
361 Lec4.1

ECE 361
Computer Architecture

Lecture 4: MIPS Instruction Set Architecture

361 Lec4.2

Today’s Lecture

° Quick Review of Last Lecture
° Basic ISA Decisions and Design
° Announcements
° Operations
° Instruction Sequencing
° Delayed Branch
° Procedure Calling

361 Lec4.3

Quick Review of Last Lecture

361 Lec4.4

Comparing Number of Instructions

Code sequence for (C = A + B) for four classes of instruction
sets:

Stack Accumulator
Register

(load-store)

Push A Load A Load R1,A
Push B Add B Load R2,B
Add Store C

Register
(register-memory)

Load R1,A
Add R1,B
Store C, R1 Add R3,R1,R2

Pop C Store C,R3

Cycle

Seconds

nInstructio

Cycles
nsInstructio

ePerformanc
imeExecutionT !!==

1

361 Lec4.5

General Purpose Registers Dominate

° 1975-2002 all machines use general purpose registers
° Advantages of registers

• Registers are faster than memory
• Registers compiler technology has evolved to efficiently generate

code for register files
- E.g., (A*B) – (C*D) – (E*F) can do multiplies in any order

vs. stack
• Registers can hold variables

- Memory traffic is reduced, so program is sped up
(since registers are faster than memory)

• Code density improves (since register named with fewer
bits than memory location)

• Registers imply operand locality

361 Lec4.6

Operand Size Usage

Frequency of reference by size

0% 20% 40% 60% 80%

Byte

Halfword

Word

Doubleword

0%

0%

31%

69%

7%

19%

74%

0%

Int Avg.

FP Avg.

• Support for these data sizes and types:
8-bit, 16-bit, 32-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

361 Lec4.7

Typical Operations (little change since 1960)

Data Movement Load (from memory)
Store (to memory)
memory-to-memory move
register-to-register move
input (from I/O device)
output (to I/O device)
push, pop (to/from stack)

Arithmetic integer (binary + decimal) or FP
Add, Subtract, Multiply, Divide

Logical not, and, or, set, clear
Shift shift left/right, rotate left/right

Control (Jump/Branch) unconditional, conditional

Subroutine Linkage call, return
Interrupt trap, return
Synchronization test & set (atomic r-m-w)
String search, translate
Graphics (MMX) parallel subword ops (4 16bit add)

361 Lec4.8

Addressing Modes

361 Lec4.9

Instruction Sequencing

° The next instruction to be executed is typically implied
• Instructions execute sequentially
• Instruction sequencing increments a Program Counter

° Sequencing flow is disrupted conditionally and unconditionally
• The ability of computers to test results and conditionally

instructions is one of the reasons computers have become so
useful

Instruction 1

Instruction 2

Instruction 3

Instruction 1

Instruction 2

Conditional Branch

Instruction 4 Branch instructions are ~20% of
all instructions executed

361 Lec4.10

Instruction Set Design Metrics

° Static Metrics
• How many bytes does the program occupy in memory?

° Dynamic Metrics
• How many instructions are executed?
• How many bytes does the processor fetch to execute the

program?
• How many clocks are required per instruction?
• How "lean" a clock is practical?

°

CPI

Instruction Count Cycle Time

Cycle

Seconds

nInstructio

Cycles
nsInstructio

ePerformanc
imeExecutionT !!==

1

361 Lec4.11

MIPS R2000 / R3000 Registers

• Programmable storage
0r0

r1

°

°

°

r31

PC

lo

hi

361 Lec4.12

MIPS Addressing Modes/Instruction Formats

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC

PC-relative

+

Memory

• All instructions 32 bits wide

361 Lec4.13

MIPS R2000 / R3000 Operation Overview

° Arithmetic logical
° Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU
° AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
° SLL, SRL, SRA, SLLV, SRLV, SRAV
° Memory Access
° LB, LBU, LH, LHU, LW, LWL,LWR
° SB, SH, SW, SWL, SWR

361 Lec4.14

Multiply / Divide

° Start multiply, divide
• MULT rs, rt
• MULTU rs, rt
• DIV rs, rt
• DIVU rs, rt

° Move result from multiply, divide
• MFHI rd
• MFLO rd

° Move to HI or LO
• MTHI rd
• MTLO rd

Registers

HI LO

361 Lec4.15

Multiply / Divide

° Start multiply, divide
• MULT rs, rtMove to HI or

LO
• MTHI rd
• MTLO rd

° Why not Third field for
destination?
(Hint: how many clock cycles
for multiply or divide vs. add?)

