvement

1: GivenD

2: initialize w+ policyDerivation(D)

3: while practicing do

4:  nitialize d — {}, tr — {}

5 repeat

6: predict a' — m(z")

7 execute a'

8 record d — d U (z',a"), tr — r U (x,)",0")
9:  until done

10:  advise {op,® } — teacherFeedback(tr)
11:  forall g € @, (z%,a®) cd do

12: if op is observation-modifying then
13: modify (z?,a®) — (op(z?),a?)
14: else {op is action-modifying }

15: modify (z?,a®) «— (z%,0p(a?))
16: end if

17: update D — D U (z%,a?)

18:  end for

19:  rederive T+ policyDerivation(D)

20: end while
21: return 7

Algorithm 1 presents pseudo-code for the A-OPI algorithm. To begin, an initial
policy 7 is derived from the set of teacher demonstrations (line 2). A single practice
run (lines 3-20) consists of a single execution-feedback-update cycle.

During the learner execution portion of a practice run (lines 5-9), the learner
executes the task. At each timestep the learner observes the world, and predicts
action a’ according to policy 7 (line 6). This action is executed and recorded in the
prediction trace d, along with observation z' (line 8). The information recorded in
the trace d will be incorporated into the policy update. The global position x’,y" and
heading 6’ of the mobile robot is additionally recorded, into the position trace tr.
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Information recorded in #r will be used by the F3AMRP framework, when visually
depicting the path taken by the robot on the ground during execution.

During the teacher feedback portion of the practice phase, the teacher first indi-
cates, through the F3AMRP interface, a segment @ of the learner execution trajec-
tory requiring improvement. The teacher further indicates an advice-operator op,
selected from a finite list, to correct the execution within this segment (line 10).

The teacher feedback is then applied across all points recorded in d and within
the indicated subset @ (lines 11-18). For each point (z?,a?) € d, ¢ € @, the al-
gorithm modifies either its observation (line 13) or action (line 15), depending on
the type of the indicated advice-operator. The modified datapoints are added to the
demonstration set D (line 17), and the policy is rederived (line 19).

3 Empirical Validation of A-OPI

This section presents an empirical validation of our corrective feedback approach.
We validate the A-OPI algorithm that employs our corrective feedback techniques -
that is, advice-operators and the F3AMRP framework - on a Segway Robot Mobility
Platform (RMP) [28] performing a spatial positioning task. Policy modifications due
to corrective feedback are shown to improve policy performance, which furthermore
is found to be similar or superior to the more typical approach of providing more
teacher demonstrations.

3.1 Experimental Setup

Empirical validation of the A-OPI algorithm is performed through a spatial position-
ing task with a Segway RMP. This section presents the task and domain, followed
by policy development and evaluation; further empirical details may be found in [3].

3.1.1 Task and Domain

The Segway RMP is a two-wheeled dynamically-balancing differential drive robot,
which may only drive forward or turn and cannot go sideways. The robot accepts
wheel speed commands, but does not allow access to its balancing control mecha-
nisms. We therefore treat Segway RMP control as a black box, since we do not know
the specific gains or system parameter values. The inverted pendulum dynamics of
the robot present an additional element of uncertainty for low level motion control.

The spatial positioning task consists of attaining a 2-D planar target position
(xg,¥g) With a heading 6, (Fig. 3). For this task smoothly coupled rotational and
translational speeds are preferred, in contrast to turning on spot to 6, after attaining
(x4,¥g)- To mathematically define for this specific robot platform the desired motion
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trajectories for our task is thus non-trivial, encouraging the use of alternate control
approaches such as A-OPI. That the task is straightforward for a human to evaluate
and correct further supports A-OPI as a candidate approach. While the task was cho-
sen for its suitability to validate A-OPI, to our knowledge this work also constitutes
the first implementation of such a motion task on a real Segway RMP platform.

Fig. 3 Segway RMP performing the spatial positioning task (approximate ground path in yellow).

To gather demonstration examples, a human teleoperates the platform as the
robot records from its own sensors. Teleoperation minimizes correspondence issues
between demonstrator and learner, and is reasonable to perform for this task and
robot platform. The robot observes its global position and heading through wheel
encoders sampled at 30Hz.

