Learning Mobile Robot Motion Control from
Demonstrated Primitives and Human Feedback

Brenna Argall and Brett Browning and Manuela Veloso

Abstract Task demonstration is one effective technique for developing robot mo-
tion control policies. As tasks become more complex, however, demonstration can
become more difficult. In this work we introduce a technique that uses corrective
human feedback to build a policy able to perform an undemonstrated task from
simpler policies learned from demonstration. Our algorithm first evaluates and cor-
rects the execution of motion primitive policies learned from demonstration. The
algorithm next corrects and enables the execution of a larger task built from these
primitives. Within a simulated robot motion control domain, we validate that a pol-
icy for an undemonstrated task is successfully built from motion primitives learned
from demonstration under our approach. We show feedback to both aid and enable
policy development, improving policy performance in success, speed and efficiency.

1 Introduction

The appropriate selection of actions is a fundamental challenge within mobile
robotics. The development of a robust policy, or mapping from world states to robot
actions, is complicated by noisy observations and action execution uncertainty. Pol-
icy development furthermore is often specific to a particular robot platform and
application, and policy reuse for other platforms or application tasks is rare.

One field of effective development approaches has the robot learn a policy,
from training data or execution experience. Unlike traditional techniques that model
world dynamics by hand, an implemented policy learning algorithm may be reused

Brenna Argall
Robotics Institute, Carnegie Mellon University, USA e-mail: bargall@ri.cmu.edu

Brett Browning
Robotics Institute, Carnegie Mellon University, USA e-mail: brettb@cs.cmu.edu

Manuela Veloso
Computer Science Department, Carnegie Mellon University, USA e-mail: mmv@cs . cmu.edu

2 Brenna Argall and Brett Browning and Manuela Veloso

to learn another policy, though the policy itself typically is still platform or applica-
tion specific. Learning from Demonstration (LfD) is a technique that derives a policy
from example executions of a target behavior by a teacher. This approach has seen
success on a variety of robotics applications, and has the attractive characteristics of
being an intuitive means for human teacher to robot learner knowledge transfer, as
well as being an accessible policy development technique for non-robotics-experts.

As tasks become more complex, however, demonstration can become more diffi-
cult. One practical extension of the LfD approach is to incorporate simpler behaviors
learned from demonstration into larger tasks, especially if such tasks are too com-
plex to demonstrate in full. Though scale-up techniques of this nature have been
explored within other policy development approaches, the topic remains largely un-
addressed within the LfD paradigm. Moreover, the ability to reuse and incorporate
existing policies is a practical feature for any approach given the challenge of devel-
oping robust control policies. In this work, we contribute an algorithm that builds a
more complex policy from existing behaviors learned from demonstration.

How to effectively incorporate existing behaviors into a new policy is a key de-
sign decision for this work. We take the approach of aiding this process with human
feedback offered in multiple forms, the most notable of which is continuous-valued
corrections on student executions. Our framework for providing feedback does not
require revisiting states in need of improvement, and thus offers an alternative to
the more typical LfD policy improvement approaches that provide further teacher
demonstrations. This feature is particularly attractive given our consideration of
complex tasks for which full demonstration may be inconvenient or infeasible.

We introduce Feedback for Policy Scaffolding (FPS) as an algorithm that builds
and refines a complex policy from component behaviors learned from demonstration
and teacher feedback. The FPS algorithm operates by first refining multiple policies
learned from demonstrated motion primitives. A single complex policy is derived
from these primitives, and execution with the complex policy on a novel, undemon-
strated behavior is then evaluated. By providing corrections on this execution, the
FPS algorithm develops a policy able to execute the more complex behavior, without
ever requiring a full demonstration of the novel behavior.

We validate our algorithm within a simulated motion control domain, where a
robot learns to drive on a racetrack. A policy built from demonstrated motion prim-
itives and human feedback is developed and able to successfully execute a more
complex, undemonstrated task. Feedback is shown to improve policy performance
when offered in response both to motion primitive executions as well as novel be-
havior executions, and moreover the policy developed under this technique is found
to perform well within the novel domain. Finally, comparisons to an exclusively
demonstration-based approach show the FPS algorithm to be more concise and ef-
fective in developing a policy able to execute the more complex behavior.

The following section overviews the related work that supports this approach. In
Section 3 the scaffolding algorithm is presented. Section 4 details the experimental
implementation, including results and discussion. In the final section we conclude.

Learning from Demonstrated Primitives and Human Feedback 3

2 Background and Related Work

In this section we first present related work on policy development and improvement
within demonstration learning, followed by the details of building policies from
behavior primitives and teacher feedback.

