
1

cache.1

361
Computer Architecture

Lecture 14: Cache Memory

cache.2

The Motivation for Caches

° Motivation:
• Large memories (DRAM) are slow
• Small memories (SRAM) are fast

° Make the average access time small by:
• Servicing most accesses from a small, fast memory.

° Reduce the bandwidth required of the large memory

Processor

Memory System

Cache DRAM

2

cache.3

Outline of Today’s Lecture

° Recap of Memory Hierarchy & Introduction to Cache

° A In-depth Look at the Operation of Cache

° Cache Write and Replacement Policy

° Summary

cache.4

An Expanded View of the Memory System

Control

Datapath

Memory

Processor

M
em

ory

Memory
Memory

M
em

ory

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:
Size:

Cost:

3

cache.5

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
$.01-.001/bit

Main Memory
M Bytes
100ns-1us
$.01-.001

Disk
G Bytes
ms
10 - 10 cents-3 -4

Capacity
Access Time
Cost

Tape
infinite
sec-min
10-6

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

cache.6

The Principle of Locality

Address Space0 2

Probability
of reference

What are the principles of Locality?

4

cache.7

The Principle of Locality

° The Principle of Locality:
• Program access a relatively small portion of the address space at

any instant of time.
• Example: 90% of time in 10% of the code

° Two Different Types of Locality:
• Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon.
• Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon.

Address Space0 2

Probability
of reference

cache.8

Memory Hierarchy: Principles of Operation

° At any given time, data is copied between only 2 adjacent levels:
• Upper Level (Cache) : the one closer to the processor

- Smaller, faster, and uses more expensive technology
• Lower Level (Memory): the one further away from the processor

- Bigger, slower, and uses less expensive technology

° Block:
• The minimum unit of information that can either be present or not

present in the two level hierarchy

Lower Level
(Memory)Upper Level

(Cache)
To Processor

From Processor
Blk X

Blk Y

5

cache.9

Memory Hierarchy: Terminology

° Hit: data appears in some block in the upper level (example: Block X)
• Hit Rate: the fraction of memory access found in the upper level
• Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

° Miss: data needs to be retrieve from a block in the lower level (Block Y)
• Miss Rate = 1 - (Hit Rate)
• Miss Penalty = Time to replace a block in the upper level +

Time to deliver the block the processor

° Hit Time << Miss Penalty

Lower Level
(Memory)Upper Level

(Cache)
To Processor

From Processor
Blk X

Blk Y

cache.10

Basic Terminology: Typical Values

Typical Values
Block (line) size 4 - 128 bytes
Hit time 1 - 4 cycles
Miss penalty 8 - 32 cycles (and increasing)

(access time) (6-10 cycles)
(transfer time) (2 - 22 cycles)

Miss rate 1% - 20%
Cache Size 1 KB - 256 KB

6

cache.11

How Does Cache Work?

° Temporal Locality (Locality in Time): If an item is referenced, it will tend
to be referenced again soon.

• Keep more recently accessed data items closer to the processor

° Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

• Move blocks consists of contiguous words to the cache

Lower Level
MemoryUpper Level

Cache
To Processor

From Processor
Blk X

Blk Y

cache.12

The Simplest Cache: Direct Mapped Cache

Memory

4 Byte Direct Mapped Cache

Memory Address
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache Index
0
1
2
3

° Location 0 can be occupied by data from:
• Memory location 0, 4, 8, ... etc.
• In general: any memory location

whose 2 LSBs of the address are 0s
• Address<1:0> => cache index

° Which one should we place in the cache?

° How can we tell which one is in the cache?

