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a b s t r a c t

Task demonstration is an effective technique for developing robot motion control policies. As tasks
becomemore complex, however, demonstration can becomemore difficult. In this work, we introduce an
algorithm that uses corrective human feedback to build a policy able to performanovel task, by combining
simpler policies learned from demonstration. While some demonstration-based learning approaches
do adapt policies with execution experience, few provide corrections within low-level motion control
domains or to enable the linking of multiple of demonstrated policies. Here we introduce Feedback
for Policy Scaffolding (FPS) as an algorithm that first evaluates and corrects the execution of motion
primitive policies learned from demonstration. The algorithm next corrects and enables the execution
of a more complex task constructed from these primitives. Key advantages of building a policy from
demonstrated primitives is the potential for primitive policy reuse within multiple complex policies and
the faster development of these policies, in addition to the development of complex policies for which full
demonstration is difficult. Policy reuse under our algorithm is assisted by human teacher feedback, which
also contributes to the improvement of policy performance. Within a simulated robot motion control
domain we validate that, using FPS, a policy for a novel task is successfully built from motion primitives
learned from demonstration. We show feedback to both aid and enable policy development, improving
policy performance in success, speed and efficiency.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Appropriate and effective motion behaviors are fundamental
to the successful operation of mobile robots. The development of
robust policies, or mappings from world states to robot actions, is
complicated however by noisy observations and action execution
uncertainty. Furthermore, policy development is often specific to
a particular robot platform and application, and policy reuse for
other platforms or application tasks is rare.

A large field of effective development approaches have the
robot learn a policy, from training data or execution experience.
One advantage to policy learning is that the learning algorithm
itself may be reused for the development of other policies, though
a given policy typically is still platform or application specific.
Learning from Demonstration (LfD) is a technique that derives a
policy from example executions of a target behavior by a teacher.
This approach has seen success in a variety of robotics applications,
and has the attractive characteristics of being an intuitive means
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for human teacher to robot learner knowledge transfer, as well as
an accessible policy development technique for those who are not
robotics-experts.

As tasks become more complex, however, demonstration can
becomemore difficult. One practical extension of the LfD approach
is to incorporate simpler behaviors learned from demonstration
into larger task behaviors, especially if such tasks are too complex
to demonstrate in full. Though scale-up techniques of this nature
have been explored within other policy development approaches,
the topic remains largely unaddressed within the LfD paradigm.
Moreover, the ability to reuse and incorporate existing policies
is a practical feature for any policy development approach,
considering the challenge of designing robust control policies. Here
we introduce Feedback for Policy Scaffolding (FPS) as an algorithm
that builds a complex policy from component behaviors learned
from demonstration.

One crucial issue when building a policy from simpler
primitives is how to effectively incorporate the existing behaviors
into the new policy. Whether the behaviors are to be composed
or sequenced, behaviors must be linked and how this linking
occurs is a key design decision. The FPS algorithm takes the
approach of driving this process with human feedback. Multiple
types of feedback are provided within the algorithm, including
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binary flags for good performance and policy corrections. Feedback
provided under our formulation does not require that the teacher
revisit those states in need of attention, which is particularly
attractive for complex tasks that may be inconvenient or infeasible
to demonstrate completely. By completely, wemean the expression
or attainment of desired characteristics of the policy behavior, for
example achieving a final task goal, executing all components of
a sequence of motions or performing a task with a high level of
accuracy.

The FPS algorithm operates in two phases. In the first phase,
individual policies are developed for multiple motion primitives,
from demonstrations of the target behaviors by a task expert.
Each policy furthermore is refined using human teacher feedback.
During the second phase, a single more complex policy is derived
from these primitives, and executions with the complex policy
on a novel task are evaluated. By providing corrections on this
execution, the FPS algorithm develops a policy able to execute
the more complex, undemonstrated task. Policy development
is achieved without ever requiring the complete demonstration
of the novel task: only the primitive behaviors have been
demonstrated in full.

We validate FPS within a simulated motion control domain,
where a robot learns to reactively drive on a racetrack. A policy
built from demonstrated motion primitives and human feedback
is developed and able to successfully execute a more complex, un-
demonstrated task. Feedback is shown to improve policy perfor-
mance within both algorithm phases: when offered in response
to individual motion primitive executions, as well as executions
with the complex task policy. Finally, comparisons to an exclu-
sively demonstration-based approach show the FPS algorithm to
be more concise and effective in developing a policy able to exe-
cute the complex task.

The following section provides background and related liter-
ature that motivates and supports this work. The FPS algorithm
then is introduced Section 3, providing details of behavior build-
ing through teacher feedback and algorithm execution. Sections 4
and 5 present an empirical implementation of FPS, including de-
scriptions of the task and domain, and experimental results from
both feedback phases. The conclusions of this work are presented
in Section 6, along with directions for future research.

2. Background and related work

We begin this section with a presentation of related work
on policy development and improvement within demonstration
learning, followed by motivations for building policies from
behavior primitives and teacher feedback.

2.1. Learning from Demonstration

Learning from Demonstration (LfD) is a policy development
technique in which teacher executions of a desired behavior are
recorded and a policy is subsequently derived from the resulting
dataset [1,2]. We formally define the world to consist of states S ∈
Rℓ and actions A ∈ Rn. As we do not assume that state is fully ob-
servable, the learner has access to observed state Z through amap-
ping S → Z ∈ Rm. Typically the teacher provides multiple demon-
strations, and the resulting sequences of observation–action pairs
comprise a set D of behavior examples. We represent a teacher
demonstration dj ∈ D as tj pairs of observations and actions, such
that dj = {(zij, a

i
j)}

tj
i=0, z

i
j ∈ Z, aij ∈ A. The robot generalizes from

the datasetD to derive a policyπ : Z → A, thus learning amapping
from the set of world observations Z to robot actions A.

When recording and executing demonstrations the issue of
correspondence is key, where teacher demonstrations do not
directly map to the robot learner due to differences in sensing
or motion [3]. Demonstration techniques that are best able to
minimize the introduction of correspondence issues into an LfD
system have the passive learner record from its own sensors
while under the control of the teacher. One such technique is
teleoperation, where the human remotely operates the learner
platform during the demonstration execution. Demonstrations
recorded through human teleoperation are used in a variety
of applications, including flying a robotic helicopter [4], object
grasping [5,6], as well as obstacle avoidance and navigation [7].
Teleoperation also is applied to a wide variety of simulated
domains, for example robot soccer [8].

Policy derivation amounts to building a predictor that will
reproduce the actions ai ∈ D from the observations zi ∈ D.
Many approaches exist within LfD to derive a policy from the
demonstration data [1], the most popular of which either directly
approximate the underlying function mapping observations to
actions, or approximate a state transition model and then derive
a policy using techniques such as Reinforcement Learning [9]. Our
work derives a policy under the first approach, with function
approximation being performed via regression techniques, since
the prediction space of our function approximation – that is, the
action space of our target application of low-level motion control
– is continuous. A wealth of regression approaches exist [10], and
we highlight that any are compatible with the FPS algorithm.

