
Tactile Guidance for Policy Refinement and Reuse
Brenna D. Argall, Eric L. Sauser and Aude G. Billard

Learning Algorithms and Systems Laboratory (LASA)
École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Email: [brennadee.argall,eric.sauser,aude.billard]@epfl.ch

Abstract—Demonstration learning is a powerful and practical
technique to develop robot behaviors. Even so, development
remains a challenge and possible demonstration limitations can
degrade policy performance. This work presents an approach for
policy improvement and adaptation through a tactile interface
located on the body of a robot. We introduce the Tactile Policy
Correction (TPC) algorithm, that employs tactile feedback for the
refinement of a demonstrated policy, as well as its reuse for the
development of other policies. We validate TPC on a humanoid
robot performing grasp-positioning tasks. The performance of the
demonstrated policy is found to improve with tactile corrections.
Tactile guidance also is shown to enable the development of
policies able to successfully execute novel, undemonstrated, tasks.

Index Terms—Imitation and Social Learning, Skill Acquisition,
Human-Robot Interaction, Humanoid Robots

I. INTRODUCTION

The challenge of motion control is fundamental to many
robotics applications. One representation for control is a
policy, that maps sensor observations of the world to robot
actions. Policy execution in real environments is confounded
by noisy sensors, approximate mappings and execution uncer-
tainty. Such challenges only grow with domain and robot com-
plexity, for example high degree of freedom humanoids. Policy
development therefore typically involves a significant measure
of expertise and effort. To adapt a policy based on execution
experience, however, can reduce the requirements placed on
a developer. With this work, we introduce an algorithm that
incorporates human feedback - specifically, tactile corrections
- for the purpose of policy adaptation. Policy corrections are
indicated through the touch of a human teacher, and the teacher
provides corrections in order to accomplish two goals. The
first is to refine a policy during execution, and thus improve
performance by increasing policy robustness. The second is to
assist in policy reuse, by guiding an existing policy towards
accomplishing a different task.

Our approach initially derives a policy via Learning from
Demonstration (LfD) techniques, and then provides corrections
through a tactile interface (Fig. 1). Under LfD, the teacher
demonstrates a target behavior, and the robot generalizes a
policy from data recorded during the teacher executions. We
posit that tactile feedback furthers the idea of teaching robots
as humans teach other humans, which is one strength of
demonstration-based learning. Moreover, tactile detection can
be crucial for safe robot operation around humans, and further
exploited for knowledge transfer from human to robot. In our
work the policy predictions provide target poses for the robot

body. Through the tactile interface, the human teacher indi-
cates relative adjustments to the robot pose (policy predictions)
online, as the robot executes. The robot immediately modifies
its pose to accommodate the adjustment, and the resulting,
adjusted, pose is treated as new training data for the policy.

Fig. 1. Our approach of a) task demonstration, followed by tactile correction
of the learned policy for b) refinement of the demonstrated behavior and c)
its reuse in the development of other policies. Black solid arrows indicate
demonstrated or corrected executions, black dashed arrows generalization
executions and white arrows human hand movement.

We validate our approach on a humanoid robot performing
grasp-positioning tasks. The performance of a policy learned
from demonstration is found to improve after refinement from
tactile corrections. Successful policy reuse also is shown.
Through tactile guidance, executions with the demonstration
policy are iteratively adjusted towards targeting a new object-
location combination, resulting in a policy able to execute
the alternate, undemonstrated, combination. Tactile corrections
thus enable the development of a new policy, bootstrapped on
the reuse of a policy learned from demonstration.

The following section presents related literature that sup-
ports our work. Section III details our approach, including
the algorithm and tactile correction technique. Empirical val-
idation is described in Section IV, with results provided in
Section V. In Section VI, we conclude.



II. BACKGROUND AND MOTIVATION

This section discusses policy derivation and adaptation
within Learning from Demonstration (LfD), and the indication
of policy corrections via tactile feedback.

Under LfD, teacher executions of a desired behavior are
recorded and a policy is derived from the resultant dataset;
we refer the reader to [1] and [2] for a full review. Though
demonstration has many attractive characteristics for both
teacher and learner, policy development still typically is non-
trivial. Potential limitations include dataset sparsity, since
demonstration from every world state is infeasible in all but
the simplest domains, and correspondence issues [3], where
physical differences between the teacher and learner bodies
complicate the use of the demonstration data. To minimize
correspondence issues, our work accomplishes demonstration
by teleoperating the robot learner as it records from its own
sensors. We then derive a policy via function approximation
of the mapping from world observations to robot actions.

