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Abstract— Traditional approaches to programming robots
are generally inaccessible to non-robotics-experts. A promising
exception is the Learning from Demonstration paradigm. Here a
policy mapping world observations to action selection is learned,
by generalizing from task demonstrations by a teacher. Most
Learning from Demonstration work to date considers data from
a single teacher. In this paper, we consider the incorporation
of demonstrations from multiple teachers. In particular, we
contribute an algorithm that handles multiple data sources, and
additionally reasons about reliability differences between them.
For example, multiple teachers could be inequally proficient at
performing the demonstrated task. We introduce Demonstration
Weight Learning (DWL) as a Learning from Demonstration algo-
rithm that explicitly represents multiple data sources and learns
to select between them, based on their observed reliability and
according to an adaptive expert learning inspired approach. We
present a first implementation of DWL within a simulated robot
domain. Data sources are shown to differ in reliability, and
weighting is found impact task execution success. Furthermore,
DWL is shown to produce appropriate data source weights that
improve policy performance.

I. INTRODUCTION

As robots become more prevalent within general society,
the need for programming techniques that are accessible
to non-experts increases. To develop a control policy, or
mapping from world observation to action selection, tra-
ditional approaches first model world dynamics and then
derive the policy mathematically. Though theoretically well-
founded, these approaches depend heavily on the accuracy
of the world model, which requires considerable expertise
to develop. Other model-free approaches are in general
similarly restricted in use to robotics-experts.

One potential exception is policy development through
Learning from Demonstration (LfD), e.g. [7], [12]. Under
this paradigm, a teacher first demonstrates a desired behavior
to the robot. The robot then generalizes from these examples
to derive a policy. Demonstration has the attractive feature of
being an intuitive communication medium for humans, who
already use demonstration to teach other humans. Since it
does not require robotics expertise, demonstration also opens
policy development to non-robotics-experts.
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In this work, we explicitly consider LfD policy devel-
opment that incorporates demonstration data from multiple
sources. We argue that this consideration is particularly
relevant for LfD robotics applications in general society,
where multiple users of a robot system is likely. Multiple
users easily translates into multiple policy developers, and
therefore into multiple LfD teachers.

We further posit that all LfD data sources may not be
equally reliable. Multiple teachers may differ in their respec-
tive abilities to perform a given task. Another possibility is
that sources produce data in fundamentally different ways.

We introduce Demonstration Weight Learning (DWL) as
an algorithm that incorporates data from multiple demon-
stration sources. DWL considers reliability, by assigning a
weight to each data source. The weight is automatically
determined and updated by the algorithm, based on learner
performance using the LfD policy. Though the algorithm is
general to any sort of LfD domain, we focus the scope of
this work to motion control tasks.

This paper contributes a first implementation of DWL,
in addition to the algorithm introduction. DWL is a policy
learning algorithm that explicitly addresses differences in
LfD data source reliability. Results from within a simulated
robotic domain are presented, and data source weighting
is found impact task execution success. Furthermore, DWL
is shown to produce appropriate data source weights that
improve policy performance.

The remainder of the paper is organized as follows. Sec-
tion II motivates weighting multiple LfD data sources, while
providing related work. The DWL algorithm is presented in
Section III, followed by implementation and experimental
details in Section IV. Empirical results are presented and
discussed within Section V, and in Section VI we conclude.

II. MOTIVATION AND RELATED WORK

We begin with a discussion of Learning from Demonstra-
tion and the related work that motivates our consideration of
multiple weighted demonstration sources.

A. Learning from Demonstration

During an LfD teacher execution, world state observations
and action selections are recorded. Formally, our world
consists of states S and actions A, with the mapping between
states by way of actions being defined by the probabilistic
transition function T (s′|s, a) : S × A × S → [0, 1]. We
assume that state is not fully observable. The learner instead
has access to observed state Z, through the mapping M :
S → Z. A teacher demonstration dj ∈ D is represented as lj



pairs of observations and actions such that dj = {(zij ,aij)} ∈
D, zij ∈ Z,aij ∈ A, i = 0 · · · lj . As no distinction is made
within D between the individual executions, for succinctness
we notate (zk,ak) ≡

(
zij ,a

i
j

)
. Within the LfD paradigm, the

set D of these demonstrations are provided to the learner. A
policy π : Z → A, that selects actions based on observations
of the world state, is then derived.

LfD has found success on a variety of robot platforms and
applications, e.g. [1], [5]. Key design decisions include the
demonstration approach that produces the data, and then how
a policy is derived from that data.

