
3-1ECE 361

ECE C61
Computer Architecture

Lecture 3 – Instruction Set Architecture

Prof. Alok N. Choudhary

choudhar@ece.northwestern.edu

3-2ECE 361

TodayToday’’s Lectures Lecture

Quick Review of Last Week

Classification of Instruction Set Architectures

Instruction Set Architecture Design Decisions
• Operands

Annoucements
• Operations
• Memory Addressing
• Instruction Formats

Instruction Sequencing

Language and Compiler Driven Decisions

3-3ECE 361

Summary of Lecture 2

3-4ECE 361

Two Notions of Two Notions of ““PerformancePerformance””

Which has higher performance?
Execution time (response time, latency, …)

• Time to do a task

Throughput (bandwidth, …)
• Tasks per unit of time

Response time and throughput often are in opposition

Plane

Boeing 747

Concorde

Speed

610 mph

1350 mph

DC to Paris

6.5 hours

3 hours

Passengers

470

132

Throughput
(pmph)

286,700

178,200

3-5ECE 361

DefinitionsDefinitions

Performance is typically in units-per-second
• bigger is better

If we are primarily concerned with response time
•

" X is n times faster than Y" means

!

ExecutionTimey

ExecutionTimex
=
Performancex

Performancey
= n

!

performance =
1

ExecutionTime

3-6ECE 361

Organizational Trade-offsOrganizational Trade-offs

Compiler

Programming
Language

Application

Datapath
Control

Transistors Wires Pins

ISA

Function Units

Instruction Mix

Cycle Time

CPI

CPI is a useful design measure relating the
Instruction Set Architecture with the
Implementation of that architecture, and the
program measured

3-7ECE 361

Principal Design Metrics: CPI and Cycle TimePrincipal Design Metrics: CPI and Cycle Time

Seconds

nsInstructio

Cycle

Seconds

nInstructio

Cycles
ePerformanc

CycleTimeCPI
ePerformanc

imeExecutionT
ePerformanc

=

!

=

!
=

=

1

1

1

3-8ECE 361

Amdahl's Amdahl's ““LawLaw””: Make the Common Case Fast: Make the Common Case Fast

Speedup due to enhancement E:

 ExTime w/o E Performance w/ E

Speedup(E) = -------------------- = ---------------------

 ExTime w/ E Performance w/o E

Suppose that enhancement E accelerates a fraction F of the task

by a factor S and the remainder of the task is unaffected then,

ExTime(with E) = ((1-F) + F/S) X ExTime(without E)

Speedup(with E) = ExTime(without E) ÷
((1-F) + F/S) X ExTime(without E)

Performance improvement
is limited by how much the
improved feature is used 
Invest resources where
time is spent.

3-9ECE 361

Classification of Instruction Set
Architectures

3-10ECE 361

Instruction Set DesignInstruction Set Design

Multiple Implementations: 8086  Pentium 4

ISAs evolve: MIPS-I, MIPS-II, MIPS-II, MIPS-IV,
MIPS,MDMX, MIPS-32, MIPS-64

instruction set

software

hardware

3-11ECE 361

Typical Processor Execution CycleTypical Processor Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in register or storage for later use

Determine successor instruction

3-12ECE 361

Instruction and Data Memory: Unified or SeparateInstruction and Data Memory: Unified or Separate

ADD
SUBTRACT
AND
OR
COMPARE
.
.
.

01010
01110
10011
10001
11010
.
.
.

Programmer's View

Computer's View

CPU
Memory

I/O

Computer
Program
(Instructions)

Princeton (Von Neumann) Architecture
--- Data and Instructions mixed in same
 unified memory

--- Program as data

--- Storage utilization

--- Single memory interface

Harvard Architecture
--- Data & Instructions in
 separate memories

--- Has advantages in certain
 high performance
 implementations

--- Can optimize each memory

3-13ECE 361

Basic Addressing ClassesBasic Addressing Classes

Declining cost of registers

3-14ECE 361

Stack ArchitecturesStack Architectures

3-15ECE 361

Accumulator ArchitecturesAccumulator Architectures

3-16ECE 361

Register-Set ArchitecturesRegister-Set Architectures

3-17ECE 361

Register-to-Register: Load-Store ArchitecturesRegister-to-Register: Load-Store Architectures

3-18ECE 361

Register-to-Memory ArchitecturesRegister-to-Memory Architectures

3-19ECE 361

Memory-to-Memory ArchitecturesMemory-to-Memory Architectures

3-20ECE 361

Instruction Set Architecture Design
Decisions

3-21ECE 361

Basic Issues in Instruction Set DesignBasic Issues in Instruction Set Design
What data types are supported. What size.