To assist the policy development process, our work employs
two policy adaptation techniques: refinement and reuse. Policy
refinement within LfD uses execution experience to update
state transition models [4] and reward-determined state val-
ues [5]; other approaches provide more demonstration data,
driven by learner requests [6], [7] or more teacher-initiated
demonstrations [8]. To correct poor policy predictions is a
particularly direct, though relatively unexplored, approach to
refinement, and in most cases a human teacher indicates the
correct prediction from a discrete set of actions [6], [9]. By
contrast, our approach provides continuous-valued corrections,
and differs from related work [10] by offering corrective
feedback online, instead of post-execution, and through a
tactile interface, instead of a high-level corrective language.

Given the challenge of developing robust control policies,
the ability to reuse existing policies, designed to address
related tasks, is a practical feature for any policy learning
system. Policy reuse under LfD occurs most frequently in the
form of behavior primitives, or simpler policies that contribute
to the execution of a more complex policy. Examples include
hand-coded primitives used within [9] or automatically ex-
tracted from [11] demonstrated tasks, and primitives learned
from demonstration [10]. In our work, policy reuse takes
a bootstrapping, rather than behavior-primitives, form: the
adapted policy performs a different task than the demonstrated
policy, with the algorithm automatically extracting similar
characteristics between the tasks.

Our approach uses tactile corrections from a human teacher
for both policy refinement and reuse. We propose that human
touch, like demonstration, is an intuitive and effective mech-
anism for the transfer of knowledge from human to robot. A
handful of robot learning works (including but not limited to
LfD) use human touch for robot behavior development. For
example, tactile feedback is detected to minimize the sup-
port forces provided by a teacher during humanoid behavior
learning [12], and the selection of hand-developed behaviors
is adapted using tactile reward signals [13].

III. THE TACTILE POLICY CORRECTION ALGORITHM

We introduce Tactile Policy Correction (TPC) as an algo-
rithm for the refinement and reuse of motion control policies
through tactile feedback from a human teacher. Pseudo-code
for this approach is provided in Algorithm 1.

Algorithm 1 Tactile Policy Correction
1: Given D
2: initialize Dc ← {}, δt=0 ← 0
3: derive π ← policyDerivation(D,Dc)
4: while correcting do
5: predict ẑtϕ ← regression

(
zt−1

)
6: execute ztϕ ← controller

(
ẑtϕ + δt−1

)
7: if detect touch then
8: map δtε ← M (touch)
9: correct ztϕ ← controller

(
ztϕ + δtε

)
10: record δt ← δt−1 + δtε
11: end if
12: set wt

13: record Dc ← Dc ∪
(
zt, wt

)
14: end while
15: if refine then
16: rederive π ← policyDerivation(D,Dc)
17: return π
18: else if reuse then
19: derive π′ ← policyDerivation(D,Dc)
20: return π′

21: end if

A. Algorithm Execution

The first phase of the TPC algorithm consists of task
demonstration by the teacher (Fig. 1a). We formally define the
world to consist of actions a ∈ A and observations z ∈ Z of
world state, where a ∈ R` and z ∈ R(m+n). An observation z
consists of two components, z = (zϕ, z¬ϕ), where zϕ ∈ Rm
describes the robot pose, and z¬ϕ ∈ Rn describes any other
observables that are of interest to the policy.1 We define a
demonstration to consist of a sequence of Nd observations
{zj}Nd

j=1, recorded during teacher execution of the task. The
collected set D = {zj}Nj=1 of N datapoints from multiple
demonstrations is then provided to the robot learner. From this
set a policy π : Z → A is derived, that enables the selection
of an appropriate action given the observed state.

