361
Computer Architecture
Lecture 12: Designing a Pipeline Processor

pipeline.1

Overview of a Multiple Cycle Implementation

° The root of the single cycle processor’s problems:
» The cycle time has to be long enough for the slowest instruction

° Solution:
* Break the instruction into smaller steps
+ Execute each step (instead of the entire instruction) in one cycle
- Cycle time: time it takes to execute the longest step
- Keep all the steps to have similar length
» This is the essence of the multiple cycle processor

° The advantages of the multiple cycle processor:
+ Cycle time is much shorter
« Different instructions take different number of cycles to complete
- Load takes five cycles
- Jump only takes three cycles
+ Allows a functional unit to be used more than once per instruction

pipeline.2

Multiple Cycle Processor

° MCP: A functional unit to be used more than once per instruction

PCWr PCWrCond

\Wr IRWr RegDst RegWr ALUSelA

T
32
0 Ra
32 |z RAdr 5
3 5 Ideal Rb bus.
ca 5 Reg File | 32
Memory % € 4—>
3 WrAdr |32 g Rw
Din Dout] ,—)bustusB 32
2 Mux 0N — ALU
<<2 Control
Imm Extend
16 l—l_‘ 2 ALUOp
ExtOp MemtoReg ALUSelB
pipeline.3

Outline of Today’s Lecture
° Recap and Introduction
° Introduction to the Concept of Pipelined Processor
° Pipelined Datapath and Pipelined Control
° How to Avoid Race Condition in a Pipeline Design?
° Pipeline Example: Instructions Interaction

o

Summary

pipeline.4

Pipelining is Natural!

o

Laundry Example

Sammy, Marc, Griffy, Albert 556&

each have one load of clothes
to wash, dry, and fold

o

o

Washer takes 30 minutes

o

Dryer takes 30 minutes

o

“Folder” takes 30 minutes

“Stasher” takes 30 minutes
to put clothes into drawers

o

pipeline.5

Sequential Laundry

6|PM 7 8 9 10 11 12 1 2AM

»
>

| | | | | | | | | | |
3030130/ 30/ 30'3@'30'30' 30'30'30/30/ 3030130/ 30!

T
= . Time
|lo@g 4"
=K
‘| B Ao
& A ge.
0 A
OB
d
e
r ° Sequential laundry takes 8 hours for 4 loads

° If they learned pipelining, how long would laundry take?

pipeline.6

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 11 12 1 2AM

v

Time

° Pipelined laundry takes 3.5 hours for 4 loads!

pipeline.7

Pipelining Lessons

o

Pipelining doesn’t help latency
9 of single task, it helps
throughput of entire workload

Time

°

Multiple tasks operating
l ‘ ‘ ’ l l simultaneously using different

3030 30 30 30 30 30 resources

p Potential speedup = Number

pipe stages

o

o

Pipeline rate limited by slowest
pipeline stage

o

R Unbalanced lengths of pipe
A stages reduces speedup

Time to “fill” pipeline and time to
“drain” it reduces speedup

o

o

Stall for Dependences

pipeline.8

Why Pipeline?

o

Suppose we execute 100 instructions

° Single Cycle Machine
* 45 ns/cycle x 1 CPI x 100 inst = 4500 ns

o

Multicycle Machine
* 10 ns/cycle x 4.6 CPI (due to inst mix) x 100 inst = 4600 ns

o

Ideal pipelined machine
* 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

pipeline.9

Timing Diagram of a Load Instruction

| Instruction Fetch Instr Decode / Address | Data Memory

1 1
T T
Reg. Fetch
o] | Ree e
1 1
! !

Reg Wr |

e R

1

T

T

1

1

L

pc _OldValue | X New Value 1
1] [1
€, Instruction MemoryjAccess Time |
]

