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Abstract Motion control is fundamental to mobile robots,
and the associated challenge in development can be assisted
by the incorporation of execution experience to increase pol-
icy robustness. In this work, we present an approach that
updates a policy learned from demonstration with human
teacher feedback. We contribute advice-operators as a feed-
back form that provides corrections on state-action pairs
produced during a learner execution, and Focused Feed-
back for Mobile Robot Policies (F3MRP) as a framework
for providing feedback to rapidly-sampled policies. Both
are appropriate for mobile robot motion control domains.
We present a general feedback algorithm in which multi-
ple types of feedback, including advice-operators, are pro-
vided through the F3MRP framework, and shown to im-
prove policies initially derived from a set of behavior ex-
amples. A comparison to providing more behavior exam-
ples instead of more feedback finds data to be generated in
different areas of the state and action spaces, and feedback
to be more effective at improving policy performance while
producing smaller datasets.
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1 Introduction

Robust motion control algorithms are fundamental to the
successful, autonomous operation of mobile robots. A con-
trol policy, mapping observed world state to robot action,
is one representation for robot motion control. Even with a
carefully crafted policy however, a robot often will not be-
have as the designer expects or intends in all areas of the exe-
cution space. Approaches often are unable to scale well with
robot and domain complexity, for example by requiring fully
defined dynamics models for high degree of freedom robots
or interactions with physically-compliant objects. One way
to address behavior shortcomings is to update a policy based
on execution experience, which can increase policy robust-
ness and overall performance.

The approach taken in this article provides the motion
control policy of a mobile robot with human teacher evalua-
tions of execution performance. We focus on policy learning
techniques that derive a policy from a set of behavior ex-
amples. In particular, Learning from Demonstration (LfD)
is an approach in which examples of behavior execution
by a teacher are provided to a learner, who derives a con-
trol policy from the resulting dataset. Our approach aug-
ments demonstration learning by providing policy perfor-
mance evaluations through multiple forms of human teacher
feedback, the most noteworthy of which directly corrects a
state-action mapping predicted by the policy. Feedback is
used by the learner to update its policy, enabling further pol-
icy development.

The target domain for our techniques is low-level mo-
tion control of a mobile robot. Key challenges to providing
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feedback within such a domain are the rapid sampling rate
and continuous state-action space of the policy. With a rapid
sampling rate, any exhibited robot behavior deemed by the
teacher to need feedback likely executed over multiple (tens
or hundreds of) timesteps. With a continuous state-action
space, corrective feedback that indicates a preferred action
or state requires providing a continuous-valued correction,
and thus selection from an infinite set.

In this article, we contribute techniques to address both of
these challenges. In particular, we introduce Focused Feed-
back For Mobile Robot Policies (F3MRP) as a framework
for providing feedback on a sequence of state-action pairs
generated by the execution of a policy sampled at a rapid
rate. We contribute advice-operators as a mechanism for
mapping a finite set containing high-level human feedback
to an infinite set of continuous-valued corrections, along
with a structured approach for defining the advice-operators.

We provide a general feedback algorithm that makes use
of both F3MRP and advice-operators. The algorithm derives
an initial policy from a set of behavior examples, within
an LfD paradigm. Our work targets addressing some of the
limitations potentially present within an LfD dataset; in par-
ticular, those which are not practical or possible to address
through more demonstration alone. Overviews of three vari-
ants of our general feedback algorithm are provided, along
with a summary of their empirical validations. We present in
detail an empirical comparison between data produced un-
der our approach to data produced exclusively from teacher
demonstration. The two techniques are shown to produce
data in different areas of the state and action spaces. We
furthermore establish the combined techniques of advice-
operators and F3MRP to be an effective and efficient ap-
proach for policy improvement.

We begin in Sect. 2 with a presentation of the related lit-
erature that supports this work. Section 3 highlights and dis-
cusses key features that characterize a feedback framework,
and introduces both advice-operators and F3MRP. The gen-
eral feedback algorithm that employs both of these tech-
niques is presented in Sect. 4, along with an overview of
multiple implementation variants. In Sect. 5 data produced
under our approach is compared to data produced using
demonstration alone. Our approach to advice-operator de-
velopment is described in Sect. 6, and we conclude the arti-
cle by highlighting future research directions.

2 Background and Motivation

We frame the motivation for corrective feedback within the
context of demonstration learning. Note however that the
majority of the dataset limitations listed in the following sec-
tion are potentially present in any set of behavior examples,
and not only those produced from demonstration. Moreover,

the advice-operator correction technique is appropriate for
the refinement of policies produced from any behavior ex-
ample set, and its applicability thus extends beyond the do-
main of LfD.

We consider LfD [5, 10] formulations that have a teacher
demonstrate a desired behavior to the robot to produce a
dataset of sequences of observation-action pairs, from which
a control policy is derived. The policy π : Z → A maps
world observations Z ∈ R

n, computed from sensor readings,
to robot actions A ∈ R

m. Real world uncertainty means that
multiple demonstrations of the same behavior will not ex-
ecute identically, and so generalization over the examples
produces a policy that does not depend on a strictly deter-
ministic world, and thus is more robust to this uncertainty.
Demonstration has many additional attractive features for
both learner and teacher, including a relaxation on the re-
quirements of robotics expertise and explicit model (world
or robot) specifications, as well as focusing the dataset of
examples to areas of the state-action space actually encoun-
tered during behavior execution.