We formally define the world to consist of states S and actions A, with a prob-
abilistic transition function T (s|s,a) : § X A x § — [0, 1] describing the mapping
between states by way of actions. As we do not assume that state is fully observ-
able, the learner has access to observed state Z through the mapping M : S — Z. A
policy 7 : Z — A selects actions based on observations of the world state.

2.1 Learning from Demonstration

Learning from Demonstration (LfD) is a policy development technique in which
teacher executions of a desired behavior are recorded and a policy is subsequently
derived from the resulting dataset. Formally, we represent a teacher demonstration
dj € D as t; pairs of observations and actions such that d; = {(z;,a;-)} € D,zi» €
Z, aj» €A,i=0---t;. The set D of these demonstrations are provided to the learner.

When recording and executing demonstrations the issue of correspondence,
where teacher demonstrations do not directly map to the robot learner due to differ-
ences in sensing or motion [9], is key. Teleoperation is a demonstration technique
whereby the passive learner platform records from its own sensors while being con-
trolled by the teacher during execution. Since the recorded data maps directly to
the learner platform, this demonstration technique best minimizes the introduction
of correspondence issues into an LfD system. Examples of successful teleoperated
LfD systems include both real [10] and simulated [7] robot applications.

Policy derivation amounts to building a predictor that will reproduce the actions
a’ € D from the observations z' € D. Many approaches exist within LfD to derive
a policy from the demonstration data [3], the most popular of which either directly
approximate the underlying function mapping observations to actions or approxi-
mate a state transition model and then derives a policy using techniques such as
Reinforcement Learning. Our work derives a policy under the first approach, with
function approximation being performed via regression since our target application
of low-level motion control has a continuous action space.

A wealth of regression approaches exist, and any are compatible with the FPS
algorithm. The specific technique used in our implementation is a form of Locally
Weighted Learning [4]. In particular, given observation z’, action a’ is predicted
through an averaging of datapoints in D, weighted by their kernelized distance to 2.
While a more sophisticated regression technique would likely improve the perfor-
mance of our implementation, the focus of this work is not how to better use existing
demonstration data, but rather how to use teacher feedback to produce new data and
thus refine policy performance and build new behavior.

4 Brenna Argall and Brett Browning and Manuela Veloso

To have a robot learn from its execution performance, or experience, is a valuable
policy improvement tool, and there are LfD approaches that incorporate learning
from experience into their algorithms. For example, execution experience is used to
update state transition models [1] and reward-determined state values [13]. Other
approaches provide more demonstration data, driven by learner requests for more
data [7, 8] as well as more teacher-initiated demonstrations [6].

Our approach similarly provides new example state-action mappings, but the
source for these mappings is not more teacher demonstration. There are some LfD
limitations that more teacher demonstrations cannot address, for instance correspon-
dence discrepancies between the teacher and learner. Moreover, the need to visit
states in order to provide execution information is a drawback if certain world states
are difficult to reach or dangerous to visit, for example that lead to a rover falling
over a cliff. Our technique for policy improvement synthesizes new example state-
action mappings from teacher feedback and learner executions [2], without requiring
state re-visitation by the teacher to provide appropriate behavior information.

2.2 Behavior Primitives and Teacher Feedback

Our approach builds a policy from the demonstration of simpler behavior primitives
and teacher feedback, rather than demonstrate a complex task in full. One motivation
is that as behaviors become more complex, demonstrating the behavior in full can
become more difficult. In this case, the teacher may be able to demonstrate behavior
primitives for a task but not the task in full, or provide higher quality demonstrations
for subsets of the behavior. A second motivation is that reaching all states encoun-
tered during task execution can become increasingly difficult as tasks become more
complex. States may be infeasible, inconvenient or undesirable to reach for a vari-
ety of reasons that only compound as task complexity increases. A final motivation
is that the demonstrated motion primitives may provide a base for multiple com-
plex behaviors. Through the reuse of these primitives, the effort required to develop
policies for the complex behaviors reduces.

Within LfD, hand-coded behavior primitives are used to build larger tasks learned
from demonstration [11], demonstrated tasks are decomposed into a library of prim-
itives [5, 13] and behavior primitives are demonstrated and then explicitly combined
into a new policy by a human [12]. Closest to our work is that of Bentivegna [5],
where a robotic marble maze and humanoid playing air hockey reuse learned primi-
tives, and furthermore refine the policy with execution experience. The work demon-
strates the full task and then extractes behavior primitives using hand-written rules.
Policy improvement is accomplished through an automatic binary reward signal for
task failure, used to adjust regression weights on the policy prediction. By con-
trast, our approach does not demonstrate the full task, and instead demonstrates the
primitives individually. Policy improvement is accomplished by generating new ex-
amples, from human feedback on practice executions of the primitives and full task.

