361
Computer Architecture
Lecture 14: Cache Memory

cache.1

The Motivation for Caches
Memory System

Processor [€ Cachd €| DRAM

° Motivation:
* Large memories (DRAM) are slow
+ Small memories (SRAM) are fast

° Make the average access time small by:
» Servicing most accesses from a small, fast memory.

° Reduce the bandwidth required of the large memory

cache.2

Outline of Today’s Lecture

° Recap of Memory Hierarchy & Introduction to Cache
° A In-depth Look at the Operation of Cache

¢ Cache Write and Replacement Policy

° Summary

cache.3

An Expanded View of the Memory System

Processor
Control
1 Memory
Memory
= =
Datapath| & ® Memory
3 3
=] =}
< <
Speed: Fastest Slowest
Size: Smallest Biggest
Lowest

Cost: Highest

cache.4

Levels of the Memory Hierarchy

cache.5

2apacit};" Upper Level
ccess Time i
Acce Staglng_
Xfer Unit faster
CPU Registers | Reaqi
100s Bytes eglstersl
<10s ns Instr. O d prog./compiler
. Operands 1-8 bytes
Cache
1Ko‘5'1>ggs Cache
- ns
$.01-.001/bit cache cntl
Blocks 8-128 bytes
Main Memory
M Bytes Memory
100ns-1us
$.01-.001 0s
Pages 512-4K bytes

Disk
G Bytes Disk
10310

-10 cents Files user/operator

Mbytes

Tape Larger
infinite
secamin Tape Lower Level
10°

The Principle of Locality

Probability
of reference

A

0 Address Space

What are the principles of Locality?

cache.6

The Principle of Locality

Probability A
of reference

Y

0 Address Space 2

° The Principle of Locality:

* Program access a relatively small portion of the address space at
any instant of time.

+ Example: 90% of time in 10% of the code

° Two Different Types of Locality:

» Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon.

+ Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

cache.7

Memory Hierarchy: Principles of Operation

° At any given time, data is copied between only 2 adjacent levels:
* Upper Level (Cache) : the one closer to the processor
- Smaller, faster, and uses more expensive technology
* Lower Level (Memory): the one further away from the processor
- Bigger, slower, and uses less expensive technology

° Block:

* The minimum unit of information that can either be present or not
present in the two level hierarchy

Lower Level
_ To Processor | Upper Level (Memory)
- (Cache)
BkX [€ >
From Processor > l:’ BIk Y

cache.8

Memory Hierarchy: Terminology

° Hit: data appears in some block in the upper level (example: Block X)
+ Hit Rate: the fraction of memory access found in the upper level
 Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

° Miss: data needs to be retrieve from a block in the lower level (Block Y)

* Miss Rate =1 - (Hit Rate)

* Miss Penalty = Time to replace a block in the upper level +
Time to deliver the block the processor

° Hit Time << Miss Penalty

Lower Level

To Processor | Upper Level (Memory)
- (Cache)

Blk X

From Processor > l:’

\
Y

Blk' Y

[]

cache.9

Basic Terminology: Typical Values

Typical Values

Block (line) size 4 - 128 bytes
[Hit ime T-4 cycles
Miss penalty 8 - 32 cycles (and increasing)
(access time) (6-10 cycles)
(transfer time) (2 - 22 cycles)
Miss rate 1% - 20%
Cache Size 1 KB - 256 KB

cache.10

How Does Cache Work?

° Temporal Locality (Locality in Time): If an item is referenced, it will tend
to be referenced again soon.

* Keep more recently accessed data items closer to the processor
° Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.
* Move blocks consists of contiguous words to the cache

Lower Level
_ To Processor | Upper Level Memory
Cache
Blk X - -

From Processor > D]:I] Blk Y

cache.11

The Simplest Cache: Direct Mapped Cache

Memory Address Memory

~

4 Byte Direct Mapped Cache
Cache Index
0

1
2
3

° Location 0 can be occupied by data from:
* Memory location 0, 4, 8, ... etc.

 In general: any memory location
whose 2 LSBs of the address are 0s

* Address<1:0> => cache index

° Which one should we place in the cache?