Registers

HI LO

361 Lec4.16

MIPS arithmetic instructions

Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible
add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions
subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

 Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

 Hi = $2 mod $3
Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

361 Lec4.17

MIPS logical instructions

Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND
or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR
xor xor $1,$2,$3 $1 = $2 Å $3 3 reg. operands; Logical XOR

nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR
and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant
or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant
xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant
shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant
shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant
shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)
shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable
shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable
shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

361 Lec4.18

MIPS data transfer instructions

Instruction Comment
SW 500(R4), R3 Store word
SH 502(R2), R3 Store half
SB 41(R3), R2 Store byte

LW R1, 30(R2) Load word
LH R1, 40(R3) Load halfword
LHU R1, 40(R3) Load halfword unsigned
LB R1, 40(R3) Load byte
LBU R1, 40(R3) Load byte unsigned

LUI R1, 40 Load Upper Immediate (16 bits shifted left by 16)

0000 … 0000

LUI R5

R5

361 Lec4.19

Methods of Testing Condition
° Condition Codes

Processor status bits are set as a side-effect of arithmetic
instructions (possibly on Moves) or explicitly by compare or
test instructions.
ex: add r1, r2, r3
 bz label

° Condition Register
Ex: cmp r1, r2, r3

bgt r1, label

° Compare and Branch
Ex: bgt r1, r2, label

361 Lec4.20

Condition Codes
Setting CC as side effect can reduce the # of instructions

X: .
 .
 .
 SUB r0, #1, r0
 BRP X

X: .
 .
 .
 SUB r0, #1, r0
 CMP r0, #0
 BRP X

vs.

But also has disadvantages:

--- not all instructions set the condition codes;
 which do and which do not often confusing!
 e.g., shift instruction sets the carry bit

--- dependency between the instruction that sets the CC and the one
 that tests it: to overlap their execution, may need to separate them
 with an instruction that does not change the CC

ifetch read compute write

ifetch read compute write

New CC computedOld CC read

361 Lec4.21

Compare and Branch

° Compare and Branch
• BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch
• BNE rs, rt, offset <>0

° Compare to zero and Branch
• BLEZ rs, offset if R[rs] <= 0 then PC-relative branch
• BGTZ rs, offset >0
• BLT <0
• BGEZ >=0
• BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)
• BGEZAL >=0

° Remaining set of compare and branch take two instructions
° Almost all comparisons are against zero!

361 Lec4.22

MIPS jump, branch, compare instructions

Instruction Example Meaning
branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100

Not equal test; PC relative
set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; 2’s comp.
set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; 2’s comp.
set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0

Compare less than; natural numbers
set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0

Compare < constant; natural numbers
jump j 10000 go to 10000

Jump to target address
jump register jr $31 go to $31

For switch, procedure return
jump and link jal 10000 $31 = PC + 4; go to 10000

For procedure call

361 Lec4.23

Signed vs. Unsigned Comparison

R1= 0…00 0000 0000 0000 0001

R2= 0…00 0000 0000 0000 0010

R3= 1…11 1111 1111 1111 1111

° After executing these instructions:
slt r4,r2,r1 ; if (r2 < r1) r4=1; else r4=0
slt r5,r3,r1 ; if (r3 < r1) r5=1; else r5=0
sltu r6,r2,r1 ; if (r2 < r1) r6=1; else r6=0
sltu r7,r3,r1 ; if (r3 < r1) r7=1; else r7=0

° What are values of registers r4 - r7? Why?
r4 = ; r5 = ; r6 = ; r7 = ;

two

two

two

Value?
2’s comp Unsigned?