The second phase of the algorithm involves learner execu-
tion with the policy π, and corrective tactile feedback which is
used to adapt π (Fig. 1b,c). This cycle of execution-correction-
adaptation continues to the satisfaction of the teacher, and
proceeds as follows. Policy execution (lines 5-6) at timestep t
consists of two phases: prediction of a target pose ẑtϕ, and the
selection of an action to accomplish that pose. Pose prediction
is accomplished via regression techniques, based on state
observation zt−1 (line 5). Action selection is accomplished
via a robot-specific controller, and its execution results in a
new robot pose ztϕ (line 6). The human teacher may choose

1Pose information is necessary when providing corrections under TPC, and
so zϕ 6= ∅; for this same reason, policy execution is split into two steps -
prediction of a target pose and action selection by an external controller to
accomplish that pose. The presence of additional observation information is
application-dependent, and possibly absent such that z¬ϕ = ∅.



to offer a tactile correction at any timestep of an execution. If
detected, the robot learner translates the tactile feedback2 into
an incremental shift δtε ∈ Rm in the robot pose, according
to mapping M (line 8). The robot controller is then passed
the new corrected pose, modified by the incremental shift δtε
(line 9). The influence of this incremental shift is maintained
over multiple timesteps, through an offset parameter δt ∈ Rm
that maintains a sum of all adjustments seen during the
execution (line 10) and is added to the pose prediction at each
timestep (line 6).

The timestep concludes with the recording of observation
zt into the set of corrected execution points Dc (line 13).
If a tactile correction was provided, it too is recorded within
observation zt, through component ztϕ that encodes the current
(corrected) pose. A weight wt is associated with the recorded
point, such that the policy derivation will give greater im-
portance to the corrected data (details in Sec. III-C2). Upon
completion of the entire execution, the policy is adapted from
demonstration set D and the set of corrected executions Dc;
the corrected execution thus is treated as a new demonstration
for the policy. In the case of refinement, the existing policy π
is replaced with an updated version via rederivation (line 16).
In the case of reuse, a new policy π′ is derived, leaving the
original policy π unchanged (line 19).

Important to note is that the TPC algorithm is agnostic to the
techniques used for pose prediction (regression) and ac-
tion selection (controller) during policy execution, as well
as to the technique that translates tactile feedback into a pose
adjustment (mapping M ). The following sections describe the
particular techniques we employ for the implementation of
TPC presented within this work.

B. Policy Execution

This section describes the techniques used for policy execu-
tion under our specific implementation of the TPC algorithm.

1) Pose Prediction: Target poses are predicted through the
GMM-GMR algorithm [8], which first encodes demonstrations
in a Gaussian Mixture Model (GMM) and then predicts a
target pose through Gaussian Mixture Regression (GMR).
The recorded demonstrations are modeled probabilistically
as a mixture of K Gaussian components with means µk
and covariance Σk, k ∈ 1..K, whose parameters are trained
under the Expectation-Maximization (EM) algorithm. Our im-
plementation defines observation component zϕ as Cartesian
position x ∈ R3 and orientation q ∈ R4 (as a quaternion,
‖q‖ = 1) of the end-effector in a robot-centric reference
frame. Thus zϕ ≡ [x, q] ∈ R7. We further define component
z¬ϕ ≡ τ ∈ R1 as the timestep of recorded observation.
The GMM thus models the joint probability of the temporal
and spatial aspects of the demonstrations. To make a pose
prediction, GMR estimates the conditional expectation of zϕ
given z¬ϕ, i.e. p (x, q|τ). We additionally take advantage of
the probabilistic nature of the regression to generate variability

2Note that the form taken by the feedback is platform-specific, depending
on both the employed tactile sensors and how the sensor data is processed.

in the predicted trajectory, by applying to the regression mean
a constant offset that considers both covariance and initial pose
(full details to be published in future work).

2) Action Selection: Given a target pose ẑϕ, action se-
lection is accomplished via an inverse kinematic controller.
Action space A consists of joint angle velocities θ̇ ∈ R7

for a robot arm. The manipulator of our implementation
(Sec. IV) is redundant, as the number of degrees of freedom
(7) exceeds the number of constraints (6, end-effector position
and orientation). We therefore compute desired joint angle
velocities θ̇ according to the distance between the target
pose ẑtϕ and the current robot pose ztϕ by using a pseudo-
inverse method that both avoids joint limits and is robust to
singularities [14].

C. Tactile Corrections

The tactile interface consists of five Ergonomic Touchpads
located on the manipulator arm. The pads detect contact
presence and relative motion, which we map to changes in end-
effector position and orientation (Sec. III-C1). The pose that
results is recorded into the demonstration set and incorporated
into a policy update (Sec. III-C2).

