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ABSTRACT

This paper presents an efficient binary decisi@y@m solver for
live variable analysis of high level design langesmtike SpecC. A
novel representation of the program as a globalcgtre using
efficient data structure called Binary Decision @@ms is
presented. Based on the global structure of theyrpmo, a
relational framework for live variable analysigi®posed and the
solver algorithm is developed based on the relatiframework.
The algorithm obtains the fixed point of live vdnlia analysis in
iterations significantly less than the traditioriddaotic iteration
approach. The global representation of the prograimg Binary
Decision Diagrams and the ease of doing set thieavperations
in the domain of Binary Decision Diagrams helps gwver
algorithm to determine the fixed points of the gai efficiently.
Our experimental evaluations using the solver desmmate a
marked decrease in iterations over traditional epgh for fixed
point calculations.
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1. INTRODUCTION

Dataflow analysis is an important part of colepoptimization
procedure for high level languages. Substantiaky®f has been
done in the dataflow analysis of high level langstike C and
C++ but the application of dataflow analysis is mtadied in
greater detail for high level design languages BgecC. Live
variable analysis is one of the several approaahssd for
dataflow analysis. This paper proposes a new oglali
framework to do live variable analysis and presentsymbolic
solver to find the fixed points of live variableaysis. To the best
of our knowledge there is no work that proposedaaéwork
other than chaotic iterations to find the solutmilive variable
analysis. The relational framework is implementesihg Binary
Decision Diagrams and the symbolic solver algoritivorks on
the Binary Decision Diagrams to produce the sofutad Live
Variable Analysis. The whole structure of the peogris taken
into account while doing the iterations and lookiag the
complete structure helps in reducing the numbeitarftions
needed to get the fixed points of the analysis. dtesidered a
subset of C language to do our experiments and withor
modifications the framework can be used to do ttatafinalysis
of high level design languages like SpecC [13].

High level design languages like SpecC are e@singly
gaining importance in industry as a mean to spedigigns.
System level models written in languages like Spac@ C++ are
used to specify design and then such system leweleln are
synthesized to RTL. Our analyzer can optimize tlesighs

written in languages like SpecC which can be usedenerate
efficient RTL. As Electronic System Level Desigm]ls getting
more popular among designers efficient dataflow lyei=
framework for such languages are required and mamework
provides a novel solution to this problem.

BDDs [1-3, 12] are a representation of QuaadifiBoolean
Formulae, and can be used to encode relationshda lomains.
BDDs also exhibit efficient encodings of variouseagtions on
these relations. The traditional application of BDE in the
program verification community, where they are usegrovide
compact encodings of very large state spaces aasition
relations. The use of BDDs has enabled the vetifinaof very
large circuits having hundreds of millions of stte

Binary Decision Diagrams provides a techniquedfficiently
representing predicates over finite domains, amdrianipulating
such predicates. Binary Decision Diagrams has lised by [4]
to do points-to analysis of high level languages.

This paper gives an approach to encode the Jegable
analysis by BDDs and then develops an algorithnh wtaks on
the encoding to produce a result. The chaotictitaraapproach
[5] is traditionally used to solve live variableadysis which is an
equational approach [5]. Chaotic Iteration approdickls the
solution by finding the fixed points iteratively.DBs help in
obtaining an efficient representation for the lxariable analysis
and that is because of the set theoretic operatioais can be
performed very efficiently over BDDs [2]. After ththe proposed
algorithm operates over the BDDs produced to obtiaén fixed
point and thus gives the live variable analysisultes Finding
fixed point over BDDs is an efficient approach camgd to
getting the fixed points in equational approachabse of the fact
that we are looking at the complete structure efgfogram rather
than looking only at the present node in contrahflgraph and its
frontier.

This paper is organized as follows. Sectiorrésents the live
variable analysis using BDDs. Section 3 describesaigorithm
to find the live variable information. Section 4 epents
performance analysis of the algorithm. Finally th@aper
concludes with giving future directions to take adtage of the
relational framework which helped in reducing thember of
iterations significantly to find the fixed point® tdo efficient
dataflow analysis.