361 Lec4.24

Calls: Why Are Stacks So Great?
Stacking of Subroutine Calls & Returns and Environments:

A:
 CALL B

 CALL C

 C:
 RET

 RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture
 (e.g., VAX)

Sometimes stacks are implemented via software convention
 (e.g., MIPS)

361 Lec4.25

Memory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

a
b
c

0 Little

inf. Big 0 Little

inf. Big

Memory
Addresses

SP

Next
Empty?

Last
Full?

How is empty stack represented?

Little --> Big/Last Full

POP: Read from Mem(SP)
 Decrement SP

PUSH: Increment SP
 Write to Mem(SP)

grows
up

grows
down

Little --> Big/Next Empty

POP: Decrement SP
 Read from Mem(SP)

PUSH: Write to Mem(SP)
 Increment SP

361 Lec4.26

Call-Return Linkage: Stack Frames

FP

ARGS

Callee Save
Registers

Local Variables

SP

Reference args and
local variables at
fixed (positive) offset
from FP

Grows and shrinks during
expression evaluation

(old FP, RA)

° Many variations on stacks possible (up/down, last pushed / next)
° Block structured languages contain link to lexically enclosing frame
° Compilers normally keep scalar variables in registers, not memory!

High Mem

Low Mem

361 Lec4.27

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

MIPS: Software conventions for Registers

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

Plus a 3-deep stack of mode bits.

361 Lec4.28

Example in C: swap

swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

° Assume swap is called as a procedure
° Assume temp is register $15; arguments in $a1, $a2; $16 is scratch reg:
° Write MIPS code

361 Lec4.29

swap: MIPS
swap:
 addiu $sp,$sp, –4 ; create space on stack

sw $16, 4($sp) ; callee saved register put onto stack
sll $t2, $a2,2 ; mulitply k by 4
addu $t2, $a1,$t2 ; address of v[k]
lw $15, 0($t2) ; load v[k[
lw $16, 4($t2) ; load v[k+1]
sw $16, 0($t2) ; store v[k+1] into v[k]
sw $15, 4($t2) ; store old value of v[k] into v[k+1]
lw $16, 4($sp) ; callee saved register restored from stack
addiu $sp,$sp, 4 ; restore top of stack
jr $31 ; return to place that called swap

361 Lec4.30

Delayed Branches

° In the “Raw” MIPS the instruction after the branch is executed even
when the branch is taken?

• This is hidden by the assembler for the MIPS “virtual machine”
• allows the compiler to better utilize the instruction pipeline (???)

li r3, #7

sub r4, r4, 1

bz r4, LL

addi r5, r3, 1

subi r6, r6, 2

LL: slt r1, r3, r5

361 Lec4.31

Branch & Pipelines

execute

Branch

Delay Slot

Branch Target

By the end of Branch instruction, the CPU knows whether or not
the branch will take place.

However, it will have fetched the next instruction by then,
regardless of whether or not a branch will be taken.

Why not execute it?

ifetch execute

ifetch execute

ifetch execute
LL: slt r1, r3, r5

li r3, #7

sub r4, r4, 1

bz r4, LL

addi r5, r3, 1

Time

ifetch execute

361 Lec4.32

Filling Delayed Branches

Inst Fetch Dcd & Op Fetch ExecuteBranch:
Inst Fetch Dcd & Op Fetch

Inst Fetch

Executeexecute successor
even if branch taken!

Then branch target
or continue Single delay slot

impacts the critical path

•Compiler can fill a single delay
slot with a useful instruction 50%
of the time.

• try to move down from above
jump

•move up from target, if safe

add r3, r1, r2

sub r4, r4, 1

bz r4, LL

NOP

...

LL: add rd, ...

Is this violating the ISA abstraction?