HE O AT P LS ® AN R RN =S

° How can we tell which one is in the cache?

cache.12

Cache Tag and Cache Index

° Assume a 32-bit memory (byte) address:
* A 2**N bytes direct mapped cache:
- Cache Index: The lower N bits of the memory address
- Cache Tag: The upper (32 - N) bits of the memory address

31 N 0
Cache Tag Example: 0x50 I Cache Index Ex: 0x03
Stored as pa:“t . s N Bytes
Valid Bit of the cache “state Direct Mapped Cache
|| Byte 0 0
|| Byte 1 1
|| Byte 2
|| 0x50 Byte 3 3 -
| Byte2+*N-1__ |2N.1
cache.13
Cache Access Example
vV T Dat
Start Up 28 =
Access 000 01 —> Access 000 01 —>~1 000 M [00001]
(miss) (HIT) 010 | [M[01010]
Miss Handling:
Write Tag & Set v Load Data
000 M [00001]
1 000 M [00001
Access 010 10 —>| 010 M [01010]
Access 010 10 —> (HlT) b
(miss)
Load Data
Write Tag & Set V ° Sad Fact of Life:
* A lot of misses at start up:
000_| | M[00001] Compulsory Misses
1 010 f |M[01010 - (Cold start misses)

cache.14

~)

Definition of a Cache Block

° Cache Block: the cache data that has in its own cache tag

° Our previous “extreme” example:
* 4-byte Direct Mapped cache: Block Size = 1 Byte

» Take advantage of Temporal Locality: If a byte is referenced,
it will tend to be referenced soon.

 Did not take advantage of Spatial Locality: If a byte is referenced,
its adjacent bytes will be referenced soon.

° In order to take advantage of Spatial Locality: increase the block size

Valid Cache Tag Direct Mapped Cache Data
Byte 0
Byte 1
Byte 2
Byte 3

cache.15

Example: 1 KB Direct Mapped Cache with 32 B Blocks

° For a2 ** N byte cache:
* The uppermost (32 - N) bits are always the Cache Tag
* The lowest M bits are the Byte Select (Block Size = 2 ** M)

31 9 4 0
Cache Tag Example: 0x50 I Cache Index I Byte Select

Ex: 0x01 Ex: 0x00
Stored as part |
of the cache “state”

Valid Bit Cache Tag Cache Data
|| Byte 31| °° |Bytel |Bytd0 | 0
| 0x50 Byte 63| °° | Byte 33| Byte 32| 1€—

Byte 1023 °° Byte 992 | 31

cache.16

Block Size Tradeoff

° In general, larger block size take advantage of spatial locality BUT:
* Larger block size means larger miss penalty:
- Takes longer time to fill up the block
« If block size is too big relative to cache size, miss rate will go up

° Average Access Time:
» = Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Average
Miss Miss A-?icn'::s
Penalty Rate Exp|oits Spatial Locality

Increased Miss Penalty
Fewer blocks: & Miss Rate

compromises
temporal locality

.

Block Size Block Size Block Size

cache.17

Another Extreme Example

Valid Bit Cache Tag Cache Data
] | | [Byte3] Byte 2] Byte 1] Byte 0] 0
° Cache Size = 4 bytes Block Size = 4 bytes

* Only ONE entry in the cache

° True: If an item is accessed, likely that it will be accessed again soon
« But it is unlikely that it will be accessed again immediately!!!
* The next access will likely to be a miss again

- Continually loading data into the cache but
discard (force out) them before they are used again

- Worst nightmare of a cache designer: Ping Pong Effect

° Conflict Misses are misses caused by:
+ Different memory locations mapped to the same cache index
- Solution 1: make the cache size bigger
- Solution 2: Multiple entries for the same Cache Index

cache.18

A Two-way Set Associative Cache

° N-way set associative: N entries for each Cache Index
* N direct mapped caches operates in parallel

° Example: Two-way set associative cache
* Cache Index selects a “set” from the cache 1_ _ _ _ _ K
* The two tags in the set are compared in parallel
* Data is selected based on the tag result

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

¥ Cache Block

cache.19

Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped Cache:
* N comparators vs. 1
» Extra MUX delay for the data
+ Data comes AFTER Hit/Miss

° In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
» Possible to assume a hit and continue. Recover later if miss.

¥ Cache Block

cache.20

Cache Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

1(

And yet Another Extreme Example: Fully Associative

° Fully Associative Cache -- push the set associative idea to its limit!
* Forget about the Cache Index
+ Compare the Cache Tags of all cache entries in parallel
+ Example: Block Size = 2 B blocks, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative cache

31 4 0
I Cache Tag (27 bits long) I Byte Select I
Ex: 0x01
Cache Tag Valid Bit Cache Data l

—>®<— | |[Byte31[“* |Byte1 [Byte0

—>(X)<— | |[Byte63| - |Byte33[Byte32

< i

—>(X)<—]

cache.21

A Summary on Sources of Cache Misses

° Compulsory (cold start, first reference): first access to a block
» “Cold” fact of life: not a whole lot you can do about it

° Conflict (collision):

* Multiple memory locations mapped
to the same cache location

» Solution 1: increase cache size
» Solution 2: increase associativity

° Capacity:
» Cache cannot contain all blocks access by the program
+ Solution: increase cache size