L

|
|
| |
(R)S‘ [;_t‘ Rd, | Old Value)I(New Valdc ! |
p, Func
| 'H: Delay through Control Logic |
ALUctr I Old Value I X New Value I I I
T 0 h 0 0 0 T
ExtOp Old Value | I/)\ New Value | | I
[1! 1 1 1 |
ALUSrc Old Value | !{/ h\lcw Value : : |
I 1 1 1 1 I =
RegWr | Old Value : ,Y :Ncw Value : : | &
'%:»: Register File /\Icccss Time : g
busA Old Value ! New Value 1 -
T | T T =
Delay through Extender & Mux IéL)| 1 1 =
busB I Old Value ! X :Ncw Value : I =
=
! H ALU Delay ! ! =4
Address T Old Value X New Value T =
1 1
: Data Memory Access Time i : %
busW | Old Value !)I(New |
T T

pipeline.10 - '

o

o

o

o

o

The Five Stages of Load

{ Cycle1iCycle2 i Cycle3iCycle4 iCycle5 §

Loadl Ifetch ||Reg/Dec| Exec I Mem || Wr |

Ifetch: Instruction Fetch
* Fetch the instruction from the Instruction Memory

Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address
Mem: Read the data from the Data Memory

Wr: Write the data back to the register file

pipeline.11

Pipelining the Load Instruction

{ Cycle1iCycle2 | Cycle3iCycle4 {Cycle5 Cycle 6 i Cycle7

ok L L L L LT LI LT L

Ist lw| Ifetch IReg/Dec“ Exec I Meml Wr |

2ndlw| Ifetch ||Reg/Dec| Exec I Mem || Wr |

3rd lw| Ifetch IReg/DecI Exec || Mem || Wr |

° The five independent functional units in the pipeline datapath are:

* Instruction Memory for the Ifetch stage

* Register File’s Read ports (bus A and busB) for the Reg/Dec stage
+ ALU for the Exec stage

+ Data Memory for the Mem stage

+ Register File’s Write port (bus W) for the Wr stage

° One instruction enters the pipeline every cycle

+ One instruction comes out of the pipeline (complete) every cycle
+ The “Effective” Cycles per Instruction (CPI) is 1

pipeline.12

Conventional Pipelined Execution Representation

Time

v

|IFetch|Dcd IExec ||Mem |WB |

|IFetch|Dcd ||Exec IMem |WB |

|IFetch||Dcd IExec ||v|em || WB |

|IFetch|Dcd IExec |||v|em || WB |

|IFetch|Dcd ||Exec ||Mem |WB |

v Program Flow

|IFetch||Dcd ||Exec IMem || WB |

pipeline.13

Single Cycle, Multiple Cycle, vs. Pipeline
it Cycle 1 > it Cycle 2
Clk

LY.

Sing:e Cycle Implementation:

Load Store | Waste

Cycle 1iCycle 2 Cycle 3i Cycle 4i Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cyclé 10

PG N [)y [y [N

Multiple Cycle Implementation:
Load Store R-type
Ifetch || Reg || Exec || Mem || Wr Ifetch || Reg || Exec || Mem | Ifetch

Pipeline Implementation:

Loadl Ifetch || Reg || Exec || Mem || Wr |

Storel Ifetch || Reg || Exec || Mem || Wr |

R-typel Ifetchl Reg IExec IMem I Wr |

pipeline.14

Why Pipeline? Because the resources are there!

Time (clock cycles)

v

rl7 Inst 0 E

rf Inst 1

o |Inst 2

s Inst 3 —

' YInst 4]E Reg

pipeline.15

Can pipelining get us into trouble?

° Yes: Pipeline Hazards

« structural hazards: attempt to use the same resource two
different ways at the same time

- E.g., combined washer/dryer would be a structural hazard
or folder busy doing something else (watching TV)

« data hazards: attempt to use item before it is ready

- E.g., one sock of pair in dryer and one in washer; can’t
fold until get sock from washer through dryer

- instruction depends on result of prior instruction still in
the pipeline

« control hazards: attempt to make a decision before condition is
evaulated

- E.g., washing football uniforms and need to get proper
detergent level; need to see after dryer before next load in

- branch instructions

° Can always resolve hazards by waiting
* pipeline control must detect the hazard

inots take action (or delay action) to resolve hazards
pipeline.