To have a robot learn from its execution performance, or
experience, is a valuable policy improvement tool, and there are
LfD approaches that incorporate learning from experience into
their algorithms. For example, execution experience is used to
update state transition models [11] and reward-determined state
values [12]. Other approaches provide more demonstration data,
driven by learner requests for more data [13,14] as well as more
teacher-initiated demonstrations [15].

Our approach similarly provides new example state-action
mappings, but the source for these mappings is not more teacher
demonstration. There are some LfD limitations that more teacher
demonstrations cannot address, for instance correspondence
discrepancies between the teacher and learner. Moreover, the
need to visit states in order to provide execution information is a
drawback if certain world states are difficult to reach or dangerous
to visit, for example that lead to a rover falling over a cliff. We
employ a technique for policy improvement that synthesizes new
example state-actionmappings from teacher feedback and learner
executions, without requiring state revisitation by the teacher to
provide appropriate behavior information [16]. In particular, the
behavior (specifically, an observation–action pair) exhibited by
the learner during policy execution is corrected, and the feedback-
corrected pair is treated as new training data (full details provided
in Section 3.1).

Other LfD approaches that provide policy corrections do
so within action spaces that are discrete and with actions of
significant time duration; that is, not low-level motion control
domains, where actions take on continuous values and are rapidly
sampled. For example, the correct action from a discrete set
is provided by a human teacher to update a high-level action
classifier [17], and to update the structure of a hierarchical Neural
Network of behaviors [18].

2.2. Behavior primitives and teacher feedback

Our approach builds a complex policy from the demonstration
of simpler behavior primitives and teacher feedback, rather than
demonstrates the complex task in full. One motivation for our
approach is that the demonstrated motion primitives may provide
a base for multiple complex behaviors. Through the reuse of these
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primitives, the effort required to develop policies for the complex
behaviors reduces.

A secondmotivation is that as behaviors becomemore complex,
demonstrating the complete behavior can become more difficult.
In this case, the teacher may be able to demonstrate behavior
primitives for a task but not the task in full, or provide higher
quality demonstrations for subsets of the task behavior. Under
our algorithm, feedback may be used to improve, possibly even
to enable, the policy at transition points that link demonstrated
behavior primitives. In doing so, it enables expression of the full
task behavior, without requiring its full demonstration.

A final motivation is that reaching all states encountered
during task execution can become increasingly difficult as domains
become more complex. States may be infeasible, inconvenient
or undesirable to reach for a variety of reasons that only
compound as domain and task complexity increases. A drawback
to demonstration is the need to visit such states in order to
provide task execution information in that area. One of the notable
benefits of providing feedback under the framework we employ
(Section 3.1) is that states do not need to be revisited to provide
execution feedback.

Within LfD, hand-coded behavior primitives are used to build
larger tasks learned from demonstration [18], demonstrated tasks
are decomposed into a library of primitives [12,19] and behavior
primitives are demonstrated and then explicitly combined into
a new policy by a human [20]. Closest to our work is that
of [19], where a robotic marble maze and humanoid playing
air hockey reuse learned primitives, and furthermore refine the
policy with execution experience. In this work, the complex task
is demonstrated in full and the behavior primitives are extracted
using hand-written rules. Policy improvement is accomplished
through an automated binary reward signal for task failure, which
is used to adjust regression weights on the policy prediction. By
contrast, our approach demonstrates the primitives individually,
rather than the full task. Policy improvement is accomplished by
generating new behavior examples, from human feedback that
corrects practice executions of both the primitives and full task.

3. Algorithm: Feedback for Policy Scaffolding

This section presents our Feedback for Policy Scaffolding (FPS)
algorithm [21]. The section begins with an overview of our
techniques for providing teacher feedback. Following this, the FPS
algorithm is presented in detail.

3.1. Teacher feedback and policy derivation

Here we outline1 the framework through which we provide
feedback (F3MRP), and the form taken by that feedback (advice-
operators), as well as the employed policy derivation technique.

3.1.1. Teacher feedback
Our approach provides teacher feedback through the frame-

work Focused Feedback for Mobile Robot Policies (F3MRP). The
F3MRP framework operates at the stage of low-level motion con-
trol, where actions are continuous-valued and sampled at high
frequency, and is intended for mobile robot applications in par-
ticular.2 A visual presentation of the 2-D ground path of the exe-
cution serves as an interface through which the teacher indicates

1 For full details of F3MRP and advice-operators, we refer the reader to [16].
2 For safety reasons, motion control is typically sampled at a rate of tens or

hundreds of cycles per second on mobile robots (though of course this depends
heavily on the speed capabilities of the mobile platform); our system for example
runs at 30 Hz.
areas of poor policy performance, by selecting segments of an ex-
ecution path that are to receive feedback. The path displayed at
each timestep consists of a point corresponding to the location of
the robot on the ground, and a vector to indicate robot heading.
The path sequence furthermore is played back in real-time, pro-
viding an indication of execution speed. This interface simplifies
the challenge of providing feedback to policies sampled at a high
frequency. Visual indications of data support for the policy predic-
tions made during the execution furthermore assist the teacher in
the selection of execution segments.

Execution corrections are offered through advice-operators,
which function by performing numerical computations on the
observations or actions of executed data points; an operator f :
(s, a) → (s, a) ∈ Rn×m thus maps an observation–action
pair to the augmented space of observations and actions. Advice-
operators are commonly defined between the student and teacher,
and provide continuous-valued corrections on a learner execution
without requiring the teacher to provide the exact value for the
corrections. Instead, the teacher needs only to select from a finite
list of operators, and indicate (through the F3MRP framework) the
portion of the execution to which the operator should be applied.
The feedback-modified points are treated as new training data
for the policy. In addition to advice-operators, the FPS algorithm
also provides feedback in the form of positive binary credit, which
results in learner-executed datapoints being added to the dataset
unmodified, and thus may equivalently be viewed as an identity
function advice-operator.

In summary, the FPS algorithm requires a mechanism by which
to provide feedback on learner executions. The primary feedback
type employed offers policy corrections, that are provided
through advice-operators. The advice-operator techniquemodifies
points produced during a learner execution, and thus requires
the selection of individual execution points. Point selection is
accomplished through the F3MRP framework, which provides an
interface through which points may be selected, as well as an
indication of data support for a policy prediction.

3.1.2. Policy derivation
Behavior primitive policies are initially built from teacher

demonstrations of a target behavior. Using regression techniques,
a policy mapping world observations to robot actions is derived.
The specific regression technique used in our empirical implemen-
tation is a form of Locally Weighted Learning [22], where action
at
∈ Rn is predicted through an averaging of datapoints in D,

weighted by their kernelized distance to z t ∈ Rm. More specif-
ically, the actions of the datapoints within D are weighted by a
kernelized distanceφ(z t , :) between their associated datapoint ob-
servations and the current observation z t . Thus,

at
=

−
(zi,ai)∈D

φ(z t , zi) · ai (1)

φ(z t , zi) =
e(zi−z

t )TΣ−1(zi−zt )∑
zj∈D

e(zj−zt )TΣ−1(zj−zt )
,

Σ−1 =


σ 2
0

σ 2
1

. . .