7

cache.13

Cache Tag and Cache Index

° Assume a 32-bit memory (byte) address:
• A 2**N bytes direct mapped cache:

- Cache Index: The lower N bits of the memory address
- Cache Tag: The upper (32 - N) bits of the memory address

Cache Index

0
1
2
3

2 - 1N

:

2 N Bytes
Direct Mapped Cache

Byte 0
Byte 1
Byte 2
Byte 3

Byte 2**N -1

0N31

:

Cache Tag Example: 0x50 Ex: 0x03

0x50

Stored as part
of the cache “state”Valid Bit

:

cache.14

Cache Access Example

Access 000 01

Start Up

000 M [00001]
Access 010 10

(miss)

(miss)

000 M [00001]
010 M [01010]

Tag DataV

000 M [00001]
010 M [01010]

Miss Handling:
Load DataWrite Tag & Set V

Load Data

Write Tag & Set V

Access 000 01
(HIT)

000 M [00001]
010 M [01010]Access 010 10

(HIT)

° Sad Fact of Life:
• A lot of misses at start up:

Compulsory Misses
- (Cold start misses)

8

cache.15

Definition of a Cache Block

° Cache Block: the cache data that has in its own cache tag

° Our previous “extreme” example:
• 4-byte Direct Mapped cache: Block Size = 1 Byte
• Take advantage of Temporal Locality: If a byte is referenced,

it will tend to be referenced soon.
• Did not take advantage of Spatial Locality: If a byte is referenced,

its adjacent bytes will be referenced soon.

° In order to take advantage of Spatial Locality: increase the block size

Direct Mapped Cache Data
Byte 0
Byte 1
Byte 2
Byte 3

Cache TagValid

cache.16

Example: 1 KB Direct Mapped Cache with 32 B Blocks

° For a 2 ** N byte cache:
• The uppermost (32 - N) bits are always the Cache Tag
• The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

9

cache.17

Block Size Tradeoff

° In general, larger block size take advantage of spatial locality BUT:
• Larger block size means larger miss penalty:

- Takes longer time to fill up the block
• If block size is too big relative to cache size, miss rate will go up

° Average Access Time:
• = Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

cache.18

Another Extreme Example

° Cache Size = 4 bytes Block Size = 4 bytes
• Only ONE entry in the cache

° True: If an item is accessed, likely that it will be accessed again soon
• But it is unlikely that it will be accessed again immediately!!!
• The next access will likely to be a miss again

- Continually loading data into the cache but
discard (force out) them before they are used again

- Worst nightmare of a cache designer: Ping Pong Effect

° Conflict Misses are misses caused by:
• Different memory locations mapped to the same cache index

- Solution 1: make the cache size bigger
- Solution 2: Multiple entries for the same Cache Index

0
Cache DataValid Bit

Byte 0Byte 1Byte 3
Cache Tag

Byte 2

10

cache.19

A Two-way Set Associative Cache

° N-way set associative: N entries for each Cache Index
• N direct mapped caches operates in parallel

° Example: Two-way set associative cache
• Cache Index selects a “set” from the cache
• The two tags in the set are compared in parallel
• Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cache.20

Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped Cache:
• N comparators vs. 1
• Extra MUX delay for the data
• Data comes AFTER Hit/Miss

° In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
• Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

11

cache.21

And yet Another Extreme Example: Fully Associative

° Fully Associative Cache -- push the set associative idea to its limit!
• Forget about the Cache Index
• Compare the Cache Tags of all cache entries in parallel
• Example: Block Size = 2 B blocks, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative cache

:

Cache Data
Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Cache Tag

Byte Select
Ex: 0x01

X

X
X

X

X

cache.22

A Summary on Sources of Cache Misses

° Compulsory (cold start, first reference): first access to a block
• “Cold” fact of life: not a whole lot you can do about it

° Conflict (collision):
• Multiple memory locations mapped

to the same cache location
• Solution 1: increase cache size
• Solution 2: increase associativity

° Capacity:
• Cache cannot contain all blocks access by the program
• Solution: increase cache size

° Invalidation: other process (e.g., I/O) updates memory

12

cache.23

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Invalidation Miss

Conflict Miss

Source of Cache Misses Quiz

Categorize as high, medium, low, zero

cache.24

Sources of Cache Misses Answer

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Invalidation Miss

See Note

Big Medium Small

Note:
If you are going to run “billions” of instruction, Compulsory Misses are insignificant.