2. BDD TO REPRESENT LIVE VARIABLE
ANALYSIS

This section formally defines the live variallealysis and also
proposes the relational framework for doing liveialale analysis.

2.1 Live variable analysigive variable analysis is one
of the several approaches that are used in Datat@lysis which

are namely Availabl&xpressions, Reaching Definitions and Very
Busy Expressions. To understand live variable aimlyone



should be familiar with the following definitionslated to a
program. [5] deals with a number of dataflow anialgpproaches
along with the live variable analysis.

2.1.1 Definitions

a) Label: The program is parsed completely andiguenabel is
associated to each statement.
Label: Stmt> Lab
b) Initial label: init returns the initial label af statement. The
statement can be a composite statement when ihestine label
of the statement that is coming first out of a# 8tatement of the
block.
Init: Stmt—> Lab
¢) Final label: Final returns the final label oftatement. If the
statement is a composite statement it returnsathe bf the last
statement of the composite block under considarahiote that
there might be more than one label if the compadédgement is a
decision block.
Final: Stmt-> PowerSet(Lab)
d) Flows and reverse flows: For live analysis weeht find the
control flow information from the program. So tHew function
is defined as following:
Flow: Stmd Powerset(Lab X Lab)
This function maps statement to sets of flows. Exdamare the
following:
Flow(x=a;) = &
where @ represents NULL flow. There is no flow imf@tion in
an atomic statement likes a;

Flow(S1;S2) = Flow(S1) U Flow(S2) U {(l,init(S2))¢
Final(S1)}

Flow(if(S1) S2;) = Flow(S2) U {(Label(S1),init(S3))
Flow(if(S1) S2; else S3;) = Flow(S2) U Flow(S3)
U{(Label(S1),init(S2)),(Label(S1),nit(S3))}

Note that the function Flow uses the definitionsusfctions
Label, Init and Final described above.
Once the flow graph is obtained the reverse floapgrcan be
obtained as follows:

ReverseFlow: Stm® Powerset(Lab X Lab)

ReverseFlow(S) = {(I, m) | (m , § Flow(S)}

where S is the whole program.

These definitions help to generate the control fiofermation of
the program. A prerequisite to this step is a paogmwhich is
uniquely labeled.
2.1.2 Mathematical definition of Live Variable
Analysis

A variable idive at the exit from a label if there is a path from
the label to a use of the variable that doesn'tlefne the
variable. The Live Variable Analysis determines sktariables
that arelive at a program point or Label (as defined in section
2.1.1) after the control exits from that particulabel.

This analysis is used as the basis of Dead @tideénation.
Note that for synthesizing a specified design iR®oL, Dead
Code Elimination can result in a RTL with less rases
compared to a flow that do not takes into accoiua Variable
analysis results. Thus live variable analysis cf&presults into a
RTL that has optimum number of resources. It mo#idaus to
consider live variable analysis in our work.

In Live Variable Analysis Kill and Gen expremss [5]
corresponding to each Label are generated. Thewiniy table

gives the mathematical formulations to generatd &ild Gen
expression:
For each unique label in the program Kill and Gepressions are
computed.

KILL FUNCTIONS
KILL (x =a;) ={x}
//S1 is not an assignmetatesment
GEN FUNCTIONS
GEN (x=a;)=FV (a)
GEN (S1) = FV (S1) //S1 is not an assignment statgm

The function FV takes a, which can be a functiog; 0% ....,y,
and then FV returns all the,yy, ....,y,which are the constituents
of a.

KILL (S1) =@

After calculating the KILL and GEN functions corpesmding to
each label, for each label of the program LVentng & Vexit
equations are obtained.

LVexi(l) = G if | € Final(S)
U{L\en(m) | (M, 1) € ReverseFlow(S)}
LV enn(l) = (LVexit(INKILL(I)) U GEN(I)
where U is the global union, and \ is the set diffee.

Live Variable Analysis is a backward analysis se fiverse flow
graph is to be iterated to solve the data flow &qna. To solve
the dataflow equations two algorithms are used atymhich
are called MFP and MOP [5]. Both iterate through ¢bntrol
flow graph until a fixed point is reached.