Single Memory is a Structural Hazard

Time (clock cycles)

v

» |Load e IE'

S Mem|l|Reg 5 em __ﬁ

rf Instr 1 IE' :

o |Instr 2 em e Mem free]

’ R Byl

¢ |Instr3 B AT

“Hnstr
Detection is easy in this case! (right half highlight means read, left half write)

pipeline.17

Structural Hazards limit performance

° Example: if 1.3 memory accesses per instruction and only one memory
access per cycle then

+ average CPI 1.3
+ otherwise resource is more than 100% utilized
* More on Hazards later

pipeline.18

Pipelining the R-type and Load Instruction

{ Cycle1iCycle2 | Cycle3iCycle4 iCycle5 i Cycle 6 iCycle7 i Cycle8 i Cycle9 |

cock L L L L LT L LT

R-typel Ifetch ||Reg/Dec| Exec || Wr | Ops! We have aéproblem!é

R-typel Ifetch IReg/Dec“ Exec || Wr |

Loadl Ifetch ||Reg/Dec|| Exec I Mem Wr

R-typel Ifetch ||Reg/Dec| Exec Wr

R-typel Ifetch IReg/DecI Exec || Wr

° We have a problem:
« Two instructions try to write to the register file at the same time!

pipeline.19

The Four Stages of R-type

{ Cycle1iCycle2 | Cycle3iCycle4 |

[S (S S N [B

R-typel Ifetch ||Reg/Dec| Exec I Wr |

o

Ifetch: Instruction Fetch
+ Fetch the instruction from the Instruction Memory

o

Reg/Dec: Registers Fetch and Instruction Decode

Exec: ALU operates on the two register operands

° Wr: Write the ALU output back to the register file

pipeline.20

Important Observation

° Each functional unit can only be used once per instruction

° Each functional unit must be used at the same stage for all instructions:

* Load uses Register File’s Write Port during its 5th stage
1 2 3 4 5
Load | Ifetch IReg/Dec“ Exec || Mem I Wr |

* R-type uses Register File’s Write Port during its 4th stage

1 2 3 4
R-typel Ifetch IReg/Dec“ Exec || Wr |

pipeline.21

Solution 1: Insert “Bubble” into the Pipeline

{ Cycle1iCycle2 | Cycle3iCycle4 iCycle5 i Cycle 6 iCycle7 i Cycle8 i Cycle9 |

Clock

|Ifetch ||Reg/Dec| Exec || Wr |

Loadl Ifetch IReg/Dec“ Exec || Mem I Wr |

R-typel Ifetch ||Reg/Dec|| Exec |/\| Wr
R-typel Ifetch ||Reg/Dec Pipeline|| Exec || Wr
R-type| Ifetch | Bubble[Reg/Ded| Exec | wr |
\/l Ifetch ||Reg/Dec| Exec |

° Insert a “bubble” into the pipeline to prevent 2 writes at the same cycle
* The control logic can be complex

° No instruction is completed during Cycle 5:
+ The “Effective” CPI for load is >1

pipeline.22

11

Solution 2: Delay R-type’s Write by One Cycle

° Delay R-type’s register write by one cycle:
* Now R-type instructions also use Reg File’s write port at Stage 5
+ Mem stage is a NOOP stage: nothing is being done
1 2 3 4 5
R-typel Ifetch IReg/Dec“ Exec || Mem I Wr |

{ Cycle1iCycle2 | Cycle3iCycle4 iCycle5 i Cycle 6 iCycle7 i Cycle8 i Cycle9 |

cock L L L L L L LT

R-typel Ifetch ||Reg/Dec| Mem || Exec || Wr |

R-typel Ifetch IReg/Dec“ Mem || Exec I Wr |

Loadl Ifetch ||Reg/Dec|| Exec I Mem I Wr |

R-typel Ifetch ||Reg/Dec| Mem I Exec || Wr |

R-typel Ifetch IReg/DecI Mem || Exec I Wr

pipeline.23

The Four Stages of Store

{ Cycle1iCycle2 | Cycle3iCycle4 |

[S (S S N [B

Storel Ifetch ||Reg/Dec| Exec I Mem m

o

Ifetch: Instruction Fetch
+ Fetch the instruction from the Instruction Memory

o

Reg/Dec: Registers Fetch and Instruction Decode

o

Exec: Calculate the memory address

o

Mem: Write the data into the Data Memory

pipeline.24

12

The Four Stages of Beq

{ Cycle1iCycle2 | Cycle3iCycle4 |

[S (S S N [B

Beql Ifetch ||Reg/Dec| Exec I Mem m

o

Ifetch: Instruction Fetch
* Fetch the instruction from the Instruction Memory

o

Reg/Dec: Registers Fetch and Instruction Decode

o

Exec: ALU compares the two register operands
» Adder calculates the branch target address

o

Mem: If the registers we compared in the Exec stage are the same,
+ Write the branch target address into the PC

pipeline.25

A Pipelined Datapath

Clk |

v L

Ifetch

o= {-1------ <
e B R ol

kY

1
1
1
RegWr ExtOp ALUOp Branch 1
| 1
1
1
PC+4 pC+ =] H]
Imm16
Imm16f - =
5 Rs N ! E busA % | Zer Data 5
g ? Ll & busB = Mem B
= Rb = Exec > 5 RA Dd_ =
HIE g Uni > =
o, RFile & nit E WA z
a 2 . Di o,
Rw Dj by Z z
S| fRe LRI 5o g z 0
<1
Rd 1
| L1y | |
|
RegDst I ALUSrc MemWr MemtoReg !