What operations (and how many) should be provided
• LD/ST/INC/BRN sufficient to encode any computation, or just Sub and Branch!
• But not useful because programs too long!

How (and how many) operands are specified

Most operations are dyadic (eg, A <- B + C)
• Some are monadic (eg, A <- ~B)

Location of operands and result
• where other than memory?
• how many explicit operands?
• how are memory operands located?
• which can or cannot be in memory?
• How are they addressed

How to encode these into consistent instruction formats
• Instructions should be multiples of basic data/address widths
• Encoding

Typical instruction set:

•32 bit word
•basic operand addresses are 32 bits
long
•basic operands, like integers, are 32
bits long
•in general case, instruction could
reference 3 operands (A := B + C)

Typical challenge:

•encode operations in a small number
of bits

Driven by static measurement and dynamic
tracing of selected benchmarks and workloads.

3-22ECE 361

Operands

3-23ECE 361

Comparing Number of InstructionsComparing Number of Instructions

Code sequence for (C = A + B) for four classes of instruction
sets:

Stack Accumulator
Register

(load-store)

Push A Load A Load R1,A
Push B Add B Load R2,B
Add Store C

Register
(register-memory)

Load R1,A
Add R1,B
Store C, R1 Add R3,R1,R2

Pop C Store C,R3

Cycle

Seconds

nInstructio

Cycles
nsInstructio

ePerformanc
imeExecutionT !!==

1

3-24ECE 361

Examples of Register UsageExamples of Register Usage

Number of memory addresses per typical ALU instruction

Maximum number of operands per typical ALU instruction

Examples

0 3 SPARC, MIPS, Precision Architecture, Power PC

1 2 Intel 80x86, Motorola 68000

2 2 VAX (also has 3-operand formats)

3 3 VAX (also has 2-operand formats)

3-25ECE 361

General Purpose Registers DominateGeneral Purpose Registers Dominate

1975-2002 all machines use general purpose registers

Advantages of registers
• Registers are faster than memory
• Registers compiler technology has evolved to efficiently generate code

for register files
- E.g., (A*B) – (C*D) – (E*F) can do multiplies in any order

vs. stack
• Registers can hold variables

- Memory traffic is reduced, so program is sped up
(since registers are faster than memory)

• Code density improves (since register named with fewer
bits than memory location)

• Registers imply operand locality

3-26ECE 361

Operand Size UsageOperand Size Usage

Frequency of reference by size

0% 20% 40% 60% 80%

Byte

Halfword

Word

Doubleword

0%

0%

31%

69%

7%

19%

74%

0%

Int Avg.

FP Avg.

• Support for these data sizes and types:
8-bit, 16-bit, 32-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

3-27ECE 361

AnnouncementsAnnouncements

Next lecture
• MIPS Instruction Set

3-28ECE 361

Operations

3-29ECE 361

Typical Operations (little change since 1960)Typical Operations (little change since 1960)

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear
Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return
Interrupt trap, return
Synchronization test & set (atomic r-m-w)
String search, translate
Graphics (MMX) parallel subword ops (4 16bit add)

3-30ECE 361

Top 10 80x86 InstructionsTop 10 80x86 Instructions

° Rank instruction Integer Average Percent total executed

1 load 22%

2 conditional branch 20%

3 compare 16%

4 store 12%

5 add 8%

6 and 6%

7 sub 5%

8 move register-register 4%

9 call 1%

10 return 1%

Total 96%

° Simple instructions dominate instruction frequency

3-31ECE 361

Memory Addressing

3-32ECE 361

Memory AddressingMemory Addressing

Since 1980, almost every machine uses addresses to level
of 8-bits (byte)

Two questions for design of ISA:
• Since could read a 32-but word as four loads of bytes

from sequential byte address of as one load word from
a single byte address, how do byte addresses map
onto words?