1) Online Modification of the Policy Execution: Four touch-
pads, T0 · · ·T3, encircle the lower forearm of the robot arm
(near the wrist), and one, T4, is located on the back of the robot
hand (Fig. 2a,b). Touch data from pad Tk, k = 0..4, consists
of a 2-D relative change in pixels (∆utk,∆v

t
k). The target

pose adjustement δtε is computed using the forward kinematic
function f of the whole arm, such that δtε = f(θt+θ̇

t
∆t)−ẑtϕ.

Here θt is the current joint configuration, ∆t the timestep for
touchpad data capture, ẑtϕ the target pose predicted by the
regression model, and θ̇

t
the joint velocities to accomplish

the adjustment, the computation for which is described next.
In practice, we decompose the mapping M 7→ δε into two
distinct parts that operate separately on the wrist and hand, as
this seemed a more intuitive mapping for the experimenters
providing corrections.

Fig. 2. Schematic of the touch pads controlling the robot wrist and hand.
Fingers sliding on opposite pads results in rotational or translational motions.

The first part of the mapping M operates on the first 5-
DoF leading to the wrist of our 7-DoF manipulator. Sliding
the fingers along two opposite touchpads leads either to a
translational or rotational motion command, depending on
whether the sliding directions agree or not (Fig. 2c,d). The
velocity żtϕ for the pose correction is computed by mapping
touch data (in R8, 4 pads × 2-D data) from pads T0 · · ·T3
to a vector describing the target velocity in Cartesian-space
wrist coordinates, and then to robot-centric world coordinates



through rotation matrix R:

żtϕ =

[
R

R

]


κν
(
−∆vt0 + ∆vt2

)
κν
(
∆vt1 −∆vt3

)
κν
(
−∆ut0 −∆ut1 −∆ut2 −∆ut3

)
κω
(
−∆ut0 + ∆ut2

)
κω
(
∆ut1 −∆ut3

)
κω
(
∆vt0 + ∆vt1 + ∆vt2 + ∆vt3

)


Constant parameters κν and κω scale respectively the transla-
tional and rotational components of the touch data, to account
for units differences (pixels for tactile feedback, m

s and rad
s

for the velocity components). The mapping from Cartesian-
space velocity żtϕ to joint velocity θ̇

t

{0..5} for the first 5-DoFs
in the arm then is computed using inverse kinematics [14].

The second part of the mapping M operates on the last 2-
DoF of the manipulator, that control the robot hand. Touch data
(in R2, 1 pad × 2-D data) from pad T4 maps directly to the
target joint velocities, such that θ̇{6..7} = [κω∆ut4, κω∆vt4].

2) Incorporation into a Policy Update: Upon the com-
pletion of an execution that has been corrected with tactile
feedback, the new data is incorporated into the policy. A
weight (Alg. 1, line 12) is associated with each datapoint,
depending on whether it belongs to the original (D) or
corrected (Dc) dataset, such that a higher weight is assigned
to correction points. The re-estimation of the regression pa-
rameters is accomplished through a weighted version of the
EM algorithm (details in Fig. 3). Note that if the behavior
induced by corrections is sufficiently different from that of
the original policy, to preferentially weight the new data
effectively amounts to forgetting the original behavior. A new
policy therefore is instantiated for the case of reuse, when
policies’ behaviors differ, but not for refinement, when the
target behaviors of the original and adapted policies match.

IV. EXPERIMENTAL SETUP

We have implemented the TPC algorithm on a small 53-
DoF humanoid, the iCub robot. For our validation task, the
robot learns to position3 the end-effector of its 7-DoF arm
for the grasping of different objects at various locations.
Policy development consists initially of task demonstration,
followed by tactile corrections to refine that policy and build
other policies able to accomplish alternate tasks. In particular,
policies able to arrive at a different location, or with a different
orientation, are bootstrapped from the demonstrated policy.

A. Task Demonstration and Tactile Corrections

Demonstration is performed via teleoperation by a human
teacher, which is non-trivial as it requires simultaneous control
of all 7-DoFs of the arm. Teleoperation is accomplished
through a joint recording system and a mapping that allows
the human to directly control the motion of the robot arm by
moving his own arm, during which the robot records from
its own sensors (Fig. 1a). Sensing units from the commercial

3The focus of the task objective is on end-effector positioning, rather than
the grasp itself, since the iCub hand has no force sensors or tactile feedback.
Closing the hand for grasping thus is handled by a static controller.