Learning from Demonstrated Primitives and Human Feedback 5

3 Algorithm

This section presents our Feedback for Policy Scaffolding (FPS) algorithm. Under
FPS, teacher feedback is used to enable and improve policy behavior at transition
points that link demonstrated primitives. In doing so, it enables expression of the
full task behavior, without requiring its full demonstration.

Feedback is provided through the framework Focused Feedback for Mobile Robot
Policies (F3MRP) [3]. The FAMRP framework operates at the stage of low-level mo-
tion control, where actions are continuous-valued and sampled at high frequency. A
visual presentation of the 2-D ground path of the mobile robot execution serves as
an interface through which the teacher selects segments of an execution to receive
feedback, which simplifies the challenge of providing feedback to policies sampled
at a high frequency. Visual indications of data support during an execution futher-
more assist the teacher in the selection of execution segments and feedback type.

Execution corrections are offered through a language termed advice-operators,
first introduced with the Advice-Operator Policy Improvement (A-OPI) algorithm [2].
Advice-operators are commonly defined between the student and teacher, and func-
tion by performing mathematical computations on the observations or actions of
executed data points. In this manner, they provide continuous-valued corrections on
a learner execution, without requiring the teacher to provide the exact value for the
corrections. Instead, the teacher need only select from a finite list of operators, and
indicate the portion of the execution requiring improvement.

3.1 Algorithm Execution

Execution of the FPS algorithm occurs in two phases, presented respectively in Al-
gorithms 1 and 2. The first phase develops a policy T for each primitive behavior
¢je &, j=1...n,producing a set of policies I1. The second phase develops a policy
for a more complex behavior, building on the primitive policies in IT.

3.1.1 Phase 1: Primitive Policy Development

The development of each primitive policy begins with teacher demonstration. Ex-
ample observation-action pairs recorded during demonstration of primitive behavior
&; produce the initial dataset D,gj € D and policy T € I1. This initial policy is then
refined during practice runs consisting of learner executions and teacher feedback.
During the learner execution portion of a practice run (Alg. 1, lines 7-11), the
learner first executes the task. At each timestep the learner observes the world, pre-
dicting action a’ according to policy T (line 8). Action a’ is executed and recorded
in the prediction trace d, with observation z' (line 10). The information recorded
in the trace d will be incorporated into the policy update. The global position x',y'

6 Brenna Argall and Brett Browning and Manuela Veloso

Algorithm 1 Feedback for Policy Scaffolding: Phase 1
1: Given D
2: initialize IT —{ }
3: for all behavior primitives §; € & do

4: initialize Tg; — policyDerivation(ng)) , Dg/ eD
5: while practicing do

6: initialize d — {}, tr — {}

7: repeat

8: predict {a',7" } —m (2')

9: execute a'

10: record d «— d U (Z',a"), tr — tr U (',y,0",7")
11: until done

12: advise { F,® } — teacherFeedback(r)

13: apply dp — applyFeedback(F,®,d)

14: update Déi — DéjUdA(p

15: rederive g, — policyDerivation(Dg,)

16: end while

17: addII «— II U 3
18: end for

19: return IT

and heading 6’ of the mobile robot, and data support 7’ (discussed in Section 3.2.2)
of the regression prediction, are recorded into the execution trace tr, for use by the
F3MRP framework when visually presenting the ground path taken by the robot.
During the teacher feedback portion of the practice run, the teacher first indi-
cates a segment @ of the learner execution trace requiring improvement (line 12).
The teacher further indicates feedback f, which takes the form either of a binary
credit to indicate areas of good performance, or an advice-operator to correct the
execution within this segment. The application of F across all points recorded in d
and within the indicated subset @ generates new data, cf<p, which is added to dataset
D, (lines 13,14). Policy T for primitive ; is then rederived from this set (line 15).

3.1.2 Phase 2: Policy Scaffolding

The development of the complex policy builds on the primitive policies developed
during Phase 1 of the algorithm. Complex policy development therefore does not
begin with teacher demonstration of the complex task. Two distinguishing features
of the second phase of the FPS algorithm are the (i) selection between the action
predictions of multiple policies and (ii) selection of a dataset to receive any new
synthesized data. Figure 1 presents a schematic of our scaffolding approach, where
dashed lines indicate execution cycles that are performed multiple times.