• Can a word be placed on any byte boundary?

3-33ECE 361

7 0

1019

1018

1017

1016

1015

1014

1013

1012

1011

1010 31 24 23 16 15 8 7 0

1009

1008

1007

1006

1005

1004

1003

1002

1001

1000

Mapping Word Data into a Byte Addressable Memory:Mapping Word Data into a Byte Addressable Memory:
EndianessEndianess

Little Endian: address of least significant byte = word
address (xx00 = Little End of word)

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

Big Endian

Little Endian

Big Endian: address of most significant byte = word
address (xx00 = Big End of word)

IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

3-34ECE 361

Mapping Word Data into a Byte Addressable Memory:Mapping Word Data into a Byte Addressable Memory:
AlignmentAlignment

Alignment: require that objects fall on address that is multiple
of their size.

0 1 2 3

Aligned

Not
Aligned

3-35ECE 361

Addressing ModesAddressing Modes

3-36ECE 361

Common Memory Addressing ModesCommon Memory Addressing Modes

Measured on the VAX-11

Register operations account for 51% of all references

~75% - displacement and immediate

~85% - displacement, immediate and register indirect

3-37ECE 361

Displacement Address SizeDisplacement Address Size

Average of 5 SPECint92 and 5 SPECfp92 programs

~1% of addresses > 16-bits

12 ~ 16 bits of displacement cover most usage (+ and -)

3-38ECE 361

Frequency of Frequency of Immediates Immediates (Instruction Literals)(Instruction Literals)

~25% of all loads and ALU operations use immediates

15~20% of all instructions use immediates

3-39ECE 361

Size of Size of ImmediatesImmediates

50% to 60% fit within 8 bits

75% to 80% fit within 16 bits

3-40ECE 361

Addressing SummaryAddressing Summary

Data Addressing modes that are important:
• Displacement, Immediate, Register Indirect

 Displacement size should be 12 to 16 bits

 Immediate size should be 8 to 16 bits

3-41ECE 361

Instruction Formats

3-42ECE 361

Instruction FormatInstruction Format

Specify
• Operation / Data Type
• Operands

Stack and Accumulator architectures have implied operand addressing

If have many memory operands per instruction and/or many
addressing modes:

• Need one address specifier per operand

If have load-store machine with 1 address per instruction and one or
two addressing modes:

• Can encode addressing mode in the opcode

3-43ECE 361

EncodingEncoding

Variable:

Fixed:

Hybrid:

…
…

If code size is most important, use variable length instructions

If performance is most important, use fixed length instructions

Recent embedded machines (ARM, MIPS) added optional mode to execute subset of 16-
bit wide instructions (Thumb, MIPS16); per procedure decide performance or density

Some architectures actually exploring on-the-fly decompression for more density.

3-44ECE 361

Operation SummaryOperation Summary

Support these simple instructions, since they
will dominate the number of instructions executed:

load,
store,
add,
subtract,
move register-register,
and,
shift,
compare equal, compare not equal,
branch,
jump,
call,
return;

3-45ECE 361

Example: MIPS Instruction Formats and Addressing ModesExample: MIPS Instruction Formats and Addressing Modes

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

• All instructions 32 bits wide

3-46ECE 361

Instruction Set Design MetricsInstruction Set Design Metrics

Static Metrics
• How many bytes does the program occupy in memory?

Dynamic Metrics
• How many instructions are executed?
• How many bytes does the processor fetch to execute the

program?
• How many clocks are required per instruction?
• How "lean" a clock is practical? CPI

Instruction Count Cycle Time

Cycle

Seconds

nInstructio

Cycles
nsInstructio

ePerformanc
imeExecutionT !!==

1

3-47ECE 361

Instruction Sequencing

3-48ECE 361

Instruction SequencingInstruction Sequencing

The next instruction to be executed is typically implied
• Instructions execute sequentially
• Instruction sequencing increments a Program Counter