Datapoint weights are assigned based on membership in the
sets of corrected points Dc or demonstrated points D. Weight
wj for point zj is computed as

wj =


(

1− N
N+Nc

)
(1− w̄(τ)) zj ∈ D(

1− Nc
N+Nc

)
w̄(τ) zj ∈ Dc

where N is the number of datapoints in D, Nc is the number in
Dc and w̄(τ) is a global weight function (initialized to zero).
Following a corrective execution, w̄(τ) updates according to

w̄(τ) ← 1

Ns + 1
(H(τ − τc) +Ns w̄(τ))

where H(τ) is the Heaviside unit step function, τc is the time
of the first correction and Ns is the number of full execution
sequences previously corrected.

Our weighted EM algorithm modifies standard EM to include
weight wj . The algorithm loops between the E-step and the
M-step until the overall likelihood

∑K
k=1Ek is maximized:

E-step:

p
(i+1)
k,j =

γ
(i)
k N

(
zj ;µ

(i)
k ,Σ

(i)
k

)
ΣKik=1γ

(i)
ik
N
(
zj ;µ

(i)
ik
,Σ

(i)
ik

)
E

(i+1)
k = ΣNj=1w

jp
(i+1)
k,j

M-step:

γ
(i+1)
k =

E
(i+1)
k

ΣNj=1w
j

µ
(i+1)
k =

ΣNj=1w
jp

(i+1)
k,j zj

E
(i+1)
k

Σ
(i+1)
k =

ΣNj=1w
jp

(i+1)
k,j

(
zj − µ(i+1)

k

)(
zj − µ(i+1)

k

)T
E

(i+1)
k

Fig. 3. Data weighting and weighted Expectation-Maximization (EM).

XSens joint recording system are placed on the human’s
upper and lower arm, and back of the hand. Each unit contains
an accelerometer, gyroscope and inertial sensing unit, and
provides orientation information that we translate into human
joint angles, and then map to the joint angles of the robot arm.

This demonstration technique does allow for teleoperation
of a high-DoF robot arm, but there are limitations. Since the
robot arm is controlled by the human moving her arm, the
issue of correspondence is present, though transparent from the
perspective of the robot. Differences in correspondence instead
are adjusted for online by the human while demonstrating.
This limitation therefore impacts primarily the human, who
furthermore must react to how another body - the robot’s body,
rather than his own - executes motions and interacts with the
object, possibly as a mirror image if the human faces the robot.

Each of these factors can result in suboptimal demonstra-
tions, which our approach addresses with tactile corrections
provided through the touch pad interface described in Sec-
tion III-C1. Online corrections target exactly those areas of
the state space in need of policy improvement, and directly
touching the robot during execution has the advantage of



changing the perspective of the human, who now directly
interacts with the body executing the task. Tactile feedback
furthermore may be used to bootstrap a new policy from an
existing policy, thus avoiding redundant demonstration.

B. Policies and Evaluation Metrics

The demonstrations position the learner end-effector to
grasp an object located at a particular position4 within the
robot-centric coordinate frame. The demonstrated policy is
refined, and furthermore is reused within the development
of two additional policies: positioning to grasp the object
located at different position, which requires guidance to a
new end-effector position, and positioning to grasp a different
object, which requires guidance for a new end-effector orien-
tation. Three distinct position-object combinations (Fig. 4) are
learned, and four policies developed for evaluation:
• Policy Demo: Derived from teacher demonstration of

grasping the ball object at position P0.
• Policy BallP0: Refinement of policy Demo.
• Policy BallP1: Reuse of policy Demo to grasp the ball

object at position P1.
• Policy Bottle: Reuse of policy Demo to grasp the bottle

object at position P0.

Fig. 4. Original and corrected trajectories in 3-D Cartesian space, for policies
a) BallP0, b) BallP1 and c) BottleP0, overlaid with object illustrations.

Policies are evaluated for: success as the percentage of
attempts that lift the object from the table, contact number as
the number of fingers5 in contact with the object, and precision
improvement as the ratio of the covariance envelopes for the
demonstrated vs. adapted policies. The covariance envelope
provides an indication of precision since a policy’s pose
predictions are constrained by the boundaries of this envelope.
Contact number was visually observed by the experimenters,
since the iCub fingertips do not have pressure sensors.