High
(but who cares!)

Medium Low

Conflict Miss High Medium Zero

Low Medium High

Same Same Same

13

cache.25

Summary:

° The Principle of Locality:
• Program access a relatively small portion of the address space at

any instant of time.
- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

° Three Major Categories of Cache Misses:
• Compulsory Misses: sad facts of life. Example: cold start misses.
• Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!
• Capacity Misses: increase cache size

cache.26

What about ..

° Replacement

° Writing

NEXT CLASS

14

cache.27

The Need to Make a Decision!

° Direct Mapped Cache:
• Each memory location can only mapped to 1 cache location
• No need to make any decision :-)

- Current item replaced the previous item in that cache location

° N-way Set Associative Cache:
• Each memory location have a choice of N cache locations

° Fully Associative Cache:
• Each memory location can be placed in ANY cache location

° Cache miss in a N-way Set Associative or Fully Associative Cache:
• Bring in new block from memory
• Throw out a cache block to make room for the new block
• Damn! We need to make a decision on which block to throw out!

cache.28

Cache Block Replacement Policy

° Random Replacement:
• Hardware randomly selects a cache item and throw it out

° Least Recently Used:
• Hardware keeps track of the access history
• Replace the entry that has not been used for the longest time

° Example of a Simple “Pseudo” Least Recently Used Implementation:
• Assume 64 Fully Associative Entries
• Hardware replacement pointer points to one cache entry
• Whenever an access is made to the entry the pointer points to:

- Move the pointer to the next entry
• Otherwise: do not move the pointer

:

Entry 0
Entry 1

Entry 63

Replacement
Pointer

15

cache.29

Cache Write Policy: Write Through versus Write Back

° Cache read is much easier to handle than cache write:
• Instruction cache is much easier to design than data cache

° Cache write:
• How do we keep data in the cache and memory consistent?

° Two options (decision time again :-)
• Write Back: write to cache only. Write the cache block to memory

when that cache block is being replaced on a cache miss.
- Need a “dirty” bit for each cache block
- Greatly reduce the memory bandwidth requirement
- Control can be complex

• Write Through: write to cache and memory at the same time.
- What!!! How can this be? Isn’t memory too slow for this?

cache.30

Write Buffer for Write Through

° A Write Buffer is needed between the Cache and Memory
• Processor: writes data into the cache and the write buffer
• Memory controller: write contents of the buffer to memory

° Write buffer is just a FIFO:
• Typical number of entries: 4
• Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

° Memory system designer’s nightmare:
• Store frequency (w.r.t. time) -> 1 / DRAM write cycle
• Write buffer saturation

Processor
Cache

Write Buffer

DRAM

16

cache.31

Write Buffer Saturation

° Store frequency (w.r.t. time) -> 1 / DRAM write cycle
• If this condition exist for a long period of time (CPU cycle time too

quick and/or too many store instructions in a row):
- Store buffer will overflow no matter how big you make it
- The CPU Cycle Time <= DRAM Write Cycle Time

° Solution for write buffer saturation:
• Use a write back cache
• Install a second level (L2) cache:

Processor
Cache

Write Buffer

DRAM

Processor
Cache

Write Buffer

DRAML2
Cache

cache.32

Write Allocate versus Not Allocate

° Assume: a 16-bit write to memory location 0x0 and causes a miss
• Do we read in the rest of the block (Byte 2, 3, ... 31)?

Yes: Write Allocate
No: Write Not Allocate

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x00
Ex: 0x00

0x00
Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

17

cache.33

What is a Sub-block?

° Sub-block:
• A unit within a block that has its own valid bit
• Example: 1 KB Direct Mapped Cache, 32-B Block, 8-B Sub-block

- Each cache entry will have: 32/8 = 4 valid bits

° Write miss: only the bytes in that sub-block is brought in.