Phase 2 begins with the initialization of more demonstration datasets. Specifi-
cally, n empty datasets are generated, each associated with one primitive policy. No-
tationally, let new data set D¢, be associated with existing primitive dataset D¢, re-
sulting in a total of 2n datasets De, € D,j=1---2n. Colloquially, call dataset D¢, ,,

Learning from Demonstrated Primitives and Human Feedback 7

Policy Update Teacher Feedback
[F,®
@ APPLY TEACHER
L FEEDBACK FEEDBACK
UPDATE m d tr,
DATASET / SELECT
~ DATASET
D, <—D£’Ud¢
[ir)
Dy,
RECORD RECORD
DERIVE SELECTION PREDICTION
Poricy 3 3
g Zn
L L
T a -
' | RECORD
1 I POSITION
O T . t
1 ! 1oy
1 1|
LEARNER PoLicy ! 1Y
! 1o
, select policy ! 1
(0ot i v !
ld', T} e (2) !
! WORLD 1
f T :
2 : |
"""""""" (R —
Learner Practice

Fig. 1 Policy derivation and execution under the Feedback for Policy Scaffolding algorithm.

the feedback dataset associated with primitive dataset Dg,. Some of the new data
generated during learner practice will be added to these feedback datasets (further
details are provided in Sec. 3.2.2). The policies derived from the feedback datasets
are considered, along with the primitive policies, for selection during execution of
the more complex policy.

Refinement of the complex policy proceeds with learner execution (Alg. 2,
lines 5-10) and teacher feedback (lines 11-17) as in Phase 1, but with the follow-
ing distinguishing characteristics. The learner now executes with the more complex
policy, whose operation proceeds in two steps. The first step is to select between all
contributing policies T, based on observation z’ (line 6); the details of this selection
are provided in Section 3.2.1. The second step is to predict action a’ according to
T, (z"), with prediction support 7' (line 7). After the application of teacher feedback,
datasets are individually selected to receive each feedback-modified datapoint. For
each point, indexed as ¢ € @, dataset selection (line 14) is determined by the data
support 7% of z? when predicted by policy £? (recorded in try, line 9); the details
of this selection are provided in Section 3.2.2.

8 Brenna Argall and Brett Browning and Manuela Veloso

Algorithm 2 Feedback for Policy Scaffolding: Phase 2

1: Given II,D

2: initialize Dg—(ny1)..on +— { }

3: while practicing do

4: initialize d — {}, try — {}, tr, — {}

5: repeat

6: select T, — policySelection(z'), T, € II

7: predict {a', 7'} —m; (z')

8: execute a'

9: recordd — d U (z',a"), try — try U (t",§'=E)), trp — tr, U (¥,)',0",7)
10: until done

11: advise {F,®}«— teacherFeedback(tr,)

12: forall p € @, (z%,a%) cd,(1?,EP) €trydo

13: apply dy + applyFeedback([,z?,a?)

14: select Dg + datasetSelection(1?,6?), Dg €D
15: update Dg <« Dg U cf¢

16: rederive Tz «— policyDerivation(Dg,), T € IT

17: end for

18: end while
19: return IT

3.2 Scaffolding Multiple Policies

Two key factors when building a policy under FPS are how to select between the
primitive behaviors, and how to incorporate teacher feedback into the built-up pol-
icy. The design of each of these factors within the algorithm is discussed here.

3.2.1 Selecting Primitive Policies

Primitive selection under FPS assumes that primitives occupy nominally distinct
areas of the observation-space. This assumption relies on a state observation for-
mulation that captures aspects of the world that are unique to the demonstrations
of each primitive policy. For example, two primitives developed for our validation
domain are turn left and turn right. Observations are formulated to incorporate a
notion of track curvature, and so demonstrations in left- versus right-curving areas
of the track occupy distinct areas of the observation space.

Primitive selection then is treated as a classification problem. For each primitive
&;, a kernelized distance ¢ (2,z;) between query point z' and each point z; € D,
is computed.! A weight for policy & ; is produced by summing the k largest kernel
values ¢ (7', :); equivalent to selecting the k nearest points in ng to query z' (k=15).
The policy with the highest weight is then selected for execution.

! In our implementation the distance computation is Euclidean and the kernel Gaussian, and so
o (z',z2;) = elni=# X5~ The parameter X! is a constant diagonal matrix that scales each obser-
vation dimension and embeds the bandwidth of the Gaussian kernel, and is tuned through 10-folds
Cross Validation to optimize the least-squared-error on primitive label classification.

Learning from Demonstrated Primitives and Human Feedback 9

3.2.2 Incorporating Teacher Feedback

A variety of options exist for how to incorporate synthesized data into the multiple
underlying datasets of the primitive policies that contribute to the complex behavior
execution. To begin, let us establish two ideas. First, this work assumes that in state-
space areas covered by the dataset of a particular primitive, the behavior of this
primitive matches the intended behavior of the more complex policy. If this is not the
case, and the two behaviors conflict, then that primitive should not be incorporated
into the complex policy in the first place. Second, both feedback forms produce new
data. The new data derives from learner executions, such that every new datapoint
dp = (29,4%) derives from an execution point (z?,a®). Each learner execution point
is predicted by a single primitive policy, as discussed in the previous section.