V. EMPIRICAL RESULTS

Both policy refinement and reuse were accomplished via
tactile correction under the TPC algorithm. Policy refinement
resulted in improved grasp success and contact number, while
reuse enabled the development of policies able to execute

4The validation task was intentionally formulated to be inflexible with
respect to object position, in order to clearly illustrate, and thus provide proof-
of-concept validation of, reuse and refinement under TPC. Simply shifting the
coordinate frame to be object-centric, instead of robot-centric, removes this
restriction and thus enables generalization with respect to object position.

5It is possible, but less stable, to pick up an object with fewer than 3 fingers
in contact (we consider only 3 of the 4 fingers, as 2 fingers of the hand are
coupled). Grasps that fail to pick up the object have a contact number of 0.

Fig. 5. Demonstrated and corrected execution trajectories for a) policy
BallP0, b) policy BallP1 and c) policy BottleP0, with covariance en-
velopes. The lines boldness of the trajectoriess varies with the global weight
function w̄(τ) (s.t. black:w̄(τ) = 1, white:w̄(τ) = 0).

undemonstrated position-object combinations. Five demonstra-
tions were provided to policy Demo, and three execution-
correction-adaptation cycles occurred for each policy devel-
oped through corrective techniques (policies BallP0, BallP1,
Bottle). Each policy was evaluated by executing from 15
random starting positions (reproduction executions).

A. Performance Improvement with Tactile Corrections

Policy refinement was seen through an improvement in
execution success and contact number (Tbl. I, policy Demo
vs. BallP0,r0..BallP0,r2, i.e. the policies resulting after each
execution-correction-adaptation cycle). Tactile refinement ad-
justed the final end-effector position, and accordingly the
weight (Fig. 5, line boldness) on corrected points was heavier
at the end of the execution, following the correction, while
the weight on demonstrated points was heavier at the start.
Refinement also improved execution precision, seen through
a decrease in regression envelope size within the Cartesian
components of the robot pose (Fig. 5a). Note however that
the precision improvement declined as a result of the vari-
ability introduced with further correction executions (Tbl. I,
BallP0,r1 vs. BallP0,r2, BallP0,r3).

TABLE I
POLICY REFINEMENT

Policy Demo BallP0,r0 BallP0,r1 BallP0,r2

Success 86.7 100 100 93.3
Contact 1.7± 1.0 2.9± 0.4 2.7± 0.5 2.7± 0.8

Precision 1 1.6 1.4 1.4



B. Tactile Feedback Enables Successful Policy Reuse

Policy reuse was seen with the successful execution of
undemonstrated behaviors BallP1 and Bottle (Tbl. II). Note
that policy Demo failed for both of these novel position-object
combinations. The development of policy BallP1 required a
shift in end-effector position, seen with a change in the regres-
sion envelope mean within the Cartesian components of the
pose (Fig. 5b). By contrast, the development of policy Bottle
required a change in end-effector orientation, seen through a
shift within the quaternion pose components (Fig. 5c).

TABLE II
POLICY REUSE

grasping Ball at P1 grasping Bottle at P0

Policy Demo BallP1 Demo Bottle
Success 0 93.3 0 100
Contact 0 2.3± 0.9 0 2.7± 0.5

Regarding the number of correction key points, or distinct
instances of tactile repositioning, two were required for the de-
velopment of policy BallP1 and three for policy Bottle. The
difference in key point number was reflected in the weights of
the corrected datapoints, which for policy Bottle increased in
strength more rapidly (Fig. 5b vs 5c, line boldness). This trend
extends to policy BallP0 (Fig. 5a), whose single correction
key point induced the slowest weight change.

C. Discussion

The empirical results confirm the successful reuse and
refinement of policies learned from demonstration. That policy
reuse is automated is a key strength of the TPC approach:
similar characteristics between the tasks are automatically
extracted for reuse, and dissimilar ones are adapted through
tactile guidance. Two features of the TPC algorithm particu-
larly enable the effective transfer of information from teacher
to learner. The first is the online nature of the feedback, which
allows the teacher to provide feedback in the exact areas of
the state space in need of attention, as they are visited by the
learner. The teacher therefore is not required to revisit those
states, or guess as to their identity. The second relates to the
issue of embodiment, which is particularly relevant for high-
DoF robots. Since the teacher indicates physical adjustments
directly on the body executing the policy, no compensation for
any differences in correspondence is required.