σ 2
m−1

 (2)

where Σ−1 is a constant diagonal matrix that scales each
observation dimension (tuned through 10-fold Cross Validation
to optimize the least-squared-error on action prediction). In our
empirical implementation the distance computation is Euclidean
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Fig. 1. Policy demonstration and adaptation under the FPS algorithm.
and the kernel Gaussian; the parameterΣ−1 furthermore embeds
the bandwidth of the Gaussian kernel.3

3.2. Algorithm execution

Execution of the FPS algorithm occurs in two phases, presented
respectively in Algorithms 1 and 2. Given a set Ψ of N primitive
behaviors, the first phase develops a policy πψj for each primitive
behavior ψj ∈ Ψ , j = 1 . . .N , producing a set of policies Π .
The second phase develops a policy for a more complex behavior,
building on the primitive policies inΠ . A schematic of the overall
algorithm is provided in Fig. 1.

3.2.1. Phase 1: primitive policy development
The development of each primitive policy begins with teacher

demonstration. Example observation–action pairs recorded during
demonstrations of primitive behaviorψj produce the initial dataset
Dψj ∈ D and policy πψj ∈ Π (Algorithm 1, line 4). This initial
policy is then refined during practice runs consisting of learner
executions and teacher feedback.

Algorithm 1 Feedback for Policy Scaffolding: Phase 1
1: Given D
2: initialize Π ← { }
3: for all behavior primitives ψj ∈ Ψ do
4: initialize πψj ← policyDerivation


Dψj


, Dψj ∈ D

5: while practicing do
6: initialize ξd ← {}, ξp ← {}
7: repeat
8: predict { at , τ t } ← πψj


z t


9: execute at

10: record ξd ← ξd ∪

z t , at


, ξp ← ξp ∪


xt , yt , θ t , τ t


11: until done
12: advise {z, ξ̂p} ← teacherFeedback


F3MRP


ξp

 
13: associate ξ̂d ← F3MRP( ξd, ξ̂p )
14: update Dψj ← applyFeedback( Dψj ,z, ξ̂d )
15: rederive πψj ← policyDerivation( Dψj )

16: end while
17: addΠ ← Π ∪ πψj
18: end for
19: return Π

3 While we acknowledge that a more sophisticated regression technique could
perhaps improve policy performance, LWL regression has the advantage of
transparency and clarity, which was important for this initial validation of the FPS
algorithm given that our feedback techniques synthesize data. We furthermore
emphasize that the focus of this work is on how to use teacher feedback to produce
new data, that refines policy performance and builds new behavior, rather than on
how to better utilize existing demonstration data.
During the learner execution portion (lines 7–11) of a practice
run, the learner executes the task and records information from
the execution into data traces ξd and ξp. At each timestep the
learner observes the world, predicting action at with support τ t
(discussed in Section 3.3.2) according to policy πψj (line 8). Action
at is executed and recorded, along with observation z t , into the
prediction trace ξd ∈ Rm×n (line 10). The information recorded in
the trace ξd will be used for the policy update, when synthesizing
data from feedback. The global position xt , yt and heading θ t of the
mobile robot, and data support τ t of the regression prediction, are
recorded into the position trace ξp ∈ R4. Information recorded into
ξp will be used by the F3MRP framework, when visually presenting
the path taken by the robot on the ground during execution.

During the teacher feedback and policy update portion of
a practice run (lines 12–15), the teacher provides feedback in
response to the learner execution performance. Using the visual
presentation of ξp provided by the F3MRP interface, the teacher
indicates a segment ξ̂p ⊆ ξp of the learner execution, along
with feedback z for that segment (line 12). F3MRP associates the
segment ξ̂p of the position tracewith the appropriate segment ξ̂d ⊆
ξd of the prediction trace (line 13). Feedbackzmay take two forms.
The first is a binary credit, to indicate areas of good performance,
and the second is an advice-operator, to correct the execution
within this segment. Both feedback forms produce new data. In
the case of binary credit, the selected segment ξ̂d is added to Dψj
as executed, without any modifications. In the case of an advice-
operator f , each point in ξ̂d is mapped to a new observation–action
pair, such that f : (zi, ai)→ (ẑi, âi),∀(z i, ai) ∈ ξ̂d, producing a set
d̂ of feedback-modified data pairs. These data are added to the set
Dψj ← Dψj ∪ d̂, constituting the dataset update.

3.2.2. Phase 2: policy scaffolding
The development of the complex policy builds on the primitive

policies developed during Phase 1 of the FPS algorithm. Features
that distinguish Phase 2 include (i) that development does not
begin with teacher demonstration of the (complex) task, (ii) the
automated selection between the action predictions of multiple
policies and (iii) the automated selection of a dataset to receive
any new data synthesized from teacher feedback on the learner
executions.

Phase 2 begins with the initialization of more demonstration
datasets. Specifically, N empty datasets are generated, each
associated with one primitive policy. Notationally, let new dataset
Dψi+N be associated with existing primitive dataset Dψi , resulting
in a total of 2N datasets Dψj ∈ D, j = 1 . . . 2N . Colloquially,
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Algorithm 2 Feedback for Policy Scaffolding: Phase 2
1: Given Π,D
2: initialize Dψj=(n+1)...2n ← { }

3: while practicing do
4: initialize ξd ← {}, ξp ← {}, ξs ← {}
5: repeat
6: select πψj ← policySelection


z t


, πψj ∈ Π

7: predict { at , τ t } ← πψj


z t


8: execute at

9: record ξd ← ξd ∪

z t , at


, ξp ← ξp ∪


xt , yt , θ t , τ t


, ξs ← ξs ∪

τ t , ψ t
= ψj


10: until done
11: advise { z, ξ̂p } ← teacherFeedback


F3MRP


ξp

 
12: associate { ξ̂d, ξ̂s } ← F3MRP( ξd, ξs, ξ̂p )
13: for all


z i, ai


∈ ξ̂d,


τ i, ψ i


∈ ξ̂s do

14: select Dψj ← datasetSelection

τ t , ψ t


, Dψj ∈ D

15: update Dψj ← applyFeedback

Dψj ,z, (z

i, ai)


16: rederive πψj ← policyDerivation(Dψj ), πψj ∈ Π

17: end for
18: end while
19: return Π

call dataset Dψi+N the feedback dataset associated with primitive
dataset Dψi . Some of the new data synthesized during Phase 2
will be added to these feedback datasets; this process is described
furtherwithin the details of feedback incorporation (Section 3.3.2).
Both the primitive policies and the policies derived from the
feedback datasets are considered for selection during execution of
the more complex policy.

Refinement of the complex policy proceeds with learner
execution (Algorithm 2, lines 5–10), teacher feedback (line 11) and
policy update (lines 13–17), as in Phase 1 but with the following
distinguishing characteristics.

• The learner now executeswith themore complex policy, whose
operation proceeds in two steps:
1. Select between all contributing policies πψj ∈ Π (line 6).
2. Predict action at according to πψj(z

t) (line 7).
The details of automated policy selection are provided in
Section 3.3.1.
• After the application of teacher feedback, datasets are individ-

ually selected to receive each feedback-modified datapoint. For
each recorded point (z t , at) in the indicated segment ξ̂d ⊆ ξd,
dataset selection is determined by the support τ t and tag ψ t

(line 14).

The tagψ t indicateswhich policywas selected for execution, and is
set toψj. At each step of the learner execution, both data support τ t
and tagψ t are recorded into a third data trace ξs (line 9). The details
of automated dataset selection are provided in Section 3.3.2.