Two factors determine into which dataset a new datapoint ci(p is added: the policy
£? that predicted the execution point (z?,a?), and the measure of data support 7%
for that prediction. In particular, if the policy that made the prediction is a primitive
policy, the point is added to its dataset if the prediction had strong data support.
Otherwise, the point is added to the feedback dataset associated with primitive &%
(Sec. 3.1.2). By contrast, data generated from execution points predicted by a feed-
back policy are automatically added to its dataset, regardless of dataset support.

Prediction support is determined in the following manner. For a given dataset,
the 1-Nearest Neighbor Euclidean distance between all points in the set are mod-
elled as a Poisson distribution, parameterized by A, with mean y = A and standard
deviation ¢ = v/A. The threshold on strong prediction support is set by hand, based
on empirical evidence (‘C;;j = Mg+ 50(5].). Thus a prediction made by policy T, for
query point ' with distance £, to the nearest point in D, is classified as strongly
supported if £, < g and weakly supported otherwise.

The motivation behind this approach is to avoid adding data to a primitive dataset
that conflicts with the behavior of that primitive. Given our assumption that the
associated actions of nearby observations express similar behaviors, points that were
close enough to the dataset to be strongly supported during prediction therefore are
assumed to express behavior similar to that of the primitive.

4 Empirical Implementation

This section presents the experimental details, results and discussion of the applica-
tion of algorithm FPS to a simulated motion control domain.

4.1 Experimental Setup

The validation domain consists of a simulated differential drive robot performing a
racetrack driving task. Robot motion is propagated by simple differential drive sim-

10 Brenna Argall and Brett Browning and Manuela Veloso

ulation of the robot position (1% Gaussian noise), limited in speed and acceleration.
The robot observes the world through a monocular camera and wheel encoders; the
camera is forward facing and observes track borders (1% Gaussian noise) within
its field of view (130°,5m) as a set of points, each of which corresponds to a sin-
gle image pixel projected into the ground plane. The robot computes a local track
representation at each time step (30Hz) by fitting a 3-degree polynomial to recently
observed track border points. Policy observations are 6-dimensional: current rota-
tional and translational speeds, and the 4 coefficients of the local track polynomial.
The actions are 2-dimensional: target rotational and translational speeds.

7 0)

STRAIGHT

(¢

LEFT

Fig. 2 Primitive subset regions (left) of the full racetrack (right).

The demonstrated motion primitives are: turn right (Eg), go straight (&s) and
turn left (£1). Demonstrations are performed via human teleoperation, by decreasing
or increasing the translational and rotational speeds as the robot moves along the
racetrack. The robot has no a priori map of the track, nor does it attempt to build up
a map during execution; the aim of the developed policy is to reactively drive on a
racetrack. The following steps are taken during policy development:

Demonstrate the motion primitives and derive initial policies. Teacher demonstra-
tion of each primitive is performed 3 times on an appropriate track subset (Fig. 2,
left). From each dataset a policy is derived, referred to collectively as the set PDj.

Provide feedback on the motion primitive policies’ performance. ~ Learner execution
with each policy in PD; on its respective track subset is observed by the teacher,
and feedback-generated data is added to the executing policy’s dataset. This
observation-feedback-update cycle constitutes a single practice run, continues
to the satisfaction of the teacher and results in final feedback versions of the
primitive policies, referred to collectively as the set PFr.

Derive an initial scaffolded policy from the resultant primitive policies. ~ An initial
scaffolded policy SFj, that selects between the primitive policies in PF, is built.

Provide feedback on the scaffolded policy performance. Learner executions with
SF; on the full track are observed by the teacher, and feedback-generated data is
added to either the executing policy’s dataset or its associated feedback dataset
(as per Sec. 3.2.2). The observation-feedback-update cycle continues to the sat-
isfaction of the teacher, and results in the final feedback scaffolded policy SFp.

Learning from Demonstrated Primitives and Human Feedback 11

For comparative purposes, we also evaluate providing more demonstrations.
The approach closely follows the policy development steps just outlined, but the
teacher provides more teleoperation demonstrations instead of feedback. The result
is demonstration+ versions of a final set of primitives policies (PDr), initial base-
line scaffolded policy (SDy) and final scaffolded policy (SDFr).

Each of the primitive policies (in sets PD;, PFr,PDr) is evaluated on the track
subset appropriate to their respective primitive behavior (Fig. 2, left). Each of the
scaffolded policies (SFy, SFr,SDy,SDF) is evaluated on the full track (Fig. 2, right).
Executions end when the robot either runs off the track or reaches the finish line.