Techniques for recording a demonstration dataset cover
a broad range, from the teacher directly controlling the pas-
sive robot platform while recording from its sensors [8], to
having the teacher’s body execute the task while recorded
by sensors external to [9] or located on the body of [16] the
teacher. Following demonstration, a policy is derived from
the recorded dataset, via a variety of approaches: for exam-
ple, to directly approximate the function mapping observa-
tions to actions [13, 15, 16, 19], or to learn a cost function for
use with a navigational planner or Reinforcement Learning
(RL) paradigms [1, 7, 18, 24]. The function approximation
approach is employed in our work, using regression tech-
niques to predict within our continuous action space.

Though LfD has enabled successful policy development
for a variety of robotics applications, the approach is not
without its limitations, which can include:

1. Areas of the state space being absent from the demon-
stration dataset.

2. Suboptimal or ambiguous teacher demonstrations.
3. Poor translation from teacher to learner, due to corre-

spondence issues.

Dataset sparsity is the trade-off to focusing the dataset to
state-space areas visited during task execution, and might
be partly overcome by the generalization ability of the pol-
icy derivation technique. In the event of poor quality dataset
examples a variety of sources might be responsible, includ-
ing the demonstration abilities of the teacher or limitations
in the interface used for control during demonstration. Since
demonstration for real robots involves executing actions in
physical environments, differences in embodiment between
the learner and teacher become of crucial importance, and
the challenges that arise as a result, when mapping teacher
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demonstrations to the learner, are broadly referred to as cor-
respondence issues within the literature [11, 20].

One successful approach for dealing with poor or am-
biguous teacher demonstrations is to provide more demon-
stration data in response to execution experience with the
policy [12, 13, 15]. Another approach is to pair LfD with Re-
inforcement Learning techniques, for example by restricting
the RL search space to states that lie near the demonstra-
tions [17, 22] or employing an exploration policy to visit un-
demonstrated states [23, 25]. A final approach is to directly
correct the behavior exhibited by the policy [13, 21]. Note
that these cited LfD correction paradigms operate within ac-
tion spaces that are discrete and with actions of significant
time duration, sampled with low frequency. By contrast, our
work falls into the notably challenging category of correct-
ing policies within continuous action-spaces sampled at high
frequency, which is largely unaddressed within the LfD lit-
erature.

3 Corrections for Rapidly Sampled Policies

This section begins by introducing advice-operators as a
mechanism for translating high-level corrections into low-
level continuous-valued execution modifications (Sect. 3.1).
With advice-operators, we aim to address the challenge
of providing policy corrections within continuous state-
action spaces. Focused Feedback For Mobile Robot Policies
(F3MRP)1 is afterwards introduced as a framework through
which portions of a policy execution are selected to receive
feedback (Sect. 3.4). With F3MRP, we aim to address the
challenge of providing feedback to policies sampled at a
rapid rate.

We furthermore identify and discuss the following as key
characterizations of a feedback framework: the type of the
feedback (Sect. 3.2) and the interface for providing feedback
(Sect. 3.3). According to which, our feedback approach may
be characterized as the following:

Feedback type: The types of feedback include policy cor-
rection via advice-operators and binary performance flags.
Most commonly, the feedback produces a new state-action
example mapping, which is added to the policy dataset
prior to rederivation.

Feedback interface: Evaluations are performed by a hu-
man teacher, who selects a piece of feedback and path
segments from a graphical display of the robot execution
path. F3MRP associates these segments with portions of
the observation-action sequence, which are passed with the
feedback to the learner.

1The F3MRP framework was developed within the GNU Octave sci-
entific language [14].

3.1 Advice-Operators

Explicit corrections can be a very direct approach to pol-
icy improvement, by indicating a preferred action to take (or
state to enter) and therefore not requiring any exploration on
the part of the learner, unlike state reward. Expecting a hu-
man to know the appropriate continuous value that corrects
an execution point however is neither reasonable nor effi-
cient. We therefore contribute advice-operators [2] as a lan-
guage through which a human teacher provides high-level
policy corrections on continuous-valued policy behaviors.

Concretely defined, an advice-operator is a mathemati-
cal computation performed on an observation input or ac-
tion output. An operator f : (z,a) → (ẑ, â) ∈ R

n+m maps
an observation-action pair within the joint space of ob-

servations and actions. The set F = {fi}Np

i=1 of Np oper-
ators are defined commonly between the learner and ad-
visor. In our implementations, the operator mapping f is
defined via a structured approach that will be presented in
Sect. 6, along with an example set of advice-operators used
in our empirical work. The teacher furthermore must indi-
cate a segment of the learner execution, accomplished in
our approach via the F3MRP framework, introduced next
(Sect. 3.4). To illustrate with a simple example, consider an
operator f that modifies each action dimension by a multi-
plicative amount α ∈ R, applied over a segment of 50 data-
points; then, f (zt ,at ) = (zt , α · at ),∀t = 1..50.

Note that the actual control policy formulation is un-
known to the human advisor, save for its expression via
the observation-action pairs seen during a learner execu-
tion. Corrections are therefore offered on these executed
observation-action pairings. A key insight to the advice-
operator approach is that pairing a modified observation (or
action) with the executed action (or observation) now rep-
resents a corrected mapping, and thus a correction for the
policy itself. How to best incorporate the corrected mapping
into the policy is an open topic. We take the straightforward
approach of adding a corrected datapoint to the demonstra-
tion set and rederiving, which steps the function approxima-
tion in a direction that corrects the policy as well.2

3.2 Feedback Type

We now consider the topic of feedback on policy perfor-
mance more generally. Feedback in our work consists pri-
marily of advice-operators, but in more general terms feed-
back can take a variety of forms. For example, the learner

2The empirical validations of Sect. 4.2 employ lazy learning regres-
sion techniques [6]; specifically, a form of locally weighted averaging.
Incremental policy updating is particularly straightforward under lazy
learning regression, since explicit rederivation is not required; policy
derivation happens at execution time and so a complete policy update
is accomplished by simply adding new data to the set.
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Fig. 1 Path visualization,
subset selection and data
association in the F3MRP
framework

might receive a single reward upon reaching a failure state,
or the value of a gradient along which a more desirable ac-
tion may be found. The feedback type determines what is
provided to the learner, which we propose to characterize
according to three axes:

1. The amount of information the feedback encodes.
Feedback can encode some, none or all of the transla-
tion from policy evaluation to policy update.