2.2 Representing live variable analysis using
BDDs

This section formally defines the relational franoekv that is
proposed to do live variable analysis. Equationmgdraaches [5]
do not consider the whole analysis as a singldioeldut in our
proposed approach analysis are represented ammslatver the
semi lattice defined.

2.2.1 Relational framework for live variable analysis:
The analyses expressed in terms of data-flow fraomew5] like
live variable analysis have a very regular struetlet us first
restrict ourselves to problems where the solutithe® analysis
can be represented as sets, and further to probhehsan be
represented in terms &en andKill functions on sets.

a) Analysis Relationin the above setting, let the meet semi-lattice
beL (or more completely ks, [1,[1, T >). In this case the result

of the analysis of a program P can be represerded rlation
from the program point (label) of P to the lattafe..

Analysiso. P, < L

b) CFG RelationThe control flow information of the program P
can also be considered as a relatiGRGp which is a relation
from program points(label) to program points(labebhere a
point |, is related to point,lby CFGp if there is an edge in the
control-flow graph of P taking nodetb node J.

CFGp. P < Ph

c) Init Relation The initialization required for the problem can
also be represented as a relationp)mélating the entry(or exit)



program-point of the program with th@ or [ value of the
semi lattice.

Inite: P, < L

For live variable analysis the operation is sebaron which the
semi-lattice is defined. As it had already beentineed that live
variable analysis is a backward analysis.

d) Live Variable Analysis RelatiorJsing the relations defined
above the Live Variable Analysis can be expresseitia
following equations:

LV ennfPt) = (U LV(pt)-Kill 1) U Gen,
Where pt [successor(pt)

Given a relation, S, representing an approximaibatime analysis
solution, and the relation for the control-flow gha the

expressiorU LV(pt) in the data-flow framework can be
represented as the relational composition

CFGp; S

Intuitively, relational composition wit€FGp represents the
backward flow information in the analysis. The entinalysis
equation can be represented by the expression

((CFGp; S) = Kill) U Gen U Inite

The analysis equation is now a global equation whakes into
the account the whole program P rather than takitmgaccount
each of the program points of labels which wagrftal
representation of live variable analysis in theaflatv framework.

The analysis results can be itself now expresséheafix-point of
the function
AS.((CFGp; S) = Killy) U Gen U Initp

2.2.2 Verification of the proposed framework

In this section we are presenting the soundnessamectness of
the mathematical formulation described in secticgh12

Proposition 2.2.2.1: Soundness

Proof: Note that the only part of equation 1 thegpehds on the
analysis being a backward analysis and havingehargon as the
operator is

(CFGp; S)

Only this part of the equation needs to be changedidress
analysis that is not backward analyses or thogehthae set
intersection as the defined operator on the setticda

It is quite straight forward to see that in ordeconsider forward
analysis, it is sufficient to consider the transpcGFGlp, of the
relation representing the control-flow graph fdational
composition.

Proposition 2.2.2.2 Correctness with other opesator

Proof: The case of problems where the operatondéfon semi-
lattice is set intersection is slightly more compli this case, the
relational composition expression has to be ofohe

inv(CFGg; inv(S))

where inv(S) represents the inverse of the setith (espect to
some universal set).

Proposition 2.2.2.3 Intersection over Finite Dorsain

Proof: The above results are tabulated in the tsitadevn below.
Note that the relational approach to analysis meguthe solution
of different equations for different problems —iit effect, results
in four different frameworks for different classafsanalysis
problems. This is in contrast to data-flow framekgowhere the
same framework and equation can be used to sdargaclass of
analysis problems.

Forward Backward
U CFGp; S) (CFGy; S)
N inv(CFGg; inv(S)) inv( CFG;inv(S))

3. BDD TO REPRESENT LIVE VARIABLE
ANALYSIS

The last section described the relational fraork developed
to do live variable analysis using the binary decisdiagram.
This section presents a case study and shows Hpeatéve
relations encoded in binary decision digrams whdch used by
the BDD solver developed. The section concludeshmwing the
execution of the solver algorithm developed.