Approaches for executing and recording teacher demon-
strations range from teleoperating a passive robot plat-
form [14] to recording sensors worn by a human [9]. Our
simulated robot is teleoperated while recording from its own
sensors, as this minimizes correspondence issues between
demonstrator and learner on real platforms. We restrict our
scope to human demonstrators, though the algorithm itself is
general to any teacher.

The most popular approaches for deriving a policy from
demonstration data are to (i) directly approximate the under-
lying function mapping observations to actions [7], (ii) use
the data to determine the world dynamics model T (s′|s, a)
[13] or (iii) provide a planner with a learned model of action
pre- and post-conditions [12]. Our work derives a policy
using the first mapping function approximation approach.

B. Multiple Weighted Data Sources

This work introduces an algorithm that reasons explicitly
about demonstration data from multiple sources. Previous
work within LfD considers multiple demonstration teachers
for the purposes of isolating salient characteristics of the task
execution [14]. Demonstration information solicited from
multiple other agents speeds up learning [13], and additional
data sources address circumstances under which teacher
execution is difficult or inefficient [3].

This work additionally considers the unequal reliability of
different data sources. We further consider that the reliability
of a data source is not static. For example, data based on
learner executions may become more reliable as the learner
becomes more proficient at reproducing the target behavior.
Previous LfD work considers the issue of data worth, for
example by actively removing unnecessary or inefficient
elements from a teacher demonstration [11], as well as
dataset reliability, for example using a confidence measure to
identify undemonstrated or ambiguously demonstrated areas
of the state space [10].

Our work is unique in combining the two LfD consid-
erations of multiple data sources and reliability. Our DWL
algorithm addresses the issues of data source reliability and
stochasticity by assigning a weight to each data source and
dynamically updating that weight as the policy develops.
Data source weighting is accomplished via an expert learning
approach, where each data source is treated as an expert.
In particular, we adopt a modified version of Exp3 [6], an
expert learning algorithm with successful prior robot appli-
cations [2], [8]. Unlike typical expert learning approaches,

Exp3 does not depend on observing rewards for all experts
at each decision point. Exp3 thus is able to handle domains
where the consequence of only one prediction is observed,
e.g. domains like robot motion control where predictions
execute physical actions.

III. ALGORITHM

In this section we present the Demonstration Weight
Learning algorithm. DWL is an LfD approach characterized
by the explicit incorporation and weighting of multiple
demonstration data sources. Details of the algorithm execu-
tion, followed by the dynamic weight update, are presented.

A. Execution Overview

Given a set of demonstration sources C, DWL auto-
matically determines a set of weights w over the sources.
These weights are considered when deriving a policy π from
the demonstration data D, and are dynamically updated in
response to learner execution performance. Psuedo-code for
DWL is presented in Algorithm 1. For succinctness, we
define ψti ≡ I(ct =? ci), as an indicator on whether source
ct is equal to the source ci.

Algorithm 1 Demonstration Weight Learning (DWL)
1: init w← 1
2: init π ← policyDerivation(D,w)
3: for zgoal ∈ Z do
4: repeat
5: select at ← π (zt)
6: execute at

7: record tr ← { zt,at, ct }
8: until zt = zgoal

9: adapt w
10: rederive π ← policyDerivation(D,w)
11: end for
12: return π

The first phase of DWL consists of teacher demonstration.
Demonstrations from multiple sources produce dataset D,
where source ci produces data subset Dψi ∈ D. From the
dataset D an initial policy π is derived (line 2). All data
source weights are initialized to 1.

The second phase of DWL consists of learner practice. For
each practice run, the learner executes the task until reaching
goal state zgoal ∈ Z, producing execution trace tr. At each
timestep the learner selects action at, recommended by a
source ci ∈ C, according to policy π(zt) (line 5); the details
of this selection are provided in Section III-B. This action
is recorded in the execution trace tr, along with observation
zt and data source ct = ci (line 7).

Following a learner execution, the data source weights
and policy are updated. First, the data source weights w are
adapted based on the learner execution performance (line 9);
the details of this adaptation are provided in Section III-C.
Then a new policy π is derived from the updated set D and
adapted weights w (line 10).



B. Policy Prediction and Data Source Selection

At each time step, the policy produces a single action for
execution. To do so, a data source is sampled at random
from a uniform distribution, weighted by source weights w.
The action prediction of the selected data source is then the
policy output.