pipeline.26

The Instruction Fetch Stage
° Location 10: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

/You are here!

oy | 2 R
: : Ifetch : Reg/Dec : : Exec v Mem v
| < | < | | < :
! ! RegWr ! ExtOp ALUOp ! Branch !
1 1 1 1 | 1
1 1
- | | | |
3 Dl ¢ 4 b 8
vy .1: LilSan] pCH >]
a Q@ =| Imml6
I = 5 " Imm16| - , > Z
= A = S Ra | E busA | o f= | Zer ata 5
=z e busB § Mem <
2| = ro ; Exec > 5 RA Do §
- 2] ™ rFie| |2 Unit z| P{wa z
2 Rw Dj z 0‘5 Di cr;
e gl *Hp g g
=[Tra) <1
LI — LI LI
|
RegDst ! ALUSrc MemWr MemtoReg I
pipeline.27
A Detail View of the Instruction Unit
° Location 10: lw $1, 0x100($2)
/You are here!
Ifetch Reg/Dec

HE
1
1
1
1
—
=
=
g
z
2
Address ‘;
Instruction =
Memory - fed
Instruction| =~

pipeline.28

14

The Decode / Register Fetch Stage
° Location 10: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]
/You are here!
Clk | + | @ | * L

: : Ifetch [Reg/Dec : : Exec v Mem v
| < | < | < | < :
! ! egWr I ExtOp ALUOp ! Branch 1
1 1 1 1 1
1 T T T ! 1
1 1 1 1 1
e S e ey Iy ey
5 — pCtd > H
=| Imml6 =
= i = Imm16|
” Rs % busA g Zer Data §
Ra z = Mem g
2 busB B =
—» Rb o Exec > 8 RA Do §
Rt . Unit | P wa
RFile & % z
4 o, Di s
Rt LRw Dj < 4 3
= 0 o g 0
Rd =L ¢ .
i =] i)
|
RegDstI ALUSrc MemWr MemtoReg !

pipeline.29

Load’s Address Calculation Stage
° Location 10: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

a»/You are here!

Clk | + | ¢ . |

: H Ifetch [Reg/Dec : Exec Vo Mem v
a N T
H H C! I H ExtOp=1 M I ranch H
1 1
i i i i i
e g NN m
g [mm16 » Imm16f 2 =
1 |Rs |—oe{ = =] busA g | Zer Data
> Ra = —> 2 M 5
—{ & busB = em S
> Ro o Exec =9 9 RA Dd_] =
t . i =%
RFile| |& Unit] 1% A Z
Rt LRw Di g Z - 5'
= o e 0
Rd :F > 2 ¢
L | L T 2] L]
RegDst=0 ALUSre=1 MemWr MemtoReg I

pipeline.30

15

A Detail View of the Execution Unit

You are here!

Exec «€— Mem

y

o 2]
2
jo—---

(B
1

=]

<

=

(3

PC+4 g

S 3
& busAa 32 g
z 32 9
=, 2
4| busB 'E"
g 12 0 H
=2 2

. 5 Z >
imml16 -1 3 ALUctr o

g 1 e

16 s 32 L g

L | = Control 1“1
ExtOp=1 ALUSre=1 3| ALUOp=Add

pipeline.31

Load’s Memory Access Stage
° Location 10: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

You are here!
N 2 2 @
: Ifetch : :

: : [Reg/Dec : : Exec [Mem V
h H ; Hl h Hl ; Hl ;
: : egWr : ExtOp ALUOp : Brdnch 0 :
1 T T T 1
1 1 1 1 1
B] PCd || g
é [mm16 Imm16f - 5
TR 5 busA [y |k Data 2
Ra] = busB § s
F>»{ rpy ; Exec {5 |== RADo*g'
Rt | File 2 Unit Zl > wa g
z T Di »

Rt LRw Dj e 5 5 E 0
Rd . > ;‘
Ll ol Ll _

RegDst ALUSrc MemWr=0 MemtoReg

pipeline.32

Load’s Write Back Stage
° Location 10: lw $1, 0x100($2) $1 <- Mem[($2) + 0x100]

You are somewhere out there!