Policy performance is measured according to the following metrics. Success in-
dicates the ability of the robot to stay on the track, and is measured by the percentage
of the track subset (for primitive policy executions) or full track (for scaffolded pol-
icy executions) completed. Speed is measured by the average translational execution
speed. Efficiency is measured as the execution time, and is governed jointly by speed
and the execution ground path.?

4.2 Results

The FPS algorithm successfully learned motion control primitives through a com-
bination of demonstration and teacher feedback, as well as a policy built from these
primitives to execute a more complex, undemonstrated, behavior. Teacher feedback
was found to be critical to the development and performance improvement of all
policies, which far outperformed those that received more teacher demonstrations.

4.2.1 Motion Primitives Learned from Demonstration

The three motion primitives were successfully learned in the first phase of the FPS
algorithm (Tbl. 1, average of 50 executions, 1-standard deviation).3

The initial policies in PD; were unable to complete either of the furn right or
turn left behaviors. The initial go straight primitive behavior was able to complete
the task, however execution proceeded extremely slowly.

All policies resulting after Phase 1 development of the FPS algorithm (in PFr)
were able to complete their respective primitive behaviors. Furthermore, executions
with these policies were much faster on average than those in PDy, as summarized
in Figure 3 (green bars; also in Tbl. 1). Of particular note is the go straight primitive
policy, whose average speed over the executions approaches the maximum speed of
the robot (3.0%), all without compromising the success of the executions. Aggres-
sive speeds at times negatively impacted the furn left policy however, whose more
efficient executions came at the cost of occasional incomplete executions.

2 Efficiency is computed only for successful executions, that by definition do not abort early.

3 The figures and tables of this section label the primitive policy sets intuitively: Baseline refers to
PD;, Feedback refers to PFp and More Demonstration (More Demo) refers to PDp.

12 Brenna Argall and Brett Browning and Manuela Veloso

| Policy | Success (%) [Speed, Transl [mean] (%)] Efficiency (s) |
Baseline, Right 47.97+£1.45 0.61£0.01 -
Feedback, Right 97.61+12.0 1.67+£0.02 1.934+0.07
MoreDemo, Right 51.79+8.54 0.65+0.01 -
Baseline, Straight 100.0£0.0 0.60£0.00 5.67+0.13
Feedback, Straight 100.0+0.0 2.744+0.05 1.26+0.03
MoreBaseline, Straight 100.0£0.0 1.73£0.34 3.114+0.62
Demo, Left 99.21+1.31 0.97+0.01 2.76 £0.05
Feedback, Left 91.28+19.30 1.47+0.39 1.80+0.41
MoreDemo, Left 43.76 £8.21 0.60£0.02 -

Table 1 Execution performance of the primitive policies.

In contrast to the FPS policy, the furn right policy resulting from more teleopera-
tion demonstrations (in PDr) was not able to complete the task, or even to improve
upon the performance or speed of the initial policy. Furthermore, the policy was
developed with significantly more practice runs and training data (36 vs. 23 practice
runs, 2,846 vs. 561 new datapoints). The go straight demonstration policy (Fig. 3,
blue bar) was able to improve execution speed over the baseline policy, but not as
dramatically as the FPS policy, and again with more training data and practice runs
(36 vs. 27 practice runs, 1,630 vs. 426 new datapoints). The turn left policy actu-
ally decreased the performance of the initial policy, both in success and speed (and
with 12 vs. 8 practice runs, 965 vs. 252 new datapoints). More demonstrations in
this case likely created ambiguous areas for the policy, a complication that would
perhaps clear up with the presentation of more disambiguating demonstrations.

Primitive Policy Speed

3
—_
<L 25
=]
<
9
0 2
=%
“ M Bascline
- 5
% L5 H Feedback
z B Morc Demo
=z
=
=
F

o
=

RIGHT STRAIGHT LEFT

Fig. 3 Average translational execution speed with each of the primitive behavior policies.

Learning from Demonstrated Primitives and Human Feedback 13

4.2.2 Undemonstrated Task Learned from Primitives and Feedback

A policy able to execute a more complex, undemonstrated, behavior was success-
fully developed through the scaffolding of the learned primitive policies, plus the
incorporation of teacher feedback. Before any practice runs with teacher feedback,
the complex policy, derived solely from selection between the developed feedback
primitive policies PFr, was unable to execute this task in full. Performance im-
provement over 160 practice runs is presented in Figure 4 (left). Each practice run
produces a new iterative policy. Each plot point represents an average of 10 track ex-
ecutions with a given iterative policy, and a regularly sampled subset of the iterative
policies were evaluated in this manner (sampled every 10 policies, 17 iterative poli-
cies evaluated in total). This constitutes Phase 2 of the FPS algorithm, after which
the learner was able to consistently execute the complex task in full.