To derive a policy from the demonstration examples, the function mapping states
to actions is directly approximated via regression techniques. We employ a form
of Locally Weighted Learning [7]. Worthwhile to note however is that A-OPI is
not restricted to a particular regression technique, and any are appropriate for use
within the algorithm. Given observation z’, action a’ is predicted through an averag-
ing of the actions in D, weighted by a kernelized distance between their associated
datapoint observations and the current observation z'. Thus,

() 27 (z;-2)
a= Y oz a, ¢(zn)= - (1)

Te_
(z,21)€D ):zjeDe(z.i—z’) I (')

where the weights ¢ (z', :) are normalized over i. In this work the distance computa-
tion is Euclidean, the kernel is Gaussian and £~! is a constant diagonal matrix that
scales each observation dimension and embeds the bandwidth of the Gaussian ker-
nel. All parameters are tuned through Leave-One-Out-Cross-Validation (LOOCYV),
minimizing the least squared error of the regression prediction on the set D.

The observations for this task are 3-dimensional, and are feature computations
involving the global and target position and heading: (i) squared Euclidean distance
to the target position, (ii) angle between the target position and current robot heading
and (iii) angle between the current and target robot headings. The actions are 2-
dimensional: (i) translational speed and (ii) rotational speed. The motion control
operators developed for this domain adjust observation inputs (Tbl. 1, Operator 0),
single action dimensions by non-static amounts (Operators 1-6) or multiple action
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dimensions by non-static amounts (Operators 7-8). The amount of the non-static
adjustments are determined as a function of the executed values of the observations
and actions.

Table 1 Advice-operators for the spatial positioning task.

| | Operator | Parameter |
O[Reset goal, recompute observation

1 No turning

2 Start turning [ cw cew |
3 Smooth rotational speed [ dec inc ]
4 No translation

5 Smooth translational speed [ dec inc ]
6| Translational [ac/de]celeration [ dec inc ]
7 Turn tightness [ less more |
8 Stop all motion

Key: (c)ew=(counter)clockwise, (dec/inc)=(de/in)crease

3.1.2 Policy Development and Evaluation

The set D is seeded with demonstrations recorded as the teacher teleoperates the
robot learner (9 demonstrations, totaling 900 datapoints). Policy improvement pro-
ceeds as follows. A random goal is selected (without replacement) from a practice
set consisting of (x,,y,, 0,) goals, drawn uniformly within the bounds of the demon-
stration dataset. The robot executes with its current policy to attain this goal. The
advisor observes this execution, and optionally offers policy improvement informa-
tion. The policy is re-derived, and drawing a new goal initiates another practice run.

Three policies are developed using distinct techniques, differing in what is of-
fered as policy improvement information. A total of four policies are therefore de-
veloped within this domain:

1. Baseline Policy (Base): Derived from the initial demonstration set.
2. Feedback Policy (FB): Provided with policy corrections, via advice-operators.

3. Feedback-Hybrid Policy (FB-H): Initially provided with more teacher demon-
strations; later provided with policy corrections via advice-operators.

4. More-Demonstration Policy (M-Demo): Provided with more teacher demonstra-
tions.

The final three are referred to collectively as the improvement policies. Note that in
the case of policy M-Demo, a practice run consists of a single execute-demonstrate-
update cycle.

Policies are evaluated for accuracy and success, on an independent test set of
(xg, Vg, 6g) goals. Here accuracy is defined as Euclidean distance between the final
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robot and goal positions ey, and the final robot and goal headings eg. Success is
defined generously as ey, < 1.0 m and eg < % rad. Practice runs were halted once
performance on the test set no longer improved (number of practice runs: 60 FB, 59
FB-H and 51 M-Demo).

3.2 Results

Policy performance was found to improve with corrective feedback, in both ex-
ecution success and accuracy [3]. A-OPI additionally enabled similar or superior
performance when compared to a policy derived from more teacher demonstrations.
Furthermore, by concentrating new data exclusively to the areas visited by the robot
and needing improvement, A-OPI produced noticeably smaller datasets.

3.2.1 Success and Accuracy Improvement
Table 2 presents the percent execution success of each policy on the independent
test set. When compared to policy Base, all policy improvement approaches display

an increase in success. Both of the feedback policies additionally achieve higher
success than policy M-Demo.

Table 2 Execution Percent Success

| Baseline | Feedback | Feedback-Hybrid | More-Demonstration |
[ 32 | 88 | ) | 80 |

Figure 4 plots, for each policy, the average position and heading error on the test
set goals. For positional error, all improvement policies displayed similar perfor-
mance, which was a dramatic improvement over policy Base. For heading, policy
FB reduced more error than policy FB-H, with both showing marked improvements
over policy Base. By contrast, policy M-Demo displayed no improvement in heading
error over policy Base. That heading error was in general more difficult to improve
than positional error is consistent with our prior experience with this robot platform,
which is highly sensitive to the accumulation of rotational dead reckoning error.