2. The continuity of the feedback. The value taken by feed-
back might be discrete (possibly binary) and derive from
a finite set, or continuous and derive from an infinite set.

3. The frequency at which feedback is provided. Governed
by whether feedback is provided for entire executions,
subsets, or individual decision points, and the corre-
sponding time durations of each.

For succinctness, we refer to the combination of continuity
and frequency as the granularity of the feedback.

The amount of information contained within feedback
spans a continuum, where at one extreme feedback provides
very minimal information and the majority of the work of
policy refinement lies with the learner. This is the case in
the single failure-state reward example, where to translate
the feedback into a policy update the learner must employ
techniques like RL to incorporate the reward, and further-
more must determine through exploration which alternate
states improve policy performance. At the opposite extreme
feedback provides very detailed information, where the ma-
jority of the work of policy refinement is encoded within the
feedback details. This is the case with the action-gradient
example, where to determine an improved policy prediction
the learner needs only to adjust the function approximation
of its policy along this gradient. In practice, policy execu-
tion consists of multiple phases, beginning with sensor read-
ings being processed into state observations and ending with
the execution of a predicted action. The granularity of the
phase receiving feedback drives the granularity of the feed-
back itself. For example, consider a policy sampled at low

frequency (e.g. tens of seconds or minutes), with binary ob-
servations that monitor the presence of specific objects and
feedback that draws attention to these objects (e.g. [21]). In
this case the teacher provides feedback on a single decision
point, since the policy is sampled infrequently, and by se-
lecting from a discrete set, i.e. those objects being monitored
by the policy.

To place the advice-operator feedback type within this
characterization, the amount of information is large since
an explicit indication of the preferred state-action map-
ping is provided. The feedback granularity is fine, since
continuous-valued corrections are provided at high fre-
quency (in our work 30 Hz). Other feedback types, of
coarser continuity, implemented within the F3MRP frame-
work include binary performance flags [3, 4]; where positive
or negative credit provides a binary indication of whether
policy performance in a particular area of the state-space is
desirable or not.3

3.3 Feedback Interface

The feedback framework serves as an interface between
the policy execution, the policy evaluator and the learner.
For example, the interface might present the execution in a
meaningful format for the policy evaluator, or translate the
feedback into meaningful information for the learner. The
feedback interface controls how feedback is provided. We
propose the following characterizations for a feedback in-
terface:

1. How the execution is evaluated. Governed by the evalu-
ation source (e.g. automated computation or task expert)
and the information the source requires.

2. How closely feedback is associated with the execution
data. Influenced by the policy sampling rate and to what
extent feedback is offered in real-time.

3The positive credit flag adds the execution point, unmodified, to the
dataset; and thus may equivalently be viewed as an identity function
advice-operator, i.e. f (z,a) = (z,a).
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3. How feedback is transferred to the learner.

The first role of a feedback interface is to assist in the
evaluation of a given policy execution, and different ap-
proaches vary in the amount and type of information they
require. For example, a reward computation might require
performance statistics like position accuracy. The second
role of the feedback interface is to associate the evalua-
tion with the underlying execution, which depends on how
closely an evaluation is tied to the execution data. For exam-
ple, an overall performance measure associates with the ex-
ecution as a whole, and thus links to the data at a very coarse
scale.4 Close feedback-data associations are necessarily in-
fluenced by the sampling rate of the policy, and actions with
significant time durations are easier to isolate as responsi-
ble for a particular policy behavior than actions sampled at
a high frequency. The third role of the interface is to trans-
fer the execution-associated feedback to the learner. At one
extreme, streaming feedback is provided as the learner ex-
ecutes and immediately updates the policy. At the opposite
extreme, feedback is provided post-execution, possibly after
multiple executions, and updates the policy offline.

3.4 Focused Feedback for Mobile Robot Policies

We now introduce our framework for providing feedback
to build and improve motion control policies on a mobile
robot, named Focused Feedback for Mobile Robot Policies
(F3MRP). An overview of its operation, in the specific case
of advice-operator feedback, is provided in Fig. 1. Dur-
ing a student execution, data relating to the robot position
{x, y, θ} and policy prediction {z,a} is recorded. The posi-
tion data is used by F3MRP for a visual presentation of a
robot path, which assists the teacher in the selection of the
path subset {x, y, θ}Φ requiring correction. This path sub-
set is then associated with the corresponding prediction data
subset {z,a}Φ , which is provided as input to the selected
advice-operator, with the result of synthesized data.

Execution evaluation is accomplished by a human teacher
observing the learner policy execution from two viewpoints:
her own visual observation, and a graphical replay of the 2-D
ground path taken by the mobile robot. The visual path pre-
sentation is a key component in the identification of those
portions of the learner execution that are to receive feed-
back. The presentation employs a color scheme to visually
indicate the dataset support of the policy predictions; that
is, of how well the dataset D, from which the policy derives,

4This scale becomes finer, and association with the underlying data
trickier, if a single value is intended to be somehow distributed across
only a portion of the execution states; akin to the RL issue of reward
back-propagation.