Many of the algorithm’s advantages relate directly to the
idea of correction key points: distinct instances during an
execution, or equivalently along an execution trajectory, at
which the policy behavior requires modification. Rather than
demonstrate a trajectory in full to provide the modified behav-
ior information, the teacher needs only to indicate a correction
at the key point. Note that the number of correction key
points increases with the dissimilarity between the behaviors
of the new and original policies. For example, to refine the
demonstrated policy required only one key point, while to
reuse the ball policy to grasp a bottle required three.

There are many promising extensions to this work. Regard-
ing the algorithm, one might consider alternative paradigms

for setting the datapoint weights, for example that weight new
data differently for refinement versus reuse. A mechanism
to select between multiple policies, developed as a result of
reuse, could extend behavior development to more complex
domains. Regarding implementation, to validate TPC on a
more sophisticated tactile sensor, that provides a richer set
of feedback signals, is one direction being actively pursued.

VI. CONCLUSIONS

We have introduced Tactile Policy Correction (TPC) as an
algorithm for the refinement and reuse of policies through
tactile feedback from a human teacher. With tactile correc-
tions, we aimed to mitigate some potential limitations in
demonstration-based learning. We have validated TPC on a
humanoid performing grasp-positioning tasks. Tactile correc-
tions were found to improve the performance of, and thus
refine, a demonstrated policy. Furthermore, tactile feedback
was shown to enable policy development bootstrapped from
the demonstrated behavior, and thus policy reuse.

ACKNOWLEDGMENT

The research leading to these results has received funding
from EC Projects IST-2004-004370 (RobotCub) and IST-
04169 (feelix-growing), and from the European Community’s
Seventh Framework Programme FP7/2007-2013 - Challenge
2 - Cognitive Systems, Interaction, Robotics - under grant
agreement no [231500]-[ROBOSKIN].

REFERENCES

[1] B. Argall, S. Chernova, B. Browning, and M. Veloso, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469–483, 2009.

[2] A. Billard, S. Callinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. New York, NY, USA: Springer, 2008, ch. 59.

[3] C. L. Nehaniv and K. Dautenhahn, “The correspondence problem,” in
Imitation in Animals and Artifacts, K. Dautenhahn and C. L. Nehaniv,
Eds. Cambridge, MA, USA: MIT Press, 2002, ch. 2.

[4] P. Abbeel and A. Y. Ng, “Exploration and apprenticeship learning in
reinforcement learning,” in Proceedings of ICML, 2005.

[5] M. Stolle and C. G. Atkeson, “Knowledge transfer using local features,”
in Proceedings of ADPRL, 2007.

[6] S. Chernova and M. Veloso, “Learning equivalent action choices from
demonstration,” in Proceedings of IROS, 2008.

[7] D. H. Grollman and O. C. Jenkins, “Dogged learning for robots,” in
Proceedings of ICRA, 2007.

[8] S. Calinon and A. Billard, “Incremental learning of gestures by imitation
in a humanoid robot,” in Proceedings of HRI, 2007.

[9] M. Nicolescu and M. Matarić, “Methods for robot task learning:
Demonstrations, generalization and practice,” in Proceedings of AAMAS,
2003.

[10] B. D. Argall, “Learning mobile robot motion control from demonstration
and corrective feedback,” Ph.D. dissertation, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, March 2009.

[11] D. C. Bentivegna, “Learning from observation using primitives,” Ph.D.
dissertation, College of Computing, Georgia Institute of Technology,
Atlanta, GA, July 2004.

[12] T. Minato, Y. Yoshikawa, T. Noda, S. Ikemoto, H. Ishiguro, and
M. Asada, “CB2: A child robot with biomimetic body for cognitive
developmental robotics,” in Proceedings of IROS, 2007.

[13] K. Wada and T. Shibata, “Social effects of robot therapy in a care
house - change of social network of the residents for two months -,”
in Proceedings of ICRA, 2007.

[14] P. Baerlocher and R. Boulic, “An inverse kinematics architecture enforc-
ing an arbitrary number of strict priority levels,” International Journal
of Computer Graphics, vol. 20, 2004.