To make a prediction, data sources may employ any
sort of policy derivation technique appropriate to the un-
derlying data, for example classification or regression tech-
niques. Our specific motion control implementation consid-
ers continuous-valued predictions and employs a form of
Locally Weighted Learning [4] for regression.

Formally, given observation zt, action at from source ci is
predicted through an averaging of the data points (zj ,aj) ∈
Dψti

, weighted by their kernelized distance to zt. Thus,

at =
∑

(zj ,aj)∈Dψt
i

φ
(
zt, zj

)
· aj , (1)

φ
(
zt, zj

)
= e(zj−zt)Σ−1(zj−zt)T

where the kernel weights φ (zt, :) are normalized over j,
and Σ−1 is a constant parameter scaling each observation
dimension to within [0, 1]. In our implementation the distance
computation is Euclidean, and the kernel is Gaussian.

C. Expert Learning for Selection

Data source selection in DWL takes an expert learning
approach. Originally proposed by Robbins [15] to solve
the k-armed bandits problem, expert learning addresses the
issue of choosing between multiple action recommenders, or
experts. Under this paradigm, executing an action receives
reward, for which the recommending expert is credited. An
expert’s selection probability is determined by its accumu-
lated reward, such that high reward, and therefore good
performance, increases the probability of being selected.
DWL treats data sources as experts.

Formally, at each decision cycle, t, each of n experts
makes a recommendation. The algorithm selects a single
expert and executes the corresponding action, resulting in
payoff rt ∈ <. After d decision cycles, a sequence of
r1, r2, · · · , rd payoffs have been awarded. The aim of expert
learning is to select the best expert over all decision cycles.
The learning objective is formulated in terms of regret, or
the difference between reward rt of the selected action and
reward rtb of the action recommended by the best expert.
Summed over all decision cycles,

Regret =
d∑
t=1

rtb −
d∑
t=1

rt. (2)

The goal of expert learning is to minimize this total regret.
When actions take a physical form as in robot applica-

tions, however, only the reward for the executed action is
observed. The rewards that would have been received by the
other experts are not observable. Learning thus becomes a
partial information game. Algorithm Exp3 [6] handles partial
information games by scaling reward inversely with selection

probability. The effective reward r̂t earned by selected expert
i from reward rt is thus

r̂t =
rt

P (ψti)
, P (ψti) =

wti∑n
j=1 w

t
j

(3)

where P (ψti) is the probability of selecting expert i at deci-
sion cycle t and wti is the selection weight of expert i. This
compensates for the fact that experts with low probability
are infrequently chosen, and therefore have fewer observed
rewards. The selection weight of expert i then updates to

wti = er̂
t

wt−1
i (4)

with weights being initially equal across experts. Note
that the exponent product is equivalent to adding r̂ti to∑
t=1..d r̂

t−1
i , and thus represents the cumulative reward

received by expert i up to trial t.

D. The Dynamic Weight Update in DWL

To update data source selection weights, DWL models its
approach on the Exp3 expert learning algorithm [6]. Similar
to Exp3, reward rti is scaled inversely with data source selec-
tion probability P (ψti) (Eq. 3). The DWL algorithm further
makes two novel contributions to this weight update, relating
to the distribution of expert rewards and determination of the
expert selection probabilities.

1) Assigning Individual Reward: The DWL algorithm
receives a single reward r in response to a learner execution.
This single execution, however, consists of a sequence of
expert selections, which occur at each timestep. Reward
therefore is not received at every decision cycle. Furthermore,
multiple experts may contribute to a single execution, and
accordingly thus also to the received reward.

To address this issue, reward is distributed amongst all
experts that contributed to an execution. The contribution
of expert i to the execution trace tr is computed as the
fractional number of execution points for which i was the
recommending expert. This contribution then combines with
observed reward rt, so that the individual reward rti received
by expert i is computed according to

ri = r

(
ktri
ktr

)
, (5)

ktri =
∑
t

ψti , t = 1 · · · ktr

where ktr is the number of execution timesteps in tr and ktri
is the number of those that selected data source i. This reward
is then further scaled by the inverse selection probability of
expert i, as in Equation 3.

2) Determining Selection Probabilities: Under DWL, an
expert’s selection probability is governed by two factors. The
first is selection weight, as defined in Section III-C. The
second is data distribution in the state space. Sources are
not assumed to contribute data uniformly across the state-
space and, task proficiency aside, should not be trusted to
make predictions in areas where they have no support.