Fig. 2 Left: Example distribution of 1-NN distances within a demon-
stration dataset (black bars), and the Poisson model approximation (red
curve). Right: Example plot of the F3MRP display of 2-D ground path,
with color indications of dataset support. Given an execution query
point zt with distance �t to the demonstration set, plotted in yellow are
the points for which �t < τκ=1, in blue those within τκ=1 ≤ �t < τκ=3,
and in black those for which τκ=3 ≤ �t (Color figure online)

covers the observation space in the area of query points ob-
served during the execution. In particular, the distance be-
tween query point zt and the single nearest (Euclidean dis-
tance) dataset point contributing to the policy’s regression
prediction is calculated; i.e. �t = minj‖zt − zj‖, zj ∈ D.
The color scheme then is set based on the relation between
this distance �t and the support thresholds τκ of the dataset,
calculated as follows. For a given dataset with N points, the
set of nearest Euclidean distances {�i}Ni=1 between points in
the set – i.e. ∀zi ∈ D,�i = minj �=i‖zi − zj‖, zj ∈ D – are
modeled as a Poisson5 distribution, with mean μ = λ and
variance σ 2 = λ. Data support thresholds τκ are defined as
τκ = μ + κσ , where κ is set by hand based on empirical
evidence. In Fig. 2 for example, two thresholds are defined:
κ = 1 and κ = 3. The data support information is used by the
teacher in his selection of execution segments and feedback
types.

In the F3MRP framework the association between feed-
back and the underlying learner execution is tight. The
teacher selects problem segments of the graphically dis-
played ground path, where segment sizes may range from
a single point to all points in the trajectory. The F3MRP
framework then associates the selected segment of the posi-
tion trace, i.e. the ground path, with the corresponding seg-
ment of the observation-action trace, i.e. the sequence of
policy input-output pairs (both of which have been recorded
during the learner execution). The high frequency at which
a motion control policy is sampled however complicates the
above requirement of a tight association between teacher
feedback and execution data. To address this complication

5A Poisson formulation was chosen since the distance calculations
never fall below, and often cluster near, zero. To estimate λ, frequency
counts were computed for k bins (uniformly sized) of distance data
(k = 50).
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Algorithm 1 Baseline Feedback Algorithm
1: Given D

2: initialize π ← policyDerivation(D)

3: while practicing do
4: initialize ξd ← {}, ξp ← {}
5: repeat
6: predict { at , τ t } ← π(zt )

7: execute at

8: record ξd ← ξd ∪ (zt ,at ),
ξp ← ξp ∪ (xt , yt , θ t , τ t )

9: until done
10: advise { �, ξ̂p }

← teacherFeedback( F3MRP(ξp) )

11: associate ξ̂d ← F3MRP( ξd, ξ̂p )

12: update D ← applyFeedback( D, �, ξ̂d )

13: rederive π ← policyDerivation( D )

14: end while
15: return π

F3MRP offers an interactive tagging mechanism, that allows
the teacher to mark execution points as they display in real-
time on the graphical replay of the 2-D path. The tagging
mechanism thus enables more accurate syncing between the
feedback and the points to which it applies.

4 Our General Feedback Algorithm

We now introduce a general feedback algorithm that makes
use of our policy improvement techniques; that is, of provid-
ing feedback of various forms, including advice-operators,
through the F3MRP framework. We first detail the general
algorithm, and then summarize empirical results from three
of its variants.

4.1 Algorithm Overview

Our algorithm has a teacher provide feedback on multiple
learner executions. A single practice run consists of a sin-
gle execution-feedback-update cycle; that is, of learner ex-
ecution followed by teacher feedback and policy update.
A subsequent practice run is then initiated, during which the
learner executes with the new, updated policy. Practice runs
continue until the teacher is satisfied with the performance.

Pseudo-code is provided in Algorithm 1. To begin, an ini-
tial policy π is derived from the set D of behavior examples,
consisting of observation-action pairs (line 2). The source of
the dataset not restricted by the algorithm; in our work, the
set is produced from teacher demonstration. The regression
technique employed for policy derivation likewise is not re-
stricted by the algorithm, and any black box regression al-
gorithm is suitable for use with this approach. In our em-
pirical validations, a form of locally weighted averaging is

employed, since incremental policy updating is particularly
straightforward under lazy learning regression.

During the learner execution portion of a practice run
(lines 5–9), the learner executes the task and information is
recorded into traces ξd and ξp . At each timestep the learner
observes the world, and predicts action at ∈ A according
to policy π and with data support τ t (≡ �t of Sect. 3.4).
This action is executed and recorded, along with observation
zt ∈ Z, into the prediction trace ξd ∈ R

m+n. The information
recorded in the trace ξd will be used for the policy update.
The global ground position xt , yt and heading θ t of the mo-
bile robot are additionally recorded, along with support τ t ,
into the position trace ξp ∈ R

4. Information recorded into ξp

will be used by the F3MRP framework, when visually pre-
senting the path taken by the robot on the ground during the
execution.6

During the feedback portion (lines 10–11), the teacher
uses the visual presentation of ξp provided by the F3MRP
interface to indicate a segment ξ̂p ⊆ ξp of the learner execu-
tion, along with feedback � for that segment. The interface
associates the position segment ξ̂p with the appropriate seg-
ment ξ̂d of the prediction trace.

During the policy update portion (line 12–13), the learner
applies feedback � to the segment ξ̂d , and adds the result-
ing data to D. Rederiving the policy π from this set com-
pletes the policy update. The exact details of how the feed-
back � and prediction segment ξ̂d are used to update the
dataset are particular to each feedback type. In the case of
an advice-operator f , each point (zi ,ai ) ∈ ξ̂d is mapped to
a new observation-action pair, f : (zi ,ai ) → (ẑi , âi ), which
then is added to the dataset, D ← D ∪ (ẑi , âi ).