Complex Policy Success

Iterative FPS Policies Initial and Final Policies
100
90 100
£ w0)
g A
T 60 s
[=9 [=
E 50 g 60
o 8]
2 40 z
o =}
S 3 S 40
E] E
g 20 g
A0 W20
0
0 20 40 60 80 100 120 140 160 0

M Feedback Initial B Feedback* [Feedback Final

Practice Runs .)
E Demo Initial M Demo Final

Fig. 4 Percent task completion during (left) and after (right) complex policy practice.

4.2.3 Improvement in Complex Task Performance

Beyond the development of a policy able to perform the more complex task, FPS
furthermore enabled performance improvement such that executions became faster
and more efficient (Tbl. 2, average of 50 executions, 1-standard deviation error bars).
Figure 4 (right) summarizes the percent completed execution of multiple policies
on the full track task (also in Tbl. 2). The final policy SFr that resulted after Phase
2 of the FPS algorithm was able to consistently execute the task successfully (Feed-
back Final); as noted above, the initial scaffolded FPS policy SF; was not able to
complete this task (Feedback Initial). By contrast, the policy SDF that resulted from
more teleoperation demonstrations (Demo Final) was not able to complete the task,
though it did improve upon the performance its initial policy (Demo Initial).

14 Brenna Argall and Brett Browning and Manuela Veloso

Policy Success (%) |Speed, Transl [mean, max] (%)|Speed, Rot [max] (%)|
Feedback Initial 6.32+1.72 0.42+£0.21, 1.51+£0.36 0.88+0.3
Feedback* 63.32+28.49 2.24+0.18, 3.04+0.17 2.144+0.2
Feedback Final 97.51+7.94 2.34+0.03, 3.07+0.01 2.57+0.06
Demo Initial 5.95+0.17 0.58+£0.00, 0.66+0.13 0.15£0.10
Demo Final 13.69+£2.36 1.01+0.13, 1.51+0.56 0.98+0.14

Table 2 Execution performance of the scaffolded policies.

The final FPS policy SFr however was more extensively developed than the
demonstration policy SDf, whose extremely slow rate of policy improvement
prompted the teacher to abort policy development (159 vs. 74 practice runs). The
above comparison between the final FPS and demonstration policies therefore is not
a fair one, and so the results from an iterative FPS policy are also provided (Feed-
back*). This policy is not the final FPS policy, but rather the result of development
after only 74 practice runs, the same number of practice runs as the final demonstra-
tion policy. These runs produced 2,448 new datapoints; far fewer than the 74 runs of
the demonstration policy, which produced 8,520 new points. Even so, against this
iterative policy the final demonstration policy also did not measure well. The iter-
ative policy (Feedback*) significantly outperformed the final demonstration policy
(Demo Final) on the success measure, though it does not yet perform as successfully
or as consistently as the final FPS policy (Feedback Final).

The speed performance results closely resemble those of success performance
(Tbl. 2). Namely, the final FPS policy far outperformed both the initial FPS policy
(Feedback Initial) as well as the final demonstration policy (Demo Final). The fi-
nal demonstration policy did offer some improvement over its initial policy (Demo
Initial), but not nearly as much as the iterative FPS policy provided for compar-
ison (Feedback™). Interesting to note is that the iterative FPS policy (Feedback™)
produced similar speeds to the final FPS policy, but with larger standard deviations
(Tbl. 2), suggesting that performance consistency, in addition to execution success,
also motivated the teacher to continue development beyond this iterative policy.

4.3 Discussion

This section highlights some noteworthy gains provided by the FPS algorithm, in-
cluding policy reuse and more focused datasets.

4.3.1 Reuse of Primitives Learned from Demonstration
These empirical results confirm that FPS was able to successfully build a policy for

an undemonstrated task, from existing primitive policies learned from demonstra-
tion. We identify two crucial gains to such an approach.

Learning from Demonstrated Primitives and Human Feedback 15

The first gain is that the multiple motion primitive policies were developed from
demonstration. Demonstration has many attractive features as a medium for knowl-
edge transfer from human teacher to robot learner [3]. Moreover, this demonstration
technique was aided with teacher feedback, provided under the F3AMRP framework.
Without this feedback, the learned primitive policies are less successful, less effi-
cient, slower, and in some cases even unable to complete the target behavior. This
is true not just of the initial primitive policies derived from demonstration, but also
of the policies provided with more demonstrations in response to learner execution
performance. The FPS algorithm therefore provides a more efficient and effective
LD technique for the development of these motion primitive policies.