0
1
2
3

:

Cache Data

:

SB
0’

s V
 B

it

:

31

Cache Tag SB
1’

s V
 B

it

:

SB
2’

s V
 B

it

:

SB
3’

s V
 B

it

:

Sub-block0Sub-block1Sub-block2Sub-block3

: B0B7: B24B31

Byte 992Byte 1023

cache.34

Memory Bus (SIMM Bus) 128-bit wide datapath

SPARCstation 20’s Memory System

Memory
Controller

M
em

or
y

M
od

ul
e

0

Pr
oc

es
so

r
 B

us
 (M

bu
s)

 6
4-

bi
t w

id
e

M
em

or
y

M
od

ul
e

1

M
em

or
y

M
od

ul
e

2

M
em

or
y

M
od

ul
e

3

M
em

or
y

M
od

ul
e

4

M
em

or
y

M
od

ul
e

5

M
em

or
y

M
od

ul
e

6

M
em

or
y

M
od

ul
e

7

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

Instruction
Cache

Data
Cache

Register
File

18

cache.35

SPARCstation 20’s External Cache

° SPARCstation 20’s External Cache:
• Size and organization: 1 MB, direct mapped
• Block size: 128 B
• Sub-block size: 32 B
• Write Policy: Write back, write allocate

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

Instruction
Cache

Data
Cache

Register
File

1 MB
Direct Mapped

Write Back
Write Allocate

cache.36

SPARCstation 20’s Internal Instruction Cache

° SPARCstation 20’s Internal Instruction Cache:
• Size and organization: 20 KB, 5-way Set Associative
• Block size: 64 B
• Sub-block size: 32 B
• Write Policy: Does not apply

° Note: Sub-block size the same as the External (L2) Cache

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

I-Cache

Data
Cache

Register
File

1 MB
Direct Mapped

Write Back
Write Allocate

20 KB 5-way

19

cache.37

SPARCstation 20’s Internal Data Cache

° SPARCstation 20’s Internal Data Cache:
• Size and organization: 16 KB, 4-way Set Associative
• Block size: 64 B
• Sub-block size: 32 B
• Write Policy: Write through, write not allocate

° Sub-block size the same as the External (L2) Cache

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

I-Cache

D-Cache
Register

File
1 MB

Direct Mapped
Write Back

Write Allocate

20 KB 5-way

16 KB 4-way
WT, WNA

cache.38

Two Interesting Questions?

° Why did they use N-way set associative cache internally?
• Answer: A N-way set associative cache is like having N direct

mapped caches in parallel. They want each of those N direct
mapped cache to be 4 KB. Same as the “virtual page size.”

• Virtual Page Size: cover in next week’s virtual memory lecture

° How many levels of cache does SPARCstation 20 has?
• Answer: Three levels.

(1) Internal I & D caches, (2) External cache and (3) ...

Processor Module (Mbus Module)

External
Cache

SuperSPARC Processor

I-Cache

D-Cache
Register

File
1 MB

Direct Mapped
Write Back

Write Allocate

20 KB 5-way

16 KB 4-way
WT, WNA

20

cache.39

SPARCstation 20’s Memory Module

° Supports a wide range of sizes:
• Smallest 4 MB: 16 2Mb DRAM chips, 8 KB of Page Mode SRAM
• Biggest: 64 MB: 32 16Mb chips, 16 KB of Page Mode SRAM

51
2

ro
w

s

512 cols

DRAM Chip 0

bits<7:0>

8 bits

512 x 8 SRAM

256K x 8
= 2 MB

DRAM Chip 15

bits<127:0>

512 x 8 SRAM

256K x 8
= 2 MB

Memory Bus<127:0>

cache.40

Summary:

° The Principle of Locality:
• Program access a relatively small portion of the address space at

any instant of time.
- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

° Three Major Categories of Cache Misses:
• Compulsory Misses: sad facts of life. Example: cold start misses.
• Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!
• Capacity Misses: increase cache size

° Write Policy:
• Write Through: need a write buffer. Nightmare: WB saturation
• Write Back: control can be complex