4.2 Prior Empirical Validation

Several variants on our general feedback algorithm have
been empirically validated, a summary of which is provided
in this section. We highlight in particular the versatility of
teacher feedback, which not only refines demonstrated poli-
cies, but also enables more complex policies to be built from
simpler behaviors.

Advice-operators were first introduced with the Advice-
Operator Policy Improvement (A-OPI) algorithm, which re-
fined policies learned from demonstration [2]. Empirical
validation7 was performed on a Segway RMP robot per-
forming planar motion tasks. An initial case study showed
improvements in path-following precision and efficiency,
and both beyond the abilities of demonstrator, as well as

6The traces ξd and ξp correspond respectively to the “Prediction
Data” and “Position Data” in Fig. 1. Similarly, the trace subsets
ξ̂d = {x, y, θ}Φ and ξ̂p = {z,a}Φ .
7Here an earlier version of F3MRP was employed, that did not provide
visual dataset support or interactive tagging.
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the emergence of novel behavior characteristics absent from
the demonstration set. Full empirical validation with a more
complex set of advice-operators furthermore showed similar
or superior performance while producing noticeably smaller
datasets, when compared to policies developed from exclu-
sively more teleoperation demonstrations.

The Feedback for Policy Scaffolding (FPS) algorithm em-
ployed teacher feedback to build a complex policy behavior
from simpler demonstrated behaviors [4]. Empirical valida-
tion was performed within a simulated motion control do-
main that tasked a differential drive robot to reactively drive
along a racetrack. Primitive behavior policies, which rep-
resented simple motion components of this task (turn-left,
turn-right, go-straight), were learned through demonstra-
tion and refined via feedback. A policy able accomplish the
more complex behavior (to drive the full track) was suc-
cessfully developed only after receiving teacher feedback
that served to guide behavior when transitioning between
primitive policies. Empirical results showed performance to
improve with teacher feedback, and all FPS policies out-
performed the comparative policies developed from teacher
demonstration alone: in fact, the exclusively demonstrated
policies were never able to successfully perform the more
complex task behavior.

The Demonstration Weight Learning (DWL) algorithm
considered different feedback types to be distinct data
sources, selected through an expert learning inspired
paradigm [3]. Source weights were automatically deter-
mined and dynamically updated by the algorithm, based on
the performance of each expert. Empirical validation within
the simulated robot racetrack driving domain confirmed data
sources to be unequal in their respective performance abil-
ities on this task, and the weighting was found to improve
policy performance. Furthermore, source weights learned
under the DWL paradigm were consistent with the respec-
tive performance abilities of each individual expert.

5 Comparison to More Mapping Examples

We now compare a dataset built using our feedback tech-
niques to one built from demonstration exclusively. Both
datasets are seeded initially with demonstration data from
teacher executions, and an initial policy is derived. As the
learner executes, the teacher8 observes the performance and
offers either: corrective feedback, in the case of the feedback
dataset, or more demonstrations, in the case of the more-
demonstration dataset.

The domain of our empirical comparison consists of a
simulated differential drive robot within a racetrack envi-

8The same teacher (one of the authors) was used to provide both
demonstration and feedback.

Table 1 Description of observation and action dimensions for the
racetrack driving task

Dim Observation Description

0 νt current translational speed

1 ωt current rotational speed

2 a Polynomial coefficients of the
track border approximation
(i.e. y = ax3 + bx2 + cx + d)

3 b

4 c

5 d

Dim Action Description

0 ν̂t predicted translational speed

1 ω̂t predicted rotational speed

Table 2 Advice-operators for the racetrack driving task

Operator Parameter

0 Modify ω, Static (fδ) [ − + ]

1 Modify ν, Static (fδ) [ − + ]

2 Modify ω, Fractional (fα) [ − + ]

3 Modify ν, Fractional (fα) [ − + ]

4 Modify ω, Incr. Frac. (fβ ) [ − + ]

5 Modify ν, Incr. Frac. (fβ ) [ − + ]

6 Adjust ω and ν, Fractional [ − + ]

7 Adjust Turn, Fractional [ loosen tighten ]

8 Adjust Turn, Incr. Frac. [ loosen tighten ]

ronment.9 The robot is tasked with driving along the race-
track, with two failure criteria: the robot either stops moving
or crosses a track boundary. The robot is controlled by set-
ting target translational and rotational speeds. Demonstra-
tions are performed via human teleoperation that decreases
or increases the translational or rotational speed (ν,ω) of the
robot motion. During execution, the robot computes at each
timestep a local track representation by fitting a third order
polynomial to track border points visually observed in the
current and recent-past timesteps. Observation features and
action dimensions are detailed in Table 1.

Feedback provided by the teacher includes advice-oper-
ators as well as positive credit. The motion control advice-
operators for this task are developed using the operator scaf-
folding approach of Sect. 6, and are presented in Table 2.
Data added to the more-demonstration set is produced in
the same manner as the initial dataset (namely, teleopera-
tion), except that demonstrations are provided in response
to learner executions with its current policy.

9Full domain, and algorithm, details may be found in [4].
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Fig. 3 Left: Histogram of observation-space distances between new datapoints and the nearest point within the existing set. Right: Plot of each
dataset within the action space, with mean values marked in black

5.1 Population of the Dataset

To begin, we compare the distribution of data within the ob-
servation and action spaces.