3.3. Scaffolding multiple policies

Two key factors when building a policy under FPS are how to
select between the primitive behaviors, and how to incorporate
teacher feedback into the built-up policy. The design of each of
these factors within the FPS algorithm are discussed here, with a
later section (6.3) detailing a few of the iterative stages from their
development.

3.3.1. Selecting primitive policies
Primitive selection is treated as a classification problem, and

we highlight that the algorithm does not place any restrictions
on the type of classification technique that may be employed.
Classification in our empirical implementation computes for each
primitiveψj a kernelized distance φ(z t , zi) between query point z t

and each point zi ∈ Dψj (as in Eq. (2), but with Σ−1 in this case
tuned to optimize classification error). A weight for policy ψj ∈ Ψ
is produced by summing the k largest kernel values φ(z t , zi), zi ∈
Dψj ; equivalent to selecting the k nearest points in Dψj to query
z t (k = 5). The policy with the highest weight is then selected for
execution.

Primitive selection thus assumes primitives to occupy nomi-
nally distinct areas of the observation space, and relies on a for-
mulation for the observation features that captures aspects of the
world that are unique to the execution of each primitive policy.
We highlight however that similar assumptions are frequently tied
to policy selection paradigms, and further argue that the assump-
tions are reasonable for many application domains. In particular,
policy selection frequently is triggered by specific sensor readings
or particular world states (e.g. [18,19]), and to incorporate the sen-
sor reading (or state observation) into the feature computation
effectively isolates policies in different areas of the observation
space according to that feature dimension. For example, two prim-
itives developed for our validation domain are turn left and turn
right, which should be triggered by track curvature. The observa-
tion features accordingly incorporate a notion of track curvature,
and demonstrations in left-versus right-curving areas of the track
therefore do occupy distinct areas of the observation space.

3.3.2. Incorporating teacher feedback
From a technical standpoint, the question of how to incorporate

teacher feedback into the policy boils down to into which
dataset the new feedback-modified data should be added. Unlike
during the refinement of the primitive policies – where a
single dataset is associated with a given policy, and accordingly
receives any new data produced as a result of its execution
– when providing feedback on the scaffolded policy, multiple
primitive policies and their associated datasets contribute to
the behavior execution. Furthermore, complete behavior for
the scaffolded policy was never demonstrated, and so no
corresponding ‘‘scaffolded-behavior dataset’’ exists. A choice must
bemade, therefore, that determines into which underlying dataset
a synthesized datapoint is added.

Before providing the details of this choice, let us establish two
ideas. First: we assume that a primitive whose behavior does not
match the intended behavior of the more complex policy is not
being incorporated into the complex policy in the first place. Thus,
in state-space areas covered by the dataset of any primitive under
consideration, the behavior of the primitive matches the intended
behavior of the more complex policy. Second: recall that every
synthesized datapoint in d̂ derives from an execution point, whose
action was predicted by a single primitive policy (Algorithm 2,
line 6). Two factors determine into which dataset a new datapoint
is added: the policy (tagged by ψ t

= ψj ∈ Ψ ) that predicted
the execution point, and the measure of data support τ t for that
prediction.
• If the policy that made the prediction is a primitive policy

(j ∈ 1 . . .N), the point is added to its dataset if the prediction
had strong data support. Otherwise, the point is added to the
feedbackdataset (as defined in Section 3.2.2) associatedwith the
primitive.
• If the policy that made the prediction is a feedback policy

(j ∈ (N + 1) . . . 2N), the point is always added to its dataset,
regardless of dataset support.

Prediction support is determined in the following manner. For
a given dataset Dψj , the 1-Nearest Neighbor Euclidean distances
between all points in the set are modelled as a Poisson4

distribution, parameterized by λ with mean µ = λ and standard

4 A Poisson formulation was chosen since the distance calculations never fall
below, and often cluster near, zero; behavior which is better modelled by a Poisson
rather than Gaussian distribution.
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deviation σ =
√
λ. Frequency counts are computed for k bins

on the distance data when computing λ (k = 50). A threshold
τψj = µψj + κσψj on strong prediction support is defined for each
policy πψj ∈ Π, j = 1 . . . 2N , where κ is set by hand based on
empirical evidence (κ = 5). Thus a prediction made by policy
πψj for query point z t with distance ℓzt ,ψj to the nearest point in
Dψj is classified as strongly supported if ℓzt ,ψj < τψj and weakly
supported otherwise.5 The motivation behind this approach is to
avoid adding data to a primitive dataset that conflicts with the
given primitive behavior. Only points that were close enough to a
primitive dataset to be strongly supported during action prediction
are presumed to exhibit behavior that is similar to the primitive
policy.

4. Experimental setup

This section presents the experimental details of the application
of the FPS algorithm to a simulatedmotion control domain, as well
as a description of the various policies developed for empirical
evaluation. The ability of the algorithm to select primitive policies
whose behavior is appropriate for a given area of the state space
also is confirmed.

4.1. Racetrack driving task and domain

Thedomain chosen to validate the FPS policy building algorithm
is a simulated differential drive robot within a racetrack driving
environment. The task consists of the robot driving along the
racetrack, with two failure criteria: the robot either stops moving
or crosses a track boundary. The dimensions and parameters set
in this simulated domain are based on real world execution with
a Segway RMP robot [23]. Robot motion is propagated by simple
differential drive simulation of the robot position

xt = xt−1 + (νt + ϵtν) · cos(θ
t) · dt

yt = yt−1 + (νt + ϵtν) · sin(θ
t) · dt (3)

θ t = θ t−1 + (ωt
+ ϵtω) · dt

where (xt , yt) and θ t are respectively the robot position and
orientation within the global frame, and dt the length scale
between timesteps (dt = 0.03̄3 s). Robot rotational and
translational speeds νt , ωt are subject to Gaussian noise, ϵtν ∼
N (0, 0.01) and ϵtω ∼ N (0, 0.01). Dynamic limitations on the
robot constrain its speeds


ν ∈ [0.0, 3.5] m

s , ω ∈ [−5.0, 5.0]
rad
s


and accelerations


ν̇ ∈ [−10.0, 10.0] m

s2
, ω̇ ∈ [−10.0, 10.0] rad

s2


.

The track borders are represented as sets of points along two
parallel curved lineswithin a global frame. To simplify interactions
between the robot and the track boundaries, the robot is
represented as a point and the track width (1.5 m) is shrunk by
moving each border towards the centerline by an amount equal to
the radius of the robot (0.3 m).

The robot observes the world through a single monocular
camera andwheel encoders, and state observations are sampled at
30 Hz. Data provided from both sensing modalities are assumed to
be preprocessed. Specifically, processed data from the simulated
wheel encoders provides the position estimates of Eq. (3).
Processed data from the simulated camera provides a set of points

5 A similar measure is used by F3MRP when providing a visual indication of data
support. Specifically, for each policy πψj ∈ Π multiple thresholds τ κψj

= µψj +κσψj

are defined, by setting different values for κ (where µψj and σψj again derive from
the Poisson model of 1-NN distances). A different color is associated with each
threshold, and used in the graphical depiction of the 2-D execution path on the
ground.
Table 1
Advice-operators for the racetrack driving task.