3.1 Case study

Consider the following high level program code:
/[Hypothetical start node: 0
{
x=1; /1
y=2; 2
z=x; I3
while (x>z) //4
{
iftly>z) /5
{
x=y+1; /6
z=x+1; 7

}
x=y+z; /I8
}
x=x-y; /9
Y/Hypothetical finish node: 10

The labelize module takes as input such a waidten in high
level language and produces a unique label for sethment. It
also finds the unique variables in the program cdtie control
flow graph of the program code is taken as inputtvinepresents



the flow information in terms of the labels. Foaexle in this
case the CFG is:

0->1;1->2;2->3;3->4;4->5,9;5->6,8;6->7,7->4,9;8-94->10

3.2 Global Binary Decision Digrams for BDD
solver

In this paper BuDDy [6] is used as the packagdo the
operations that are related to binary decisionrdiag. The binary
decision digrams thus generated respective to redation is then
visually shown using Graphviz [7] package.

3.2.1 Relation encoding using BDD

Suppose a relation with 3 2-tuples {(0,1),(X28)} is to be
encoded using BDDs. Now BDDs are function:88, each 2-
tuple of the relation can be encoded using bindsy m the given
relation it can be encoded using 2 bits. Thus300,1->01,2-
>10,3->11, then 0001, 0110 and 1011 are true BB
corresponding to this relation while all other canaions lead to
a false value.

3.2.2 Encoding CFG relation

Control flow graph is defined as ProgramPoint X
ProgramPoint. The 2-tuple (0,1) is in CFG relatmd that's
because in the control flow graph, the control 8ofinom label 0
to label 1. Therefore in the BDD corresponding feQCrelation,
the binary encoding corresponding to (0,1) shoudlumte to
true. As there are 11 unique labels therefore ddi¢ taken by the
BuDDy package to represent the CFG BDD. The regme@FG
BDD for the high level program code shown in Figlire

The 2-tuple (8,9) should be in the CFG BDDs&icoded by
1000 and 9 is encoded by 1001. BuDDy [6] encodedr¢iation
by taking one bit from one member of the 2-tupléimary
representation and the next bit from the next membe-tuple.
This process is carried out alternatively to geteethe whole
encoding. For this example the encoding is:

9[3]8[3]9[2]8[2]9[1]8[1] 9[0]8[0] = 11000010.
The inspection of the CFG BDD shows that the gattern

11000010 leads to true which means that the 2-{@&®) is in the
CFG BDD.

Figure 1: CFG Binary Decision Diagram

3.2.3 Encoding GlobalKill relation

GlobalKill relation captures the KILL functicas described in
Section 2.1.2 in a global view. To encode the Giitlarelation
a set of labels are found related to each uniquiebla. From the
example program the variable x is killed at theeladubset
{1,6,8,9}. The variables are also assigned a unidend
therefore the relation GlobalKill is defined on \Jar
ProgramPoint where Var is the set related to uniguible id
and ProgramPoint represent the labels. The Gloh&8KiD is
shown in Figure 2.

3.2.4 Encoding Global Gen relation

GlobalGen relation like GlobalKill captures GEN &fion
described in Section 2.1.2 in a global view. laliso obtained in a
similar manner as the GlobalKill relation. For baihthem the
kill and gen sets are calculated by the definiti@ssgiven in
section 2. The corresponding BDD for GlobalGen tisvén in
Figure 3.

3.3 BDD solver algorithm

The algorithm takes as input GlobalCFG, Gloliglkand
GlobalGen Binary Decision Diagrams and finds th&ny and
LVexi ¢ information globally for the given high level cade
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Figure 2: GlobalKill Binary Decision Diagram

BDDSolver Pseudocode

Step 1. Initiliaze BDDs sol ver and
tenmpsol ver as enpty

Step 2. while(solver is not equal to
t enpsol ver)

Step 3. tenpsolver = (relational_product

(4G obal CFG solver)-dobal Kill) U
G obal Gen

Step 4.endwhile

This algorithm provides theVen: (y information. The BDD given
by this algorithm gives the information that whichriables are
live at respective program points. To find the.i: information
the line 3 of the algorithm is modified as the daling:
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Figure 3: GlobalGen Binary Decision Diagram

tenpsol ver=  (~rel ati onal _product (Qd obal CFG
~solver)-dobal Kill) U d obal Gen,

where ~ is the negation operation in BDDs. A complete

description of operations defined on BDD can bentbin [1-2].