Sequencing flow is disrupted conditionally and unconditionally
• The ability of computers to test results and conditionally instructions is

one of the reasons computers have become so useful

Instruction 1

Instruction 2

Instruction 3

Instruction 1

Instruction 2

Conditional Branch

Instruction 4 Branch instructions are ~20% of
all instructions executed

3-49ECE 361

Dynamic FrequencyDynamic Frequency

3-50ECE 361

Condition TestingCondition Testing

° Condition Codes
Processor status bits are set as a side-effect of arithmetic
instructions (possibly on Moves) or explicitly by compare or test
instructions.
ex: add r1, r2, r3
 bz label

° Condition Register
Ex: cmp r1, r2, r3

bgt r1, label

° Compare and Branch
Ex: bgt r1, r2, label

3-51ECE 361

Condition CodesCondition Codes
Setting CC as side effect can reduce the # of instructions

X: .
 .
 .
 SUB r0, #1, r0
 BRP X

X: .
 .
 .
 SUB r0, #1, r0
 CMP r0, #0
 BRP X

vs.

But also has disadvantages:

--- not all instructions set the condition codes
 which do and which do not often confusing!
 e.g., shift instruction sets the carry bit

--- dependency between the instruction that sets the CC and the one
 that tests it

ifetch read compute write

ifetch read compute write

New CC computedOld CC read

3-52ECE 361

BranchesBranches
--- Conditional control transfers

Four basic conditions:
 N -- negative
 Z -- zero

V -- overflow
C -- carry

Sixteen combinations of the basic four conditions:
Always
Never
Not Equal
Equal
Greater
Less or Equal
Greater or Equal
Less
Greater Unsigned
Less or Equal Unsigned
Carry Clear
Carry Set
Positive
Negative
Overflow Clear
Overflow Set

Unconditional
NOP
~Z
Z
~[Z + (N + V)]
Z + (N + V)
~(N + V)
N + V
~(C + Z)
C + Z
~C
C
~N
N
~V
V

3-53ECE 361

Conditional Branch DistanceConditional Branch Distance

PC-relative (+-)

25% of integer branches are 2 to 4 instructions

At least 8 bits suggested (± 128 instructions)

3-54ECE 361

Language and Compiler Driven
Facilities

3-55ECE 361

Calls: Why Are Stacks So Great?Calls: Why Are Stacks So Great?

Stacking of Subroutine Calls & Returns and Environments:

A:
 CALL B

 CALL C

 C:
 RET

 RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture
 (e.g., VAX)

Sometimes stacks are implemented via software convention
 (e.g., MIPS)

3-56ECE 361

Memory StacksMemory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

a
b
c

0 Little

inf. Big 0 Little

inf. Big

Memory
Addresses

SP

Next
Empty?

Last
Full?

How is empty stack represented?

Little --> Big/Last Full

POP: Read from Mem(SP)
 Decrement SP

PUSH: Increment SP
 Write to Mem(SP)

grows
up

grows
down

Little --> Big/Next Empty

POP: Decrement SP
 Read from Mem(SP)

PUSH: Write to Mem(SP)
 Increment SP

3-57ECE 361

Call-Return Linkage: Stack FramesCall-Return Linkage: Stack Frames

FP

ARGS

Callee Save
Registers

Local Variables

SP

Reference args and
local variables at
fixed (positive) offset
from FP

Grows and shrinks during
expression evaluation

(old FP, RA)

Many variations on stacks possible (up/down, last pushed /next)

Compilers normally keep scalar variables in registers, not memory!

High Mem

Low Mem

3-58ECE 361

Compilers and Instruction Set ArchitecturesCompilers and Instruction Set Architectures

Ease of compilation
• Orthogonality: no special registers, few special cases, all

operand modes available with any data type or instruction type
• Completeness: support for a wide range of operations and target

applications
• Regularity: no overloading for the meanings of instruction fields
• Streamlined: resource needs easily determined

Register Assignment is critical too
• Easier if lots of registers

Provide at least 16 general purpose registers plus
separate floating-point registers

Be sure all addressing modes apply to all data
transfer instructions

Aim for a minimalist instruction set

3-59ECE 361

Quick Review of Last Week

Classification of Instruction Set Architectures

Instruction Set Architecture Design Decisions
• Operands
• Operations
• Memory Addressing
• Instruction Formats

Instruction Sequencing

Language and Compiler Driven Decisions

SummarySummary