Operator Parameter

0 Modify speed, static (rot) (cw ccw)
1 Modify speed, static (tr) (dec inc)
2 Modify speed, fractional (rot) (dec inc zero)
3 Modify speed, fractional (tr) (dec inc zero)
4 Modify speed, incremental fractional (rot) (dec inc)
5 Modify speed, incremental fractional (tr) (dec inc)

6 Adjust both, fractional (dec inc)
7 Adjust turn, fractional (loosen tighten)
8 Adjust turn, incremental fractional (loosen tighten)

Key: (rot/tr) = (rot/transl)ational, (c)cw = (counter)clockwise, (dec/inc) =
(de/in)crease.

Table 2
Description of observation and action dimensions for the racetrack driving task.

Dim Observation Description

0 νt Current translational speed
1 ωt Current rotational speed

2 a Coefficients for polynomial approximation of
track edge (third-order approximation, i.e.
y = ax3 + bx2 + cx+ d)

3 b
4 c
5 d

Dim Action Description

0 ν̂t Predicted translational speed
1 ω̂t Predicted rotational speed

corresponding to noisy (∼N (0, 0.01)) observations of the track
border within the ground plane; that is, a simulation that projects
image pixels identified as track borders into the ground plane
(where the classification of a pixel as a track border point is
assumed to be given). The simulated camera is forward facing and
observes track borders within its field of view (130°, 5 m).

The robot is controlled by setting target translational and
rotational speeds. Demonstrations are performed via teleopera-
tion by a human,6 who controls the robot motion by decreas-
ing/increasing its translational and rotational speeds. The motion
control advice-operators for this task were developed using the
operator-scaffolding approach of Argall [16], and are presented in
Table 1. Note that, according to the terminology of this approach,
operators 0–5 are the baseline operators for each robot action (ro-
tational and translational speed), and operators 6–8 were built
through the operator-scaffolding technique.7

At each execution timestep, the robot computes a local track
representation by fitting a third-order polynomial to track border
points visually observed in the current and recent-past timesteps.
Observation features and action dimensions are detailed in Table 2.

Lastly, we note that the aim of the developed policy is to
reactively drive on a racetrack. The robot has no a priori map of
the track, nor does it attempt to build a global map during the
execution. A local map of sorts is estimated online, through the
polynomial approximation of the track that is computed from the
simulated sensor data at each timestep.

4.2. Policy development and evaluation

Here we describe the policies that result from the various
steps taken during policy development under FPS, as well as the
evaluationmetrics that will be used in the performance analysis of
Section 4.

6 The human operator, and feedback provider, in these experiments was one of
the authors, and not a novice.
7 We refer the reader to [16] for full details of this advice-operator development

(operator-scaffolding) approach.
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4.2.1. Development
The demonstrated motion primitives {ψj}

3
j=1 for this domain

are: turn right, go straight, turn left. Demonstrations are performed
via human teleoperation, by decreasing or increasing the target
translational and rotational speeds by static amounts as the
robot moves along the racetrack. Position updates are noisy, and
computed according to Eq. (3). The following steps are takenduring
policy development:
1. Demonstrate the motion primitives, and derive initial policies.

Teacher demonstration of each primitive is performedmultiple
(3) times on an appropriate track subset (Fig. 2, left). From each
dataset a policy is derived, producing a set of policies PDI .

2. Provide feedback on the motion primitive policies’ performance.
Learner execution with each policy in PDI on its respective
track subset is observed by the teacher, who provides feedback,
and the resulting feedback-generated data is added to the
executing policy’s dataset. This observation–feedback–update
cycle constitutes a single practice run, continues to the
satisfaction of the teacher and results in final feedback versions
of the primitive policies, referred to collectively as the set PF F .

3. Derive an initial scaffolded policy from the resultant primitive
policies. An initial single scaffolded policy SF I , that selects
between the primitive policies in PF F , is built.

4. Provide feedback on the scaffolded policy’s performance. Learner
executions with SF I on the full track are observed by the
teacher, and feedback-generated data is added to either the
executing policy’s dataset or its associated feedback dataset (as
described in Section 3.3.2). The observation–feedback–update
cycle continues to the satisfaction of the teacher, and results in
the final feedback-scaffolded policy SF F .

For comparative purposes, we also evaluate the approach of
providingmore demonstrations in response to policy performance.
The approach closely follows the policy development steps
just outlined, but the teacher provides more teleoperation
demonstrations instead of feedback. The result is a set of policies
developed according to an observation–demonstration–update
paradigm, specifically: the set PDF of final more-demonstration
versions of the primitive policies, the baseline policy SDI scaffolded
from them, and the final scaffolded more-demonstration policy
SDF .

4.2.2. Evaluation
Each of the developed policies are evaluated on racetrack

executions. In particular,
• Each of the primitive policies (contained in sets PDI , PF F , PDF )

is evaluated on the track subset appropriate to their respective
primitive behavior (Fig. 2, left).
• Each of the scaffolded policies (SF I , SF F , SDI , SDF ) is evaluated

on the full track (Fig. 2, right).

Executions begin from a random initial (forward facing) heading
and position along the track start line (or beginning of the
appropriate track subset, for the primitive policies). Executions
proceed along the track until the robot runs off the track, stops
prematurely or reaches the finish line. Policy performance is
measured according to the following metrics:
• Completion ismeasuredby the percentageof the track subset (for

primitive policy executions) or full track (for scaffolded policy
executions) driven by the robot before the execution ends.
• Speed is measured by the average translational speed during an

execution.
• Efficiency is measured by execution time, which is governed

jointly by speed and the execution ground path. Thismeasure is
computed exclusively for executionswith 100% completion; for
incomplete executions, that by definition aborted early, time is
not a useful measure.
Fig. 2. Primitive subset regions (left) of the full racetrack (right).

4.3. Appropriate behavior selection

The FPS algorithm selects between behavior primitives based
solely on the distribution of their data within the observation
space; the demonstration teacher does not provide any additional
information about when the behavior of a given primitive
is appropriate for execution within the complex task. Before
presenting performance results (Section 5), here we show that
the FPS selection paradigm does in fact choose behavior that is
appropriate for the various portions of the complex task execution.

4.3.1. Overview
Fig. 3 shows examples of primitive policy selection, during full

track executions with the final FPS policy SF F . Five example execu-
tions are shown as panels A–E. Across a panel, a single execution
trace is displayed in triplicate, with each plot corresponding to the
selection of a different policy primitive. Within a single plot, the
full execution trace is displayed (cyan line) and those points for
which the primitive policy (of the given column) was selected are
reinforced as blue circles, while those for which the primitive be-
havior’s associated feedback policy was selected are reinforced as
red circles. Each execution begins at the track start line (green line,
lower right corner) and ends at either the finish line (magenta line,
upper left corner) or the point atwhich the robot drove off the track
(e.g. panel C).

A macro-level analysis across each panel confirms the correct
selection of primitive policies overall; namely that in left-turn
areas of the track the left behavior was selected, in straight areas
the straight behavior was selected and in right-turn areas the right
behavior was selected.