TS S S S

: : Ifetch ' Reg/Dec : : Exec v Mem v Wr
|) < | < 1 i< 1
! I RegWr=1 I ExtOp ALUOp ! Branch 1
1 | | | 1
1 T T T ! 1
| | | | 1
e] pCd > H]
=| Imml6
=] Imm]16| - =
” Rs 5 busA % | Zer Data s
> Ra = = Mem]
15 busB S =
P o Exec > & RA D = -
Rt IRFile| |& Unit Z| > wa zl |2
z %, Di 3 s
Rt LRw Di s @ z
— 3 0 e s
Rd s .
—_— 1
| I | |

1
'ALUSrte MemWr! — MemtoRegd1

o

o3
"6

7

pipeline.33

How About Control Signals?

° Key Observation: Control Signals at Stage N = Func (Instr. at Stage N)
* N = Exec, Mem, or Wr

° Example: Controls Signals at Exec Stage = Func(Load’s Exec)

Vi Ifetch v Reg/Dec ' Exec ' Mem v
: o ! o we V! 7 ALUOp=Add : - el 5
h h CEWTI H EXtOQZI M I ranch H
1 1
e : : : .
1
4 S e ey $ ey
= PC+4 |l
g é [mml16 »Immlﬁ 2 =
1 |Rs | = busA g | Zer Data >
> Ra S el —> & Mem g
| 5} busB = g
> Rb = Exec |2 2 RA D 5
Rt IRFile| |& Unit S P> wa z
> i ')
Rt LRw Dj e g Di z
= = e 0
Rd EI > 2 = |
L L L2 | L
[

RegDst=0 ALUSre=1 MemWr MemtoReg

pipeline.34

17

Pipeline Control

° The Main Control generates the control signals during Reg/Dec
+ Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
+ Control signals for Mem (MemWr Branch) are used 2 cycles later
+ Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

: : Reg/Dec : : Exec : : Mem : : Wr

[[[[

e - N ey Iy
ALUSrc ALUSrc -

- ALUOp _ |=| ALUOp 5 =

z Main 4 =]

=] RegDst =1 | RegDst e =

= Control o] g

2 MemWr E MemWr E MemWr =

2 Branch 23 Branch Qg Branch ftg,

o _— e = IA

1 = <4 e
MemtoReg MemtoReg MemtoReg = | MemtoReg
RegWr RegWr RegWr RegWr

pipeline.35

Beginning of the Wr’s Stage: A Real World Problem

CIk CIk

RegAdri) Wradr | X
1

RegWr ! A MemWr!| A
RegWr’s Clk-to-Q

t

MemWr’s Clk-to-Q

't

ﬁl H ﬁ' H
6 RegAdr’s Clk-to-Q 6 WrAdr’s Clk-to-Q
RegWr MemWr

= =

e 2

g =

s o

= |RegAdr Reg 2 | WrAdr Data

Data File Data Memory

° At the beginning of the Wr stage, we have a problem if:
* RegAdr’s (Rd or Rt) Clk-to-Q > RegWr’s Clk-to-Q

° Similarly, at the beginning of the Mem stage, we have a problem if:
* WrAdr’s Clk-to-Q > MemWr’s Clk-to-Q

pi:e"ye_lg have a race condition between Address and Write Enable!

18

The Pipeline Problem

° Multiple Cycle design prevents race condition between Addr and WrEn:
+ Make sure Address is stable by the end of Cycle N
+ Asserts WrEn during Cycle N + 1

° This approach can NOT be used in the pipeline design because:
* Must be able to write the register file every cycle

* Must be able write the data memory every cycle

Storel Ifetch ||Reg/Dec|| Exec |I Mem || Wr |

Storel Ifetch ||Reg/Dec| Exec 1\Mem || |Wr | v
T H

R-typel Ifetch IReg/DecI Exec || Mem I/Wr |

R-typel Ifetch IReg/Dec“ Exec I\MeuLl Wr

pipeline.37

Synchronize Register File & Synchronize Memory

° Solution: And the Write Enable signal with the Clock
« This is the ONLY place where gating the clock is used
* MUST consult circuit expert to ensure no timing violation:
- Example: Clock High Time > Write Access Delay