361 Lec4.33

Standard and Delayed Interpretation
add rd, rs, rt R[rd] <- R[rs] + R[rt];

PC <- PC + 4;
beq rs, rt, offset if R[rs] == R[rt] then PC <- PC + SX(offset)

 else PC <- PC + 4;
sub rd, rs, rt . . .
. . .

L1: target

add rd, rs, rt R[rd] <- R[rs] + R[rt];
PC <- nPC; nPC <- nPC + 4;

beq rs, rt, offset if R[rd] == R[rt] then nPC <- nPC + SX(offset)
 else nPC <- nPC + 4;
PC <- nPC

sub rd, rs, rt . . .
. . .

L1: target

PC

PC
nPC

Delayed Loads?

361 Lec4.34

Delayed Branches (cont.)
Execution History

instr0

BCND X

instr1

instr2

 .

 .

 .

X:

PC

nPCPC

nPCPC

nPC

PC

nPC
t0t1t2t2'

Branch
Taken

Branch
Not

Taken

Branches are the bane (or pain!) of pipelined machines
Delayed branches complicate the compiler slightly, but make pipelining
 easier to implement and more effective
Good strategy to move some complexity to compile time

361 Lec4.35

Miscellaneous MIPS instructions

° break A breakpoint trap occurs, transfers control to
exception handler

° syscall A system trap occurs, transfers control to
exception handler

° coprocessor instrs. Support for floating point: discussed later
° TLB instructions Support for virtual memory: discussed later
° restore from exception Restores previous interrupt mask & kernel/user

mode bits into status register
° load word left/right Supports misaligned word loads
° store word left/right Supports misaligned word stores

361 Lec4.36

Details of the MIPS instruction set

° Register zero always has the value zero (even if you try to write it)
° Branch and jump instructions put the return address PC+4 into the link

register
° All instructions change all 32 bits of the destination reigster (including lui,

lb, lh) and all read all 32 bits of sources (add, sub, and, or, …)
° Immediate arithmetic and logical instructions are extended as follows:

• logical immediates are zero extended to 32 bits
• arithmetic immediates are sign extended to 32 bits

° The data loaded by the instructions lb and lh are extended as follows:
• lbu, lhu are zero extended
• lb, lh are sign extended

° Overflow can occur in these arithmetic and logical instructions:
• add, sub, addi
• it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult,

multu, div, divu

361 Lec4.37

Other ISAs

° Intel 8086/88 => 80286 => 80386 => 80486 => Pentium => P6
• 8086 few transistors to implement 16-bit microprocessor
• tried to be somewhat compatible with 8-bit microprocessor 8080
• successors added features which were missing from 8086 over

next 15 years
• product several different intel enigneers over 10 to 15 years
• Announced 1978

° VAX simple compilers & small code size =>
• efficient instruction encoding
• powerful addressing modes
• powerful instructions
• few registers
• product of a single talented architect
• Announced 1977

361 Lec4.38

MIPS / GCC Calling Conventions
FP
SPfact:

addiu $sp, $sp, -32
sw $ra, 20($sp)
sw $fp, 16($sp)
addiu$fp, $sp, 32

. . .
sw $a0, 0($fp)

...
lw $31, 20($sp)
lw $fp, 16($sp)
addiu$sp, $sp, 32
jr $31

ra
old FP

ra
old FP

ra

FP
SP
ra

FP
SP

low
address

First four arguments passed in registers.

361 Lec4.39

Machine Examples: Address & Registers

Intel 8086

VAX 11

MC 68000

MIPS

220 x 8 bit bytes
AX, BX, CX, DX
SP, BP, SI, DI
CS, SS, DS
IP, Flags

232 x 8 bit bytes
16 x 32 bit GPRs

224 x 8 bit bytes
8 x 32 bit GPRs
7 x 32 bit addr reg
1 x 32 bit SP
1 x 32 bit PC