4.3.2. Discussion
Upon closer inspection, interesting differences between policy

selections are discernible. For example, in the right-turn track
areas, across all panels the right-feedback policy is seldom selected
(red vs. blue circles, third column); by contrast the straight-
feedback and left-feedback policies are frequently selected in their
respective track areas (red vs. blue circles, first and second
columns). There are three possible algorithmic explanations for
this low selection frequency. One: Predictions made by the
right policy never received teacher feedback. Two: The right
policy predictions did receive teacher feedback, but were rarely
predicting in areas of the state space outside the support
threshold (τξj=right ) for the right policy. Both of these reasons
would result in the right-feedback dataset receiving few datapoints
and consequently having very limited data support. Three: The
behavior of the complex task policy developed in such a way
that it no longer visited the state-space areas that populate the
right-feedback dataset. In the particular case of these experiments,
the second reason accounts for the low selection frequency. More
specifically, the support threshold for policy right is relatively
large, and so the policy is rarely making predictions outside of
this threshold. Note that the magnitude of the support threshold
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Fig. 3. Example complex driving task executions (rows), showing primitive behavior selection (columns); see text for details.
is determined by the distribution of datapoints within the set, and
thus by the teacher’s behaviorwhen demonstrating (Section 3.3.2).

Other selection differences may be observed between panel
executions. For example, between panels A and B, note the
differences between selection of the straight primitive policy at
the topmost track segment. The execution in panel A selects the
straight-feedback policy almost exclusively (red circles), while the
execution in panel B by comparison prefers the straight policy
(blue circles). Panel A’s execution runs close to the right-hand
border, while B’s runs close to the left-hand border, indicating
that these are state-space areas supported respectively by the
straight-feedback and straight datasets (further suggesting that
the demonstration teacher tended to run near the right-hand
track border, and consequently did not visit the area of the state
space occupied by the left-hand border). Another example is
panel C, which shows an execution that runs off the track before
completion. Specifically, it runs off the track after a left turn.
Comparisons between panel C’s selection of behavior left at that
turn and the selection in all other panels shows that the duration
of the selection of the left policy (first column) is shorter in panel
C, suggesting that the robot transitioned into its selection of the
straight behavior too early, before completing the left turn. Not
all selection transitions are this delicate however; for example
compare the exit strategies of panels D and E on the final track turn.
Panel D continues to select the right policy until reaching the finish
line, while panel E transitions to select the straight-feedback policy,
yet both exit the turn and complete the track successfully.

We draw two general conclusions from this qualitative analysis.
The first is that our primitive selection paradigm is performing
sensibly, if not perfectly (e.g. panel C). The second is that the
effects of primitive policy selection are complex, and a policy
may be alternately sensitive or insensitive to primitive selection
at various points during task execution. We therefore highlight
the investigation of alternate approaches to primitive behavior
selection as an interesting area for future research (Section 6.3).
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Primitive Policy Completion

Fig. 4. Percent task completion with each of the primitive behavior policies
(average of 50 executions, 1-standard deviation error bars). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 3
Execution performance of the primitive policies (average over practice runs, 1-
standard deviation).

Policy Completion (%) Speed (mean)m
s

 Efficiency
(s)

Demo, left 99.2± 1.3 1.0± 0.0 2.8± 0.0
Feedback, left 91.3± 19.3 1.5± 0.4 1.8± 0.4
More Demo, left 43.8± 8.2 0.6± 0.0 –
Baseline, straight 100.0± 0.0 0.6± 0.0 5.7± 0.1
Feedback, straight 100.0± 0.0 2.7± 0.1 1.3± 0.0
More Demo, straight 100.0± 0.0 1.7± 0.3 3.1± 0.6
Baseline, right 48.0± 1.4 0.6± 0.0 –
Feedback, right 97.6± 12.0 1.7± 0.0 1.9± 0.1
More Demo, right 51.8± 8.5 0.7± 0.0 –

5. Performance results

In this section, the FPS algorithm is confirmed to successfully
learn motion control primitives through a combination of demon-
stration and teacher feedback. Furthermore, a policy built on these
primitives with feedback was able to successfully execute a more
complex, novel behavior. In each phase of the FPS algorithm,
teacher feedback was found to be critical to the development and
performance improvement of policies. Additionally, the policies
that resulted from FPS feedback far outperformed those that re-
ceived only further teacher demonstrations.

5.1. Motion primitives learned from demonstration

Three motion primitives were successfully learned from
demonstration and human feedback. Full details of the results
from Phase 1 of the FPS algorithm are presented in Table 3 (the
presented speed results are for the mean translational speed). For
clarity of presentation, the figures and tables of this section (5.1)
use the label Baseline in reference to the primitive policies in PDI ,
Feedback to those in PF F and More Demonstration (More Demo) to
those in PDF .

5.1.1. Policy development
Policy development under FPS terminates at the discretion

of the feedback teacher. Here the teacher decided to terminate
development once a policy displayed either satisfactory perfor-
mance or no further performance improvement. The number of
practice runs required to achieve the termination criterion var-
ied for each behavior primitive, and for each policy improvement
Primitive Policy Average Speed

Fig. 5. Average translational execution speed with each of the primitive
behavior policies (average of 50 executions, 1-standard deviation error bars). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

technique (Table 4). However, the more-demonstration approach
consistently requiredmore practice runs, which produced a signif-
icantly larger number of new datapoints. Since the larger number
of datapoints did not improve policy performance over that of the
feedback datasets (Table 3,MoreDemo vs. Feedback), the additional
datapoints are likely redundant or unnecessary for successful pol-
icy behavior.

5.1.2. Performance results
The motion primitives were successfully learned by the FPS

algorithm, as evidenced by the ability of each primitive policy in
PF F to complete executions on the corresponding track subsets
(Table 3, Feedback). Fig. 4 shows the percent completed execution,
for each primitive policy on its respective track subset (average of
50 executions, 1-standard deviation error bars).

For the turn right primitive behavior, the initial Baseline policy
(in PDI ) was unable to complete the task (Fig. 4, category right,
brown bar). The turn right policy (in PF F ) resulting after Phase
1 development under the FPS algorithm, however, was able to
complete the task (Fig. 4, right, green bar). Furthermore, executions
with this policy were much faster on average (Fig. 5, right, green
bar). By contrast, the turn right policy (in PDF ) resulting frommore
teleoperation demonstrations was not able to complete the task,
or even to improve upon the performance or speed of the baseline
policy (Figs. 4–5, right, blue bar). Note that the teacher had a harder
time demonstrating the right-hand turn; in particular, providing
consistent demonstrations proved challenging, which resulted in a
more spread dataset (as observed in Section 4.3.2).

In contrast to turn right, for the go straight primitive behavior
the initial Baseline policy (in PDI ) was able to complete the task
(Fig. 4, category straight, brown bar). The initial policy executed
the task extremely slowly however (Fig. 5, straight, brown bar).
By contrast, the go straight policy (in PF F ) resulting after Phase
1 development under the FPS algorithm was able to increase
execution speeds (Fig. 5, straight, green bar), such that the average
speed over the execution approached the maximum speed of the
robot


3.0 m

s


, all without compromising the completion success of

the executions. The go straight policy (in PDF ) resulting frommore
teleoperation demonstrations also improved execution speeds
over the baseline policy, but not as dramatically (Fig. 5, straight,
blue bar).