Clk Synchronize Memory and Register File

| x Address, Data, and WrEn must be stable
L Addr at least 1 set-up time before the Clk edge

Write occurs at the cycle following

|
C_WrEn 1 / the clock edge that captures the signals
T
}
WrEn
WrEn] C_WrEn l
I_WrEn -
— AddressE Res Fil
5 Data eg Tile
Address 1 _Addr Reg File or
Data 1 Data or Ck | Memory
LI Memory y
pipeline.38

19

A More Extensive Pipelining Example
{ Cycle1iCycle2 | Cycle3iCycle4 iCycle5 i Cycle6 i Cycle7 i Cycle8 |
Clock

0: Load| Ifetch ||Reg/Dec| Exec || Mem Wr |

4: R-typel Ifetch IReg/Dec“ Exec || Mem I Wr

8: Storel Ifetch ||Reg/De || Exec I Mem I Wr

12: Beq (target is 1000) | Ifetch [[Reg/Ded]| Exec [Mem | wr |

O

End of Endof Endof Endof
Cycle4 Cycle5 Cycle6 Cycle?7

° End of Cycle 4: Load’s Mem, R-type’s Exec, Store’s Reg, Beq’s Ifetch
° End of Cycle 5: Load’s Wr, R-type’s Mem, Store’s Exec, Beq’s Reg
° End of Cycle 6: R-type’s Wr, Store’s Mem, Beq’s Exec

° End of Cycle 7: Store’s Wr, Beq’s Mem

pipeline.39

Pipelining Example: End of Cycle 4
° 0: Load’s Mem 4: R-type’s Exec 8: Store’s Reg 12: Beq’s Ifetch

8: Store’s Reg

. 4:R-type’s Exec' ; 0: Load’s Mem

H I 1 |
Fa (I [1
: f12: Beq’s Ifet ' : : ' ALUOp=R-t e: :
! I RegWr= 1 ExtOp=x 1 Branch=0 1
1 |] | | | 1
1 1
" I Clk| | | |
& & = é ped ‘_' é PC+4 —>%— é
s Q 2| Imml6 | E < =
a £ g S Imm16 2 g
I S % g
A A z Rs N e | busA 5 Zer Data 2
° 1= a = busB w Mem 2
= Rb 3 Exec (S & [RA Doy | =
E 2| R - i < S
z RFile - Unit S| waA 5
g Rt LRw g s Di v
<8 t L > = =4

* 0 0

: 2 [[cLla (2 > g |
=] = -

|

RegDst=1 ALUSrc=0 Clk . MemtoReg=x

MemWr=0
pipeline.40

20

Pipelining Example: End of Cycle 5
° 0:Lw’s Wr 4:R’s Mem 8: Store’s Exec 12: Beq’s Reg 16: R’s Ifetch

12: Beq’s Reg . 8:Store’s Exec ' : 4: R-type’s Mem

1 | i
| I (e [1
P16 R? i 0:Load’s Wr H :
116 Ros Ifet ! ! ALUOp=Add | '
: : RegWr=1 : ExtOp=1 : Fpranch=0 :
1 1
" I Clk| | | |
ol e EEN I =
g Q | Imml6 = S e
r'S g = Imml = 5
i A =z Rs % == busA £ | Zerd | Data 2
< ; Ra ? busB w Mem ;
e 5 Rb ﬁ, Exec [=p| § RA Do—>» & T
g Rt | R File z Unit | P wa b X
= . 2 > > Di @ =
Rt LRw Dj > =
1=-® |:——> &0 s > £
G L N | S 2 TE
| LY L2 | =
1 1
| | |
RegDSt=X AL USre=1 M C\l)\l;_OD- MemtoReg=1
emWr=|
pipeline.41

Pipelining Example: End of Cycle 6
° 4:R’s Wr 8: Store’s Mem 12: Beq’s Exec 16: R’s Reg 20: R’s Ifet

. 16: R-type’s Reg . 12: Beq’s Exec ; 8: Store’s Mem

3 B3 -

i |
1]) !
i 20: i 4: R-type’s Wr | :