° Invalidation: other process (e.g., I/0) updates memory

cache.22

1]

Source of Cache Misses Quiz

Direct Mapped

N-way Set Associative

Fully Associative

Cache Size

Compulsory Miss

Conflict Miss

Capacity Miss

Invalidation Miss

Categorize as high, medium, low, zero

cache.23

Sources of Cache Misses Answer

Direct Mapped N-way Set Associative Fully Associative
Cache Size Big Medium Small
Compulsory Miss High Medium Low
See Note| (but who cares!)
Conflict Miss High Medium Zero
Capacity Miss Low Medium High
Invalidation Miss Same Same Same

Note:

If you are going to run “billions” of instruction, Compulsory Misses are insignificant.

cache.24

Summary:

° The Principle of Locality:

* Program access a relatively small portion of the address space at
any instant of time.

- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

° Three Major Categories of Cache Misses:

« Compulsory Misses: sad facts of life. Example: cold start misses.

» Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

» Capacity Misses: increase cache size

cache.25

What about ..

° Replacement

° Writing

NEXT CLASS

cache.26

1:

The Need to Make a Decision!

o

Direct Mapped Cache:
+ Each memory location can only mapped to 1 cache location
* No need to make any decision :-)

- Current item replaced the previous item in that cache location

o

N-way Set Associative Cache:
+ Each memory location have a choice of N cache locations

o

Fully Associative Cache:
+ Each memory location can be placed in ANY cache location

Cache miss in a N-way Set Associative or Fully Associative Cache:
* Bring in new block from memory
* Throw out a cache block to make room for the new block
* Damn! We need to make a decision on which block to throw out!

cache.27

Cache Block Replacement Policy

° Random Replacement:
* Hardware randomly selects a cache item and throw it out

° Least Recently Used:
» Hardware keeps track of the access history
* Replace the entry that has not been used for the longest time

° Example of a Simple “Pseudo” Least Recently Used Implementation:
* Assume 64 Fully Associative Entries
* Hardware replacement pointer points to one cache entry
* Whenever an access is made to the entry the pointer points to:
- Move the pointer to the next entry
* Otherwise: do not move the pointer

Entry 0
Entry 1
Replacement
Pointer :
Entry 63

cache.28

14

Cache Write Policy: Write Through versus Write Back

¢ Cache read is much easier to handle than cache write:
* Instruction cache is much easier to design than data cache

¢ Cache write:
* How do we keep data in the cache and memory consistent?

° Two options (decision time again :-)

+ Write Back: write to cache only. Write the cache block to memory
when that cache block is being replaced on a cache miss.

- Need a “dirty” bit for each cache block
- Greatly reduce the memory bandwidth requirement
- Control can be complex
» Write Through: write to cache and memory at the same time.
- What!!! How can this be? Isn’t memory too slow for this?

cache.29

Write Buffer for Write Through

- | Cache [*€
Processor DRAM

>TTT—

Write Buffer

° A Write Buffer is needed between the Cache and Memory
* Processor: writes data into the cache and the write buffer
* Memory controller: write contents of the buffer to memory

° Write buffer is just a FIFO:
» Typical number of entries: 4
* Works fine if: Store frequency (w.r.t. time) << 1/ DRAM write cycle

° Memory system designer’s nightmare:
 Store frequency (w.r.t. time) -> 1/ DRAM write cycle
» Write buffer saturation

cache.30

1:

Write Buffer Saturation

-

> Cache [*€
Processor DRAM

Write Buffer

° Store frequency (w.r.t. time) -> 1/ DRAM write cycle

+ If this condition exist for a long period of time (CPU cycle time too
quick and/or too many store instructions in a row):

- Store buffer will overflow no matter how big you make it
- The CPU Cycle Time <= DRAM Write Cycle Time

A

° Solution for write buffer saturation:
* Use a write back cache
* Install a second level (L2) cache:

< >| Cache [*€ L2 |le o
Processor - > DRAM
Cache
>+
Write Buffer

cache.31

Write Allocate versus Not Allocate

° Assume: a 16-bit write to memory location 0x0 and causes a miss
* Do we read in the rest of the block (Byte 2, 3, ... 31)?
Yes: Write Allocate
No: Write Not Allocate

31 9 4 0
I Cache Tag Example: 0x00 , I Cache Index Byte Select
Ex: 0x00 Ex: 0x00
Valid Bit Cache Tag Cache Data ; Y
|| 0x00 Byte31] °* |Byte1 |Byte 0 | (€—

Byte 63| °° | Byte 33| Byte 32

W N -

Byte 1023 °° Byte 992 | 31

cache.32

16

What is a Sub-block?