For the turn left primitive behavior, the initial Baseline policy (in
PDI ) was able to complete the task (Fig. 4, category left, brown bar).
The turn left policy (in PF F ) resulting after Phase 1 development
under the FPS algorithm somewhat degraded this performance
(Fig. 4, left, green bar) by occasionally going off the track, a
consequence of the policy being more aggressive with respect to
speed than the baseline policy (Fig. 5, left, greenbar). The advantage
of this aggression was much more efficient executions (Table 3,
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Table 4
Number of practice runs and datapoints produced in the development of each primitive behavior policy.

Feedback More Demo
Right Straight Left Total Right Straight Left Total

Practice runs 23 27 8 58 36 36 12 84
New datapoints 561 426 252 1239 2846 1630 965 5441
Table 5
Execution performance of the complex policies (average of 50 executions, 1-standard deviation error bars, T = translational, R= rotational).

Policy Completion (%) Speed T (mean, max)
m

s


Speed R (max)

 rad
s


Feedback Initial 6.3± 1.7 0.4± 0.2, 1.5± 0.4 0.9± 0.3
Feedback∗ 63.3± 28.5 2.2± 0.2, 3.0± 0.2 2.1± 0.2
Feedback Final 97.5± 7.9 2.3± 0.0, 3.1± 0.0 2.6± 0.1

Demo Initial 5.9± 0.2 0.6± 0.0, 0.7± 0.1 0.1± 0.1
Demo Final 13.7± 2.4 1.0± 0.1, 1.5± 0.6 1.0± 0.2
Feedback Left, Efficiency), but at the cost of occasional incomplete
executions. The turn left policy (in PDF ) resulting from more
teleoperation demonstrations decreased the performance of the
initial policy in both completion and speed (Figs. 4–5, left, blue bar).
Presumably more demonstrations in this case created ambiguous
areas for the policy, a complication that would perhaps clear up
with the presentation of more disambiguating demonstrations.

5.2. Undemonstrated task learned from primitives and feedback

A policy able to execute a more complex, novel behavior was
successfully developed through the scaffolding of the learned
primitive policies and the incorporation of teacher feedback. The
complex task here was driving the full racetrack. Before any
practice runs with teacher feedback, the complex policy, derived
solely from selection between the developed feedback primitive
policies PF F , was unable to complete the task. Performance
improvement over 160 practice runs is presented in Fig. 6. A new
iterative policy results from each practice run, which consists of
a single execution from the start line. Each plot point represents
an average of 10 track executions with a given iterative policy,
and a regularly sampled subset of the iterative policies were
evaluated in this manner (sampled every 10 policies, 17 iterative
policies evaluated in total, 1-standard deviation error bars). This
constitutes Phase 2 of the FPS algorithm, after which the learner
was able to consistently execute the complex task in full.

5.3. Improvement in complex task performance

Beyond the development of a policy able to perform the more
complex task, Phase 2 of the FPS algorithm further enabled
performance improvement such that task executions became faster
and more efficient. Performance details are discussed in the
following sections, and summarized within Table 5 (average of 50
executions).

5.3.1. Policy development
Development of the final complex demonstration policy SDF

was aborted early by the teacher due to the extremely slow rate
of policy improvement which, while not entirely stagnant, was
prohibitively slow. The final FPS policy SF F therefore received
feedback onmore practice runs than the finalmore-demonstration
policy SDF (159 vs. 74). An additional comparison is therefore
provided in the following sections, that considers an iterative FPS
policy (Feedback*). This policy is not the final FPS policy, but rather
the result of development after 74 practice runs, the same number
as the final demonstration policy (Table 6).
Table 6
Number of practice runs and datapoints produced in the development of each
complex policy.

Feedback Final Feedback∗ Demo Final

Practice runs 159 74 74
Datapoints 4503 2448 8520

Complex Policy Completion, Improvement with Practice

Fig. 6. Percent task completion during complex policy practice (average of 10
executions, 1-standard deviation error bars).

5.3.2. Performance results: completion
As noted above, the initial FPS policy SF I , derived exclusively

from the primitive feedback policies in PF F , was not able
to complete this task (Fig. 7, Feedback Initial, average of 50
executions, 1-standard deviation error bars). Neither was the
initial policy SDI derived exclusively from theprimitives in PDF that
receivedmore teacher demonstrations (Demo Initial). Both of these
policies performed similarly poorly in the measure of execution
completion.

The final policy SF F that resulted after Phase 2 of the FPS
algorithm, however, was able to consistently complete the task
(Feedback Final). By contrast, the policy SDF that resulted from
more teleoperation demonstrations (Demo Final) was not able to
complete the task, though it did nominally improve upon the
performance the initial demonstration policy (Demo Initial).

Against the iterative feedback policy, the final demonstration
policy similarly did not measure well. The iterative policy
(Feedback*) significantly outperformed the final demonstration
policy (Demo Final) on the completion measure, though it does not
yet perform as successfully or as consistently as the final FPS policy
(Feedback Final).
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Complex Policy Completion

Fig. 7. Percent task completion with full track behavior policies.

5.3.3. Performance results: speed
Policies were additionally evaluated for speed. Since the full

track is much longer than any of the primitive subsets, and thus
offers more opportunities to reach higher speeds, the maximum
speeds attained during executions are provided in addition to the
average speed (Table 5, Fig. 8).

The speed performance results closely resemble those of the
completion performance. Namely, the final FPS policy (Feedback
Final) far outperformed both the initial FPS policy (Feedback Initial)
as well as the final demonstration policy (Demo Final). The final
demonstration policy did offer some improvement over the initial
demonstration policy (Demo Initial), but not nearly as much as
the iterative FPS policy provided for comparison (Feedback∗).
Interesting to note is that this iterative FPS policy produced speeds
similar to the final FPS policy in nearly all measures, though with
slightly larger standard deviations (Table 5). This suggests that
performance consistency, in addition to execution completion, was
a motivation for continuing practice and development beyond this
iterative policy.

6. Discussion

This section provides discussion on the development and
performance of the FPS algorithm. Strengths of the algorithm are
highlighted (Sections 6.1 and 6.2), and two key design decisions are
detailed (Section 6.3).

6.1. Improved performance with feedback

Within our empirical validation, all FPS policies outperformed
the comparative policies developed from teacher demonstration
alone. While these exclusively demonstrated policies were able
to nominally perform the primitive behavior tasks, albeit with
varying degrees of success and always less adeptly than the FPS
policies, they were never able to perform the more complex task
behavior.

This work underlines the benefit, afforded through the F3MRP
framework, of not needing to revisit world states in order
to provide feedback. State formulations in this work were 6-
dimensional and continuous-valued; to accurately revisit a state
under such a formulation is effectively impossible. The segment
selection technique of the F3MRP framework is more accurate
at focusing feedback to the required states than is teacher
demonstration, which must revisit the states to provide corrective
feedback. The result herewas smaller datasets pairedwith superior
policy performance.
6.2. Application to task hierarchies and real robots

Our priorwork (e.g. [24]) employed ahierarchical statemachine
architecture [25] for autonomous control of multiple Segway
RMP robots. The state machine consisted of a set of control
states, each of which encoded a policy, and transitions between
different control states occurred as a function of observed state.
We arranged these state machines into hierarchies, where a state
machine could transition to other state machines. The power in
a behavior hierarchy lies in its task decomposition; that is, by
enabling a larger task to be easily decomposed into sub-tasks that
can be solved as independent problems, and possibly reused for
other similar problems.