Even with the advantages secured through demonstration and teacher feedback
however, policy development typically is still a non-trivial task. The second gain of
the FPS approach therefore is the ability to reuse the primitives within another pol-
icy. The full track task was shown to be sufficiently complex that the improvements
afforded by demonstrations of the full task behavior were significantly smaller than
those gained through teacher feedback. Moreover, this performance difference be-
tween the feedback and more-demonstration techniques was much larger for the
complex task than for the simpler primitive policies. These results suggest that the
complex task cannot be learned through demonstration exclusively, unless perhaps
provided with a very large quantity of demonstration data, again underlining the
advantage of simple policy reuse within this complex domain.

4.3.2 More Focused Datasets

One result from the experimental validation of A-OPI in [2] was the development of
much smaller datasets with corrective feedback in comparison to more demonstra-
tion. The smaller datasets furthermore produced similar or superior performance,
prompting the conclusion that the datasets were less redundant and more focused.

The same trend is seen in the FPS datasets, and appears to only magnify with
the more complex domain of this work. In particular, the combined size of the three
primitive policy datasets developed with more demonstration (6,137) is more than
three times the size of the comparable FPS primitive datasets (1,935). The size of the
final scaffolded more-demonstration policy dataset (14,657) is more than double the
final FPS dataset size (6,438), and this is with far fewer practice runs (74 vs. 168).

Moreover, these teleoperation policies never perform similarly to their FPS coun-
terparts and, in contrast to the A-OPI results, instead usually display significantly
inferior performance. This observation suggests that not only is the added data less
redundant, but furthermore includes relevant data that is not being produced by the
demonstration. One issue is that to provide a correction through demonstration can
be difficult with motion control tasks, and this difficulty scales with task complexity.
Further detrimental is the reality that the teacher often must reproduce suboptimal
behavior in order to reach the state intended to receive a corrective demonstration.
We propose that the value in policy refinement alternatives to state revisitation only
grows as tasks and domains become more complex.

16 Brenna Argall and Brett Browning and Manuela Veloso

5 Conclusions

We have introduced Feedback for Policy Scaffolding (FPS) as an algorithm that
builds, or scaffolds, a policy from demonstrated component behaviors and correc-
tive human feedback. The complete behavior of the scaffolded policy itself need not
be demonstrated. We have validated the FPS algorithm within a simulated robot mo-
tion control domain. A policy built from demonstrated motion primitives and human
feedback was able to execute a more complex, undemonstrated task, thus confirm-
ing successful policy reuse. Moreover, we found that successful execution of the
complex behavior was in fact enabled by teacher feedback. When compared to pro-
viding more teacher demonstrations, FPS was shown to produce better performing
policies, from more focused datasets. Policy performance was found to improve with
feedback, in the measures of success, speed and efficiency, and for the complex as
well as primitive behaviors.

Acknowledgements This research is partly sponsored by the Boeing Corporation under Grant No.
CMU-BA-GTA-1, BBNT Solutions under subcontract No. 950008572, via prime Air Force con-
tract No. SA-8650-06-C-7606, and the Qatar Foundation for Education, Science and Community
Development. The views and conclusions in this document are solely those of the authors.

References

1. P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in reinforcement learning.
In Proceedings of ICML, 2005.
2. B. Argall, B. Browning, and M. Veloso. Learning robot motion control with demonstration
and advice-operators. In Proceedings of IROS, 2008.
3. B. D. Argall. Learning Mobile Robot Motion Control from Demonstration and Corrective
Feedback. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2009.
4. C.G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control. Artificial
Intelligence Review, 11:75-113, 1997.
5. D. C. Bentivegna. Learning from Observation Using Primitives. PhD thesis, College of
Computing, Georgia Institute of Technology, Atlanta, GA, July 2004.
6. S. Calinon and A. Billard. Incremental learning of gestures by imitation in a humanoid robot.
In Proceedings of HRI, 2007.
7. S. Chernova and M. Veloso. Multi-thresholded approach to demonstration selection for inter-
active robot learning. In Proceedings of HRI, 2008.
8. D. H. Grollman and O. C. Jenkins. Dogged learning for robots. In Proceedings of ICRA, 2007.
9. C. L. Nehaniv and K. Dautenhahn. The correspondence problem. chapter 2. MIT Press,
Cambridge, MA, USA, 2002.
10. A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and E. Liang. In-
verted autonomous helicopter flight via reinforcement learning. In International Symposium
on Experimental Robotics, 2004.
11. M. N. Nicolescu and M. J. Mataric. Methods for robot task learning: Demonstrations, gener-
alization and practice. In Proceedings of AAMAS, 2003.
12. J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching robots by moulding behavior and
scaffolding the environment. In Proceedings of HRI, 2006.
13. M. Stolle and C. G. Atkeson. Knowledge transfer using local features. In Proceedings of
ADPRL, 2007.