232 x 8 bit bytes
32 x 32 bit GPRs
32 x 32 bit FPRs
HI, LO, PC

acc, index, count, quot
stack, string
code,stack,data segment

r15-- program counter
r14-- stack pointer
r13-- frame pointer
r12-- argument ptr

361 Lec4.40

VAX Operations

° General Format:
(operation) (datatype) (2, 3)

2 or 3 explicit operands
° For example

add (b, w, l, f, d) (2, 3)
 Yields

addb2 addw2 addl2 addf2 addd2
addb3 addw3 addl3 addf3 addd3

361 Lec4.41

swap: MIPS vs. VAX
swap:
 addiu $sp,$sp, –4 .word ^m<r0,r1,r2,r3> ; saves r0 to r3

sw $16, 4($sp)
sll $t2, $a2,2 movl r2, 4(ap) ; move arg v[] to
reg
addu $t2, $a1,$t2 movl r1, 8(ap) ; move arg k to reg
lw $15, 0($t2) movl r3, (r2)[r1] ; get v[k]
lw $16, 4($t2) addl3 r0, #1,8(ap) ; reg gets k+1
sw $16, 0($t2) movl (r2)[r1],(r2)[r0] ; v[k] = v[k+1]
sw $15, 4($t2) movl (r2)[r0],r3 ; v[k+1] gets old v[k]
lw $16, 4($sp)
addiu $sp,$sp, 4
jr $31 ret ; return to caller, restore r0 - r3

361 Lec4.42

Details of the MIPS instruction set
° Register zero always has the value zero (even if you try to write it)
° Branch/jump and link put the return addr. PC+4 into the link register

(R31)
° All instructions change all 32 bits of the destination register

(including lui, lb, lh) and all read all 32 bits of sources (add, sub, and,
or, …)

° Immediate arithmetic and logical instructions are extended as
follows:

• logical immediates ops are zero extended to 32 bits
• arithmetic immediates ops are sign extended to 32 bits (including addu)

° The data loaded by the instructions lb and lh are extended as follows:
• lbu, lhu are zero extended
• lb, lh are sign extended

° Overflow can occur in these arithmetic and logical instructions:
• add, sub, addi
• it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult,

multu, div, divu

361 Lec4.43

Miscellaneous MIPS I instructions

° break A breakpoint trap occurs, transfers control
to exception handler

° syscall A system trap occurs, transfers control to
exception handler

° coprocessor instrs. Support for floating point
° TLB instructions Support for virtual memory: discussed later
° restore from exception Restores previous interrupt mask &

kernel/user mode bits into status register
° load word left/right Supports misaligned word loads
° store word left/right Supports misaligned word stores

361 Lec4.44

Summary

° Use general purpose registers with a load-store architecture: YES
° Provide at least 16 general purpose registers plus separate floating-

point registers: 31 GPR & 32 FPR
° Support these addressing modes: displacement (with an address offset

size of 12 to 16 bits), immediate (size 8 to 16 bits), and register
deferred; : YES: 16 bits for immediate, displacement (disp=0 => register
deferred)

° All addressing modes apply to all data transfer instructions : YES
° Use fixed instruction encoding if interested in performance and use

variable instruction encoding if interested in code size : Fixed
° Support these data sizes and types: 8-bit, 16-bit, 32-bit integers and 32-

bit and 64-bit IEEE 754 floating point numbers: YES
° Support these simple instructions, since they will dominate the number

of instructions executed: load, store, add, subtract, move register-
register, and, shift, compare equal, compare not equal, branch (with a
PC-relative address at least 8-bits long), jump, call, and return: YES, 16b

° Aim for a minimalist instruction set: YES

361 Lec4.45

Summary: Salient features of MIPS R3000

•32-bit fixed format inst (3 formats)
•32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

•partitioned by software convention
•3-address, reg-reg arithmetic instr.
•Single address mode for load/store: base+displacement

–no indirection
–16-bit immediate plus LUI
•Simple branch conditions

• compare against zero or two registers for =
• no condition codes

•Delayed branch
•execute instruction after the branch (or jump) even if
the banch is taken (Compiler can fill a delayed branch with
useful work about 50% of the time)