A drawback to the hierarchical state machine approach is
that for a real robot, the control architecture is often hand
coded. Typically, it is not task decomposition which is difficult.
Rather, most of designer effort focuses on developing the primitive
policies and tuning the transitions between them. Moreover,
the performance of such policies is highly dependent on robot
hardware and the environment. In our experience, building such
policies has often been tedious and time-consuming.8 The FPS
policy building algorithm offers an alternative to the drawback of
hand-coding the primitive control policies. Here primitive control
behaviors are learned from demonstration, and refined through
teacher feedback. Furthermore, the transitions between primitive
behaviors are also learned. These transitions are a function of
teacher feedback and the world observation formulation (though
relaxing the observation formulation requirement is a target area
for future research).

Though the FPS algorithm to date has been validated in
simulation only, we expect good results on a real robot, given
our past success in using corrective feedback to refine behavior
on the Segway RMP [16]. Our results additionally suggest that
building complex behaviors with our scaffolding algorithm will
be significantly more efficient and successful than providing
teacher demonstrations alone, an advantage that becomes all the
more relevant when demonstrations involve executing physical
actions on a mobile robot platform within the real world.
As tasks, domains and robot platforms become increasingly
complex, policy development under FPS undoubtedly will become
increasingly involved, likely requiring a larger number of primitive
behaviors and more sophisticated interactions between them
when scaffolding. Certainly the FPS algorithm will fare no worse
in this regard however than other approaches, like state machines,
that depend on task decomposition and thus also require defining
a larger number of control behaviors and transitions between
them.9 In light of this, we expect the benefits afforded by the FPS
algorithm, of efficiently learning control behaviors and transitions,
to scale well with domain complexity.

6.3. Primitive behavior selection and feedback incorporation

One key design decision in the development of the FPS
algorithm was how to select between primitive behaviors. The
initial version of the algorithm performed no explicit primitive
selection, and instead relied exclusively on the local nature
of the employed regression technique and the assumption
that primitives occupy distinct areas of the state space. The
performance of this implicit primitive selection, however, was
found to be substandard, as there did exist some areas of

8 We acknowledge of course that in other domains (e.g. with many free degrees
of freedom to control) providing sufficient demonstrations might also be tedious.
9 Domains for which task decomposition is not an effective approach for the

development of a complex behavior are beyond the scope of this article.
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Fig. 8. Average and maximum translational (left) and rotational (right) speeds with full track behavior policies.
overlap between primitive datasets. Violations of the no-overlap
assumption resulted in themixing of data fromdifferent primitives
into a single regression prediction, and consequently poor
performance if their actions were in conflict.10

Later versions of the algorithm therefore relaxed the assump-
tion of non-overlapping state-spaces between primitives. Data-
points were restricted to make predictions only with other points
of the same primitive type; effectively isolating demonstrations of
a particular primitive type into separate datasets, and treating each
primitive as its own policy. In the final algorithm version, selection
at execution time took the primitive with the highest weight, ac-
cording to a kernelized weighting over the k-nearest points within
each primitive dataset. A variety of formulations for how to select
between primitive behaviors are possible and, as the effects of se-
lection on policy performance can be complex (Section 4.3), we
highlight the investigation of alternate paradigms as a rich area for
future work.

Like so many policy development approaches, the success of
a policy derived under the FPS algorithm thus depended on the
appropriateness of the feature space to the task and domain; that
is, on the ability of the computed features to uniquely describe the
distinct actions necessary for task completion. The only difference
within the FPS algorithm in comparison to more typical policy
development paradigms is that the feature space was used for
both higher-level classification, to select between the primitive
policies, and lower-level regression, to predict an action formotion
control.11

Another key design decision in the development of the FPS
algorithm was how to incorporate teacher feedback into the
complex policy. Early versions of the algorithm added a new point
to the dataset of the primitive policy that predicted the execution
point receiving feedback. For query points close to the dataset
providing the prediction, and whose target behavior thus was
close to the behavior of the dataset’s primitive, this approach was

10 For example, if the rotational speed of 1.0 rad
s for primitive turn left vs. 1.0 rad

s
for turn right become a mixed action prediction that does not turn at all, 0.0 rad

s =
1
2


1.0 rad

s


+

1
2


−1.0 rad

s


.

11 An interesting side note is that if the design of the feature space is only
moderately poor, for example intuitive for a human policy designer but suboptimal
for the task execution, it is possible that providing policy correctionswill take a step
towards addressing the design deficiency. In this manner, the FPS algorithm has an
advantage over other policy development paradigms.
reasonable and on par with correcting a single policy. However,
if the more complex policy visited areas of the state space that
were unvisited during the development of the primitive policies,
the prediction of the nearest primitive might conflict with the
intended behavior of the more complex policy (especially if there
were aspects of the target behavior that were not captured by any
of the policy primitives). In this case, corrections that took a step
in the direction of the final policy behavior stepped away from
the target primitive behavior. Adding such points to the primitive
dataset could compromise its intended behavior, due to over-
generalization.

Later versions of the algorithm therefore placed new (weakly
supported, as defined in Section 3.3.2) data into separate feedback
datasets. The policies derived from these sets were selected
between, as the primitive policies, during execution. Initially all
new data was placed into a single feedback dataset, but the
resulting feedback policy was found at times to over-generalize
since its dataset contained the weakly data-supported predictions
of all primitive policies, which varied markedly in their respective
intended behaviors. To mitigate over-generalization, the final
algorithm therefore associated a feedback dataset with each policy
primitive. The decision to associate one feedback dataset with
each primitive policy was somewhat arbitrary however, having
beenmade based on empirical support of good policy performance
(Fig. 3). One could envision many other valid approaches to
determining the number of feedback datasets, which is an open
area for future research.

7. Conclusion

We have introduced the Feedback for Policy Scaffolding
(FPS) algorithm as an approach that uses teacher feedback
and demonstration to build complex policy behaviors. More
specifically, the algorithm operates in two phases. The first phase
develops primitive motion behaviors from teacher demonstration
and feedback provided through the F3MRP framework. The second
phase scaffolds these primitive behaviors into a policy able to
perform a more complex task. Feedback is again employed, in
this case to assist scaffolding and thus enable the development of
a sophisticated motion behavior. There are many potential gains
to using primitives learned from demonstration to build more
complex policies; for example, the potential for primitive policy
reuse, and the development policies for which demonstration of
the complete task is difficult.
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The FPS algorithmwas implementedwithin a simulatedmotion
control domain, that tasked a differential drive robot with driving
along a racetrack. Primitive behavior policies, which represent
simple motion components of this task, were successfully learned
through demonstration and teacher feedback. A policy able to
accomplish a more complex behavior, i.e. to drive the full track,
was successfully developed from the primitive behaviors and
teacher feedback. In both development phases, empirical results
showed policy performance to improve with teacher feedback.
Furthermore, all FPS policies outperformed the comparative
policies developed from teacher demonstrations alone.
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