Figure 3 (left) displays the frequency count of 1-Nearest
Neighbor (1-NN) distances within the datasets of each ap-
proach. For every new datapoint (1,239 for feedback, 2,520
for more-demonstration), the 1-NN distance was computed
as the minimum over the Euclidean distances between its
position and that of each point in the existing dataset,
within the observation space (R6); i.e. ∀zt , �t = minj‖zt −
zj‖, zj ∈ D. The most notable difference between the two
approaches is seen within the frequency of small 1-NN dis-
tances. The more-demonstration approach (blue bar) more
frequently produced new data that was close (≤ 0.05) to the
policy dataset. Furthermore, when considering the distribu-
tion of 1-NN distances, the more-teleoperation distribution
has a lower mean and larger standard deviation (0.15±0.14)
than the feedback distribution (0.21 ± 0.02).

These observation space results suggest that our feedback
techniques take larger steps away from the initial demonstra-
tion set, into more remote areas of the observation space. It
is possible that the more-demonstration approach also vis-
its these areas, but over more, smaller-stepped, iterations.
Given the performance results presented in the following
section however, the more likely explanation is that there
exist observation areas which are unvisited by the teacher
during demonstration, but which are visited by the learner
executions and then added post-correction to the feedback
dataset.

Figure 3 (right) provides a visual representation of the
distribution of new data within the action space (R2). This
figure plots along each axis a single action dimension. Qual-
itative visual inspection reveals a similar trend to that seen

Table 3 Mean and variance for each action and observation dimen-
sion within the baseline, feedback and more-demonstration datasets.
Absolute values computed for rotational speeds (Action dim. ω, Obs.
dim. 1)

Demo Feedback More-Demo

Action

ν ( m
s ) 1.4 ± 0.4 2.0 ± 0.4 1.4 ± 0.6

ω ( rad
s ) 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2

Observation

0 1.4 ± 0.4 1.8 ± 0.4 1.3 ± 0.6

1 0.5 ± 0.2 0.5 ± 0.2 0.4 ± 0.2

2 0.0 ± 0.2 −0.1 ± 0.1 −0.1 ± 0.2

3 0.1 ± 0.9 0.1 ± 0.2 0.2 ± 0.5

4 −0.0 ± 0.5 0.0 ± 0.1 −0.1 ± 0.2

5 −0.1 ± 0.1 0.0 ± 0.1 0.0 ± 0.1

in the observation-space results: namely, that the actions
produced through the more-demonstration technique (blue
triangles) are closer to the actions already present within
the dataset (yellow diamonds) than those actions produced
through feedback techniques (green squares). Of particu-
lar interest to note is that our feedback techniques pro-
duce data within areas of the action space that are en-
tirely absent from either demonstration dataset (e.g. around
(1.75 m

s ,−0.75 rad
s ), Fig. 3, right). Possible explanations in-

clude that the teacher never encounters situations (i.e. visits
areas of the observation space) in which these action combi-
nations are appropriate, or the teacher is unable, or unwill-
ing, to demonstrate them. The feedback dataset does indeed
tend to predict faster translational and rotational speeds (Ta-
ble 3, Action rows), with the result of higher executed speeds
(Observation rows 0,1).



Journal ID: 12369, Article ID: 156, Date: 2012-07-02, Proof No: 3, UNCORRECTED PROOF

« SORO 12369 layout: Large v.1.3.2 file: soro156.tex (Andrius) class: spr-twocol-v1.4 v.2012/05/30 Prn:2012/07/02; 9:40 p. 9/13»
« doctopic: OriginalPaper numbering style: ContentOnly reference style: basic»

Int J Soc Robot

865 919

866 920

867 921

868 922

869 923

870 924

871 925

872 926

873 927

874 928

875 929

876 930

877 931

878 932

879 933

880 934

881 935

882 936

883 937

884 938

885 939

886 940

887 941

888 942

889 943

890 944

891 945

892 946

893 947

894 948

895 949

896 950

897 951

898 952

899 953

900 954

901 955

902 956

903 957

904 958

905 959

906 960

907 961

908 962

909 963

910 964

911 965

912 966

913 967

914 968

915 969

916 970

917 971

918 972

Fig. 4 For the feedback and more-demonstration techniques, across practice runs: the size of each dataset (left) and performance improvement of
the policies on primitive behaviors (center) and a more complex task (right)

5.2 Dataset Quality

We next compare the quality of the resultant datasets, as
measured by dataset size and policy performance.

Figure 4 (left) presents the growth of each dataset over
practice runs. We define a practice run as a single execution
by the learner, which then receives from the teacher either
feedback or an additional demonstration. Note that in the
same number of practice runs, the more-demonstration ap-
proach (blue line) produces approximately three times the
number of datapoints than the feedback approach (green
line). For a given learner execution, usually only a portion is
responsible for any suboptimal behavior. Our feedback tech-
nique corrects only that portion of the execution; by contrast
the more-demonstration technique necessarily provides the
learner with a complete new execution. For this reason, the
more-demonstration technique nearly always10 adds more
points to the dataset.

Figure 4 (center) presents the performance improvement
during practice, measured as the percentage of the task suc-
cessfully completed. Performance of the feedback policies
is found to improve more quickly over practice runs, and
to be generally superior to those of the more-demonstration
policies. Moreover, differences in performance are dramat-
ically pronounced during the development of policies that
operate in more complex task domains. Figure 4 (right)
presents the policy performance improvement when mul-
tiple behavior primitives are scaffolded to perform a more
complex task (via the FPS algorithm, Sect. 4.2). The per-
formance of both approaches on the complex task is ini-
tially quite poor (0.6 ± 0.2 % more-demonstration, 6.0 ±

10The exceptions being when the entire learner execution receives a
correction, or when the teacher provides a demonstration for only the
beginning portion of an execution.