° Sub-block:
« A unit within a block that has its own valid bit
* Example: 1 KB Direct Mapped Cache, 32-B Block, 8-B Sub-block

Each cache entry will have: 32/8 = 4 valid bits

° Write miss: only the bytes in that sub-block is brought in.

Cache Tag

cache.33

|SB3’s V Bit
|SB2’s V Bit
|SB1’s V Bit
|SB0’s V Bit

Cache Data

B31°* B24 B7 °* B0

Sub-block3 | Sub-block2 | Sub-block1 | Sub-block0

Byte 1023 Byte 992

W N = o

31

SPARCstation 20’s Memory System

cache.34

ya AN
Memory I
Controller Memory Bus (SIMM Bus) 128-bit wide datapath
\ o~ N-} w) - o o~ - = /
7S SIEIE IR E
= = =
14 N HIETEHIHIHIEIHIE
=l === == =]]| =
2 el el el el legllelel]z
z ElLE|l[E|[E][E])2&]|E]|¢2
X o I)) o) o 15
- =121 2121222 =
3 il iy SEH By Wiandl by Sinil gy Siani gy BEGEE By Sani by M1
E Processor Module (Mbus Module)
E SuperSPARC Processor
é‘ Instruction
- External Cache X
5 Cache Reg}ster
3 File
) Data
& Cache

<

SPARCSstation 20’s External Cache

Processor Module (Mbus Module)
SuperSPARC Processor
External
Cache Instruction
Cache N
1 MB Register
Direct Mapped File
Write Back Data
Write Allocate] Cache

° SPARCstation 20’s External Cache:
« Size and organization: 1 MB, direct mapped
» Block size: 128 B
* Sub-block size: 32 B
* Write Policy: Write back, write allocate

cache.35

SPARCstation 20’s Internal Instruction Cache

Processor Module (Mbus Module)

SuperSPARC Processor
External
Cache I-Cache
1MB 20 KB 5-way Register
Direct Mapped File
Write Back Data
Write Allocate Cache

° SPARCstation 20’s Internal Instruction Cache:
» Size and organization: 20 KB, 5-way Set Associative
* Block size: 64 B
* Sub-block size: 32 B
» Write Policy: Does not apply

° Note: Sub-block size the same as the External (L2) Cache

cache.36

1¢

SPARCSstation 20’s Internal Data Cache

Processor Module (Mbus Module)

SuperSPARC Processor
External
Cache I-Cache
1MB 20 KB S-way Register
Direct Mapped D-Cache File
Write Back
Write Allocate) 16 KB 4-way
WT, WNA

° SPARCstation 20’s Internal Data Cache:
 Size and organization: 16 KB, 4-way Set Associative
» Block size: 64 B
* Sub-block size: 32 B
* Write Policy: Write through, write not allocate

° Sub-block size the same as the External (L2) Cache

cache.37

Two Interesting Questions?

Processor Module (Mbus Module)

SuperSPARC Processor
External
Cache I-Cache
1MB 20 KB 5-way Register
Direct Mapped D-Cache File
Write Back
Write Allocate] 16 KB 4-way
WT, WNA

° Why did they use N-way set associative cache internally?

« Answer: A N-way set associative cache is like having N direct
mapped caches in parallel. They want each of those N direct
mapped cache to be 4 KB. Same as the “virtual page size.”

« Virtual Page Size: cover in next week’s virtual memory lecture

° How many levels of cache does SPARCstation 20 has?

* Answer: Three levels.
(1) Internal | & D caches, (2) External cache and (3) ...

cache.38

¢

SPARCstation 20’s Memory Module

° Supports a wide range of sizes:
* Smallest 4 MB: 16 2Mb DRAM chips, 8 KB of Page Mode SRAM

» Biggest: 64 MB: 32 16Mb chips, 16 KB of Page Mode SRAM

DRAM Chip 15
| 512 cols —>]
256K x 8
© =2 N;‘B
T DRAM Chip 0 o)
- @]
Z
~ 256K x 8 512 x 8 SRAM
a =2MB
i 8 bits bits<127:0>
512 x 8 SRAM
bits<7:0>| Memory Bus<127:0>
cache.39
Summary:

° The Principle of Locality:
* Program access a relatively small portion of the address space at
any instant of time.
- Temporal Locality: Locality in Time

- Spatial Locality: Locality in Space

° Three Major Categories of Cache Misses:

+ Compulsory Misses: sad facts of life. Example: cold start misses.

» Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

» Capacity Misses: increase cache size

° Write Policy:
» Write Through: need a write buffer. Nightmare: WB saturation

* Write Back: control can be complex

cache.40

2(