The iterative nature of policy development under A-OPI produces many inter-
mediate policies, a sampling of which were also evaluated on the test set. Figure 5
shows the average position and heading error of the intermediate policies on the test
set goals, to mark the progress of each policy improvement technique.

Superior heading performance was consistently produced by corrective feedback,
with policy FB attaining lower heading error than policy M-Demo throughout policy
improvement. By contrast, initially greater improvement in positional error is seen
with more demonstration and thus with policy M-Demo. While corrective feedback
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Test Set Error, Final Policies

25 0.6

5 0.5

E) T 04
o 1S &

é 2 03
z 1 =

a T 02

83 0.1

0 0

M Baseline [ Feedback B Feedback Hybrid H More Demo

Fig. 4 Average test set error on target position (left) and heading (right), with the final policies.

reduces positional error more slowly, policy FB does however eventually converge
to the level attained through more demonstration.

Policy FB-H initially displays the superior reduction in positional error, and in-
ferior reduction in heading error, of policy M-Demo. This performance is followed
by substantial reductions in heading error, akin to policy FB. These results reflect
to the development technique of policy FB-H. The policy was initially seeded with
an intermediate version of policy M-Demo (resulting after 23 practice runs), and
following the seeding was offered exclusively corrective feedback.

Test Set Error, Intermediate Policies
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Fig. 5 Average test set error on target position (left) and heading (right), with intermediate policies.
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3.2.2 More Focused Datasets

How many datapoints were added with each practice run varied greatly depend-
ing on whether the execution received corrective feedback or more demonstrations
(Fig. 6). The reason is that, in contrast to teleoperation, only subsets of a corrected
execution were added to the dataset; in particular, only those execution points which
actually received corrections. States visited during good performance portions of the
student execution were not redundantly added to the dataset. In this manner, the final
policy performances shown in Figure 4 were achieved with much smaller datasets
for both feedback policies, in comparison to policy M-Demo. Note that the results of
Figure 5 are plotted against the number of practice runs contributing to the dataset,
and not the number of datapoints in the set.

Dataset Size
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£ 7500

z

8 6000 < Feedback

3

2 asoo ©= Feedback Hybrid
S =+ More Demo

8 3000

g

Z 1500

2 12 22 32 42 52 62 72

Number of Practice Runs

Fig. 6 Growth in dataset size with practice runs.

4 Conclusion

To define an algorithm for motion control on a mobile robot is a difficult and chal-
lenging task, which we address by continuing to adapt and refine a control pol-
icy based on execution experience. Our approach to motion control demonstrates
a behavior to the robot, and addresses potential limitations in the resultant dataset
through execution experience. In particular, policy refinement is achieved through
corrective feedback provided by a human teacher.

There are two key challenges to providing feedback within low-level motion con-
trol domains. The first is the continuity of the action space: continuous-valued ac-
tions require continuous-valued corrections, and thus selection from an infinite set.
The second is the sampling rate of the policy: a rapid sampling rate means that mul-
tiple execution points are responsible for a particular behavior being corrected. We
have developed techniques to address each of these challenges.
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The first technique, named advice-operators, is a language through which a
human teacher provides corrections to a robot student. Advice-operators perform
mathematical computations on continuous-valued datapoints. To provide a correc-
tion, the teacher selects from a finite list of advice-operators. The robot learner ap-
plies the operator to an execution datapoint, modifying its value and producing a
continuous-valued correction.

The second technique, named Focused Feedback For Mobile Robot Policies
(F3MRP), is a framework through which a human teacher provides feedback on
mobile robot motion control executions. Through the F3MRP interface, the teacher
selects segments of the execution to receive feedback, which simplifies the challenge
of providing feedback to policies sampled at a high frequency. A crucial element of
the interface is the visual presentation of the ground path taken by the robot during
execution; the framework thus targets mobile robots in particular.

By pairing these two techniques, the selection of a single advice-operator and ap-
plication segment therefore provides continuous-valued corrections on multiple exe-
cution points. In this manner, our approach enables correction-giving that is reason-
able and effective for a human to provide, even within a continuous-valued, rapidly
sampled, domain.

We have validated these techniques through our Advice-Operator Policy Im-
provement (A-OPI) algorithm, which employs both advice-operators and the F3MRP
framework. A-OPI was implemented on a Segway RMP robot, performing a spatial
positioning task. Within this domain, corrective feedback was found to improve pol-
icy performance, and to enable similar or superior performance when compared to
a policy derived from more teacher demonstrations. Furthermore, by concentrating
new data exclusively to the areas visited by the robot and in need of improvement,
corrective feedback also produced noticeably smaller datasets, and without a sacri-
fice in policy performance, suggesting the datasets to be more focused and contain
less redundant data.
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