0.2 % feedback, average of 10 executions). Across practice
runs, the performance of the more-demonstration dataset
does improve, marginally, to a 13.7 ± 0.02 % success rate
(average of 50 executions). The performance of the feed-
back dataset is a marked improvement over this, improv-
ing to a 63.3 ± 0.3 % success rate (average of 50 execu-
tions).

With these performance results, we may conclude that
the smaller datasets of our feedback techniques omit pri-
marily redundant data, that do not improve policy perfor-
mance. Since the feedback policies in fact exceeded the
more-demonstration policies in performance, we may fur-
ther conclude that relevant data were missed by demonstra-
tion, in spite of the larger datasets.

6 Advice-Operator Development

Before concluding, we present our structured approach to
defining a set of action advice-operators. The approach first
defines a set of baseline operators, and then builds new
advice-operators through the scaffolding of existing oper-
ators.11 The synthesized data that these operators produce
furthermore is constrained to be firmly grounded within the
robot’s capabilities. While operators can be task-specific, the
baseline (and often also the scaffolded) operators will trans-
fer between task domains, providing the actions themselves
do. The baseline operators are as general as the actions they
modify.

6.1 Baseline Advice-Operators

Advice-operator development begins with the definition
of a baseline set of operators. For multi-dimensional ac-

11In Table 2, operators 0–5 are the baseline operators and operators
6–8 were built through operator-scaffolding.
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Fig. 5 Left: Illustration of the advice-operator building interface. Right: Example application range, over 12 datapoints

tion predictions, the baseline operators are defined as
first- and second-order modifications to each individual
action dimension. Concretely, given a segment ξ̂d of a
recorded observation-action execution trace ξd , such that
subset ξ̂d ⊆ ξd contains Nξ observation-action pairs, ξ̂d =
{(zi ,ai )}Nξ

i=1, and each action is a vector in R
m with com-

ponent values ai
j ∈ ai , ai

j ∈ R, i = 1..Nξ , j = 1..m, then the
baseline operators are:

1. Static fδ : A static modification amount δj , s.t. fδ : ai
j →

ai
j + δj .

2. Fractional fα : A fractional modification amount α, s.t.
fα : ai

j → ai
j + α · ai

j .
3. Incremental Fractional fβ : Linearly increasing fractional

modification amounts i·β
Nξ

, s.t. fβ : ai
j → ai

j + i·β
Nξ

· ai
j .

Constant parameters α > 0, β > 0 are set empirically by
hand (α = 1

3 and β = 1
2 in Sect. 5), and how to set δj > 0

is described in Sect. 6.3. Note that there exists a unique pa-
rameter δj for each action dimension j = 1..m, while the
parameters α,β are constant across all action dimensions.
Each operator furthermore takes a binary parameter, indi-
cating whether the modification amount should be positive
or negative.

The first operator fδ allows for the static augmentation
of an action value, and is particularly useful if the value
was previously zero or of opposite sign to the desired value.
The second operator fα enables augmentations that increase
or decrease in proportion to the size of the executed action
value, which is useful for producing smooth changes as well
as very large or very small modification amounts. The rea-
soning behind the final operator fβ is to allow for incre-
mental easing into a modification; useful, for example, when
ramping speeds up/down when exiting/entering a turn.

6.2 Scaffolding Advice-Operators

Advice-operator development continues with the defini-
tion of complex operators. In particular, these operators

are built, or scaffolded, from existing operators, beginning
with the baseline set. Our empirical work provides an in-
terface through which advice-operators are composed and
sequenced into more complex operators. In brief, advice-
operators are built as a hierarchy, or tree, of existing opera-
tors. Selection of an operator triggers an ordered12 sequence
of calls to underlying operators. The leaf nodes of this tree
are the baseline operators, whose functioning is specified
by the hand-written mathematical functions described in
the previous section. The mathematical functioning of all
non-baseline operators thus results from the sequencing and
composition of functions built from the baseline mathemat-
ics.

The advice-operator building interface functions as fol-
lows (e.g. Fig. 5, left). In the first step, the ordered set of
child operators that will contribute to the new parent op-
erator is defined. In the second step, the range over which
each child operator will be applied is indicated, as a fraction
of the full segment (e.g. Fig. 5, right). This allows for flex-
ibility in the duration of the contributing operators, where
a given child operator can be applied over only a portion
of the execution segment, if desired. In the third step, the
input parameters for the new operator are specified. Re-
call that the baseline operators each take a binary param-
eter as input, to indicate whether the modification amount
should be positive or negative. To now define a parame-
ter for the parent operator, one parameter each is selected
from the parameter lists of the contributing child opera-
tors, and composed into a single vector that constitutes a
new parameter for the parent operator. Multiple parameter
combinations may be specified for a given parent opera-
tor.13

12Note that operator composition is not transitive.
13The limit being the number of unique combinations of the parameters
of the child operators.
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6.3 Constraining and Conditionalizing Corrections

Data modification through advice-operators amounts to data
synthesis from learner executions and teacher feedback. This
synthesis is subject to multiple constraints intended to pro-
duce data that is firmly grounded on both the underlying
learner execution, and the physical capabilities of the robot.
Furthermore, steps are taken to ensure that data which cor-
rects an iterative, developmental, policy does not negatively
impact the final policy behavior.

The modification amounts produced by advice-operators
are explicitly linked to the physical constraints of the robot.
In particular, given a constant value γj ∈ R that describes
the rate of change for dimension j of the action space (e.g.
linear and rotational accelerations within our empirical val-
idations), the static modification amount δj ∈ R of opera-
tor fδ is defined as δj ≡ γj · dt , where dt is the execution
framerate.14 The final advice-modified action is addition-
ally constrained to lie within an amount ηj ∈ R of the ex-
ecuted action value. This constrains the synthesized points
to lie near points that were actually executed, and thus near
to the capabilities of the existing policy (which the robot is
capable of executing). In particular, assuming a maximum
rate change value of γj,max , the constraining amount ηj is
defined as ηj ≡ γj,max · dt .15 This theoretically guarantees
that the advice-modified datapoint is reachable from the ex-
ecuted point within one timestep.