To address this, selection probability P (ψi) is formulated
based on the distance between dataset Dψi and the query



point, in addition to the selection weight wi. Concretely,
given observation zt, the probability of selecting source i
at timestep t is given by

P
(
ψti
)

=
p (ψti |zt)∑n
j=1 p

(
ψtj |zt

) , (6)

p
(
ψti |zt

)
= wi ·min

j
|zt − zj |, zj ∈ Dψi

where wi ∈ w is the weight of source i and |zt − zj |
computes the Euclidean distance between query point zt and
each data point zj ∈ Dψi contributed by source i.

IV. EXPERIMENTAL SETUP

Here we present the details of a first implementation of the
DWL algorithm, within a simulated robot driving domain.

A. Racetrack Driving Domain

Empirical validation of the DWL algorithm is performed
within a simulated robot driving domain, reflecting our focus
on motion control policies. The robot is tasked with driving
along a racetrack while staying within the track bounds. Task
execution ends when the robot either completes the track
(10.34 m length) or drives out of bounds.

Robot sensing within the domain consists of three range-
finders (oriented forward, left, and right of the robot body).
Motion dynamics are governed by robot heading and speed.
The system runs at 30Hz, and changes in both heading
and speed are bounded (0.6m/s and 0.52rad, respectively).
Gaussian noise (5%) is added to observed range information,
robot heading and executed speed.

During policy execution, the observations computed by
the robot are 5-dimensional: left sensor range (lr), center
sensor range (cr), right sensor range (rr), a ratio of the
right and left ranges (lr/rr) and a flag indicating which
track border (left or right) is observed by the center sensor.
This final dimension is binary; all other dimensions are
continuous-valued. The actions predicted by the robot are
2-dimensional and both continuous-valued: target speed and
change in heading. Teacher demonstrations are performed
via teleoperation, with the teacher commands indicating to
(in/de)crease speed or (in/de)crease heading.

B. Data Sources

Within this domain, three data sources are available:

1) Teacher demonstration (Source T)
2) Policy execution by the learner (Source P)
3) Advice-modified executions (Source A)

Figure 1 presents these sources.
Data from source T is produced by human teacher teleop-

eration of the simulated robot during task execution. Source
P is produced from learner policy executions of the task, by
having the human teacher indicate well performing subsets
K of a learner execution. The recorded execution data from
the subsets {zt, at} ∈ K is then added as demonstration data
to the source P dataset DψP .

Fig. 1. Data sources for the experimental domain.

Source A is produced from advice-modified learner policy
executions. Here the teacher indicates poorly performing
subsets K of the execution, as well as a corrective advice-
operator. Advice-operators perform simple mathematical
computations that produce continuous-valued corrections for
data point observations or actions. Applied to a subset of the
learner execution trace, they result in synthesized, corrected,
data. Three advice-operators were employed for this domain:
Turn (less/more/none), Change Speed (less/more/none) and
Curve (less/more). For a more complete discussion of advice-
operators, we refer the reader to [3].

C. Evaluation Metrics

The evaluation metrics considered within this domain are
execution success and efficiency. Success is measured by the
length of track traversed (m). Efficiency is measured by mean
executed speed (m/s). The weight update in DWL requires
that the system provide rewards for learner executions.
Reward in our system is formulated as a simple combination
of success and efficiency.

During learner practice, source selection weights are con-
tinuously updated as new data is provided from various
sources. A final source weighting wf and dataset Df are
the result. For evaluation purposes, a variety of policies are
further derived from Df , as defined in Table IV-C.

Data Weight Policy Name
Df wf All Learned
Df equal All Equal

DψT ∈ Df - Source T
DψP ∈ Df - Source P
DψA ∈ Df - Source A

TABLE I. Evaluation Policies



V. EMPIRICAL RESULTS AND DISCUSSION

This section presents empirical results from the DWL
implementation. Data sources are demonstrated to be un-
equally reliable in this domain. The automatic data source
weighting under DWL is shown to outperform an equal
source weighting scheme, and furthermore to perform as well
as the best contributing expert.

A. Unequal Data Source Reliability

To explore the reliability of each data source, track ex-
ecutions were performed using policies derived exclusively
from one source (policies Source T, Source P and Source
A). The results of these executions are presented in Figure 2
(solid bars). The performances of the three sources differ in
both efficiency and success, confirming that in this domain
the multiple data sources are indeed not equally reliable.