1 | H - !
I R-type’s Ifet ! 1 fLUO =Sub B '
| | RegWr=l :_QEXtO =1 ! eranch—o !
I 1
e i Clk| | ! !
= S El PCra fo - E
g Q@ Z| Imml6 | = |5 =
a - =] T 5’ Imml 2 g
'l A - Rs 5 [=-{ busA S Zerd | Data g
s Z Ra g busB o Mem ad

g Rb -gq Exec [—» E RA Do—>»{ g 1

E (2] | |RFile| |2 unit | |5 WA E

s H = Di = =

Rw Di @ >

I f=® Rt LW b >[5 §) U)J
2| |Rd el], = 5
— L= il 1=

I I
|
MemtoReg=0
pipeline.42

21

Pipelining Example: End of Cycle 7
° 8: Store’s Wr 12: Beq’s Mem 16: R’s Exec 20: R’s Reg 24: R’s Ifet

. 20: R-type’s Reg . 16: R-type’s Exec- ; 12: Beq’s Mem

-

L -

24:
R-type’s Ifet

8: Store’s Wr

ALUOp=R-type

' i
I I
1 1 1
1 1 1
! I RegWr=0 ExtOp=x ! Branch=1 1
1 1 1 1 1
1 T T T 1
| ,i . | Clk | | | 1
T
s s .0 3 s] 3
= = = |] PCH4 [& =
| £ g Imml6 | 5‘ Imm1 2 5
~ Rs 2 e

§ A = s e = | busA g Zer Data §
=3 3 < busB = Mem Z
E |2 Rb ® Exec (59 5 RA D= 2
g% rEie| |2 Unit | [B] {wa E
= . s 2 Di -y

1 [® Rt Bw i Lo ? s 0
2| R o > 2 ?
| L= | L2 | g

|

RegDst=1 AT USrc=0 " C\l)\l;_OD- MemtoReg=x

emWr=
pipeline.43

The Delay Branch Phenomenon
! Cycle4iCycle5 | Cycle6iCycle7 iCycle8 i Cycle9 | Cycle 10} Cycle 11
Clk

12: Beql Ifetch || Reg/DecI Exec || Mem, Wr |
(target is 1000) :
16: Rtynﬂl Ifetch IReg/Dec“ Exec || Mem I Wr |

20: R—typel‘lfetch ||Reg/De“ Exec I Mem I Wr |

24: R—typel Ifetch %eg/DecI Exec I Mem || Wr |

1000: Target of Br "Ifetch IReg/DecI Exec || Mem I Wr
V

° Although Beq is fetched during Cycle 4:
+ Target address is NOT written into the PC until the end of Cycle 7
+ Branch’s target is NOT fetched until Cycle 8
* 3-instruction delay before the branch take effect

° This is referred to as Branch Hazard:
+ Clever design techniques can reduce the delay to ONE instruction

pipeline.44

The Delay Load Phenomenon
{ Cycle1iCycle2 | Cycle3iCycle4 iCycle5 i Cycle 6 i Cycle7 i Cycle8 |

Clock

10: Load| Ifetch ||Reg/Dec| Exec I Mem_“ Wr ‘|
: \

Plus 1 [Ifetch [Reg/De] Exec [Mem[[| wr]

Plus2| Ifetch IReg/DeclliExec Mem I Wr |

Plus 3 [Ifetch |Reg/Ded]] Exec | Mem | wr |

Plus4| Ifetch \IIReg/DecI Exec || Mem || Wr
V

° Although Load is fetched during Cycle 1:
+ The data is NOT written into the Reg File until the end of Cycle 5
* We cannot read this value from the Reg File until Cycle 6
* 3-instruction delay before the load take effect

° This is referred to as Data Hazard:
+ Clever design techniques can reduce the delay to ONE instruction

pipeline.45

Summary

° Disadvantages of the Single Cycle Processor
* Long cycle time
+ Cycle time is too long for all instructions except the Load

° Multiple Clock Cycle Processor:
* Divide the instructions into smaller steps
+ Execute each step (instead of the entire instruction) in one cycle

° Pipeline Processor:
+ Natural enhancement of the multiple clock cycle processor
+ Each functional unit can only be used once per instruction
« If a instruction is going to use a functional unit:
- it must use it at the same stage as all other instructions
* Pipeline Control:

- Each stage’s control signal depends ONLY on the instruction
that is currently in that stage

pipeline.46

23