One consequence of constraining datapoint modifications
in this manner is that the mapping represented by the syn-
thesized data might not be consistent with the behavior de-
sired of the final policy. This is because the synthesized
data is constrained to lie near the learner execution which,
given that the execution was corrected, presumably was not
consistent with the final desired behavior. Though the cor-
rected, synthesized mapping does represent an iterative im-
provement on the mapping exhibited by the learner execu-
tion, this corrected mapping may still conflict with the de-
sired behavior of the final policy. As an illustration, con-
sider a learner executed translational speed of 1.2 m

s , a tar-
get behavior speed of 2.5 m

s , and a constrained modifica-
tion amount of ηj = 0.3 m

s . A step in the direction of the
target speed produces an advice-modified action with value
1.5 m

s ; to add this data to the demonstration set equates
to providing an example at speed 1.5 m

s , which is an im-
provement on the learner executed speed but is suboptimal
with respect to the target behavior speed. The addition of
this datapoint to the set thus amounts to providing the fi-
nal policy with a suboptimal behavior example which, like

14If a constant value for the rate of change in action dimension j is not
defined for the robot system, reasonable options for this value include,
for example, average rate of change seen during the demonstrations.
15The value γj,max is defined either by the physical constraints of the
robot, or artificially by the control system.

any suboptimal behavior example, will degrade policy per-
formance.

To circumvent this complication, our approach augments
the state observation formulation with internal observations
of the current action values. This anchors the action predic-
tions of the observation-action mapping to the current action
values (at the time of the state observation, prior to execution
of the predicted action). Mappings now represent good be-
havior given the current action values, in addition to the cur-
rent state observation values, and thus will not conflict with
the final policy even if they are not good examples of the
target final behavior. Returning to our illustration, under this
formulation the speed 1.5 m

s will be considered an appropri-
ate prediction only when the current speed is around 1.2 m

s .
Should the learner later revisit that area of the world with
a speed of 2.0 m

s , for example, the policy will not attempt
to slow the learner down to 1.5 m

s . The benefit of this ob-
servation formulation is more robust and flexible feedback-
giving, since corrections that improve the behavior of an it-
erative policy, but are suboptimal for the final policy, are no
longer a hazard. A drawback is that this observation formu-
lation increases the dimensionality of the observation-space,
which typically correlates to slower learning times and the
need for more training data.

7 Future Directions

This section identifies promising research directions for the
application and development of advice-operators and the
F3MRP framework.

Our work has applied advice-operators to the wheel
speeds of a differential drive robot, but low-dimensional
action-spaces do not define the limit of advice-operators
in general. The application of advice-operators to higher-
dimensional action-spaces is not assumed to be straightfor-
ward, and may require additional translational techniques.
For example, an advice-operator that corrects a high degree-
of-freedom manipulator to be positioned “more to the right”
might not operate directly in the action space of joint an-
gles, but rather first in the 3-D spatial position of the end-
effector, followed by a pass through an inverse kinematic
controller to complete the translation to the action space.
We identify the development of advice-operators for more
complex spaces as a promising area, that furthermore is nec-
essary to confirm the feasibility, or infeasibility, of advice-
operators as policy correction tools in high-dimensional
spaces.

The majority of our developed advice-operators to date
have been action-modifying. Equally valid, however, are
observation-modifying advice-operators. One such observa-
tion-modifying example is presented in the experiments
of [2]: the observation features encoded the goal (target
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pose) of the task, and one of the operators functioned by
recomputing these features with the executed value (actual
final pose) as the target. The execution thus became a good
behavior example, albeit for a different goal. This general
idea—to encode some performance or goal metric, and then
set it to match the executed value—is one option for the de-
velopment of observation operators.

While the F3MRP framework was designed specifically
for mobile robot applications, the techniques of this frame-
work could apply to non-mobile robots through the develop-
ment of an alternative mechanism for the selection of execu-
tion points by the teacher. For example, to visually display
the 3-D Cartesian-space path taken by the end effector could
serve as a suitable alternative for a robotic arm.

The policy update approach of this work simply adds new
examples of good behavior, however an alternative could
correct the actual points already in the dataset. The advan-
tage would be to increase the influence of a correction and
thus also the rate of policy improvement, since otherwise
the undesirable data does remain in the set, degrading pol-
icy performance. Taking care to correct only nearby dat-
apoints would be key to the soundness of this approach,
so that points were not incorrectly adjusted. The F3MRP
framework already computes a distance-based measure of
dataset support; this measure also could be used to de-
termine whether datapoints contributing to the prediction
should be corrected or not.

8 Conclusions

The area of continuing to learn from feedback following
demonstration has been the central topic of this article. Key
considerations for the design of feedback types and inter-
faces were identified. The focus of this work has been cor-
rective feedback from a human teacher, for use within mo-
bile robot motion control domains. Our presented approach
contributed most notably the corrective feedback form of
advice-operators and the F3MRP interface for providing
feedback, both of which have been designed to address chal-
lenges particular to low-level motion control with mobile
robots. Our approach has been empirically validated in the
form of multiple algorithmic variants, and corrective feed-
back has been shown to be an efficient and effective comple-
ment to demonstration. Open areas such as the application to
more complex domains and non-mobile robots suggest rich
directions for future research.
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