Efficiency (Executed Speed)

Success (Distance Traveled)

Fig. 2. Mean execution speeds and distances traveled during test executions
(mean of 20 executions, 1-standard deviation error bars). Executions with
exclusively one data source (solid bars) are compared to executions using
all data sources (hashed bars).

B. Performance Improvement with Weighting

To examine the effects of data source weighting, execu-
tions were first performed using a policy with equal source
weights (policy All Equal). Figure 2 shows the performance
of this policy to match the best expert in success, but
underperform two of the three experts, as well as the average
of all three (0.54 ± 0.02ms compared to 0.58 ± 0.07ms ), in
efficiency (green hashed bars).

By contrast, source weights learned under the DWL al-
gorithm (policy All Learned) were able to outperform the

average expert efficiency. The average performance over
20 test executions with the learned weight wf is shown
in Figure 2 (white hashed bars). In execution speed, the
learned weighting displays superior performance over the
equal weighting (0.61± 0.02ms compared to 0.54± 0.02ms ).
In distance traveled, similar behavior is seen, with both
giving near perfect performance. Furthermore, the perfor-
mance of this policy begins to approach that of the most
reliable data source. The DWL algorithm thus is able to
combine information from all of the data sources in such
a manner as to outperform or match the performances of
most contributing experts, and to approach the performance
of the best expert.

C. Automatically Learned Source Weights

The selection weights learned iteratively during practice,
and that result in wf , are presented in Figure 3 (solid lines).
These weights appropriately come to favor Source A (Fig. 2).
Recall that since expert selection probability depends also
on data support, however, this learned weighting scheme
in theory still allows for the selection of sources other
than A. For reference, also shown is the fractional source
composition of D, which changes as practice incorporates
new data from various sources (dashed lines). Note that
not all data sources are available at the start of practice,
since some (sources P and A) produce demonstration data
by building on learner executions.

Data Introduction and Weight Learning
During Practice

Fig. 3. Data source weight learning during the practice runs (solid lines).
For reference, the fractional contribution (in number of data points) of each
data source to the full data set D is additionally provided (dashed lines).

The mean execution speed and distance traveled along the
track during the practice runs are presented in Figure 4. Both
measures are shown to improve as a result of learner practice,
and thus with the introduction and weighting of new data.

D. Discussion

DWL requires a single reward for an entire execution, and
not at every execution timestep. The reward therefore only
needs to evaluate overall performance, and be sufficiently



Efficiency (Executed Speed)

Success (Distance Traveled)

Fig. 4. Mean execution speed and distance traveled during the practice
runs (running average, 23 practice runs).

rich to learn the data source weights; it is not necessary that
it be sufficiently rich to learn the task.

The experimental domain presented here provides reward
as a function of performance metrics unrelated to world
state. The execution reward, therefore, is not a state reward.
In this case, the DWL reward distribution assumes each
expert to have contributed to the performance in direct
proportion to the number of actions they recommended. By
contrast, if the execution reward is a state reward, then the
distribution formulation of DWL assigns equal reward to
each state encountered during the execution. In this case,
a more sophisticated approach to reward back-propagation
would likely improve this algorithm.

Expert selection probabilities under DWL depend on data
support and overall task performance. An interesting exten-
sion to the algorithm could further anchor task performance
measures to state, and thus consider the varying performance
abilities of experts in different areas of the state-space.

To conclude, data sources are shown to be unequally
reliable within this domain (Fig. 2). Important to remember
is that the learner is not able to choose the source from which
it receives data. Furthermore, even a poor data source can be
useful, if it is the only source providing data in certain areas
of the state-space. DWL addresses both of these concerns.
Though the learner is not able to choose the data source,
it is able to favor data from certain sources through the

DWL weighting scheme. Furthermore, when selecting a data
source at prediction time, both this weight and the state-space
support of the data source are considered.

VI. CONCLUSION

This work explores the incorporation of multiple data
sources within a Learning from Demonstration paradigm.
In particular, we consider reliability differences between
multiple demonstration data sources. Demonstration Weight
Learning (DWL) is introduced as a Learning from Demon-
stration algorithm that explicitly reasons about multiple data
sources, and through a weighting scheme leverages their
reliability. Data source weights are automatically determined,
and dynamically updated according to an adaptive expert
learning inspired approach. A first implementation of DWL
is presented within a simulated robot driving domain. Data
sources are found to differ in task execution reliability, and
data source weighting is shown to impact task performance
in both success and efficiency. Furthermore, DWL is shown
to approach the performance of the best data source expert,
and to outperform an equal source weighting scheme.
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