Figure 4: Solver Binary Decision Diagram

3.3.1 Correctness of the solver algorithm

In section 2.2.1 while defining the relatioframework for live
variable analysis the correctness of the respeetjuations are
shown. The equations are analogous to the livabkrianalysis
defined in the previous section.

3.3.2 Termination of the solver algorithm

Since the live variable analysis is definec éattice structure
therefore there is always a fixed point of theidatand therefore
the algorithm is guaranteed to terminate.

3.3.3 Revisiting the example

The LVentry BDD corresponding to the example is shown in

Figure 4.

This provides the same result as the resulviged by the
traditional worklist [8] algorithm which iterativglries to find out
the fixed point and thus theVent ry andL Veyi + information.

4. PERFORMANCE ANALYSES

We have proposed a new approach to do Livea\shi
Analysis. The traditional worklist algorithm [8-18] one of
the oldest and heavily studied algorithm for perfimg
dataflow analysis. This algorithm finds the fixeoint by
iterations on the control flow graph but this aigam
doesn’t look into the whole structure of the prograt one
time. The relational framework captures the whadecsure
of the program and the BDD Solver finds out thedix
points of the analysis in much less number of itena than
worklist algorithm. [11] gives a survey of algoritl that
use iterative approach to do dataflow analysiscdimpare
our solver we have implemented the iterative westkli
algorithm mentioned in [11].

We considered intra-procedural Live Variableaysis
in this paper. For intra-procedural analysis gdhetiae
code length is not more than 50 or 100 lines. Waxkéd
the solver on codes of varying lengths to complage t
performance of our algorithm over the traditiortatative
algorithm. Note that the framework we proposed dsen
general and can be applied to both inter-procedurdl
intra-procedural analysis with appropriate modiiimas.

The results we obtained are provided in thed&@abWe
obtained a significant gain in the iterations tha required
to find the fixed points of live variable analysi@able 3
shows the runtime of the BDD Solver. From Tablee w
notice a marked decrease in number of iterationgpened
to the traditional chaotic iterations. The run tiof8DD
Solver includes the time spent in initializationtloé Binary
Decision Diagram package and formation of globahby
decision diagrams corresponding to Control FlowpBra
Kill and Gen relations. The next section shows mmcan
use the gain from the relational framework and éase the
run time of the BDD Solver.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a relational frameworéd
Live Variable Analysis and gave an algorithm toldee
Variable Analysis. The Binary Decision Diagram lzhse
solver finds out the fixed points of Live VariatAmalysis
in iterations much less than the traditional iteeatmethod
of finding the fixed points of Live Variable Analigs This
paper obtained a marked improvement in iteratiorfsnd
the fixed points and therefore the relational freumik can
help in finding the fixed points faster than theiatipnal
approach. The Symbolic Solver algorithm is impletadn
using Binary Decision Diagrams and due to the
initialization routines of Binary Decision Diagrgmackage
the time taken is higher.

We are looking at other symbolic methods tothse
relational framework so that we can gain in timaeeO



important future research direction is to map #lational
framework to a SAT solver and the Solver algoritluith
query the SAT solver to do membership queriestfer t
fixed points. Since SAT based frameworks are prowenh
faster in the verification community, which traditially
used Binary Decision Diagrams, we also expect a igai
time when a SAT based symbolic solver will be uted
query the fixed points.
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Table 2. Performance Analysis of BDDSolver

Program C-- Constructs| Chaotic| BDDSolver
Tokens Iterations| lterations
P1 65 While,if 20 3
P2 69 While,if, 13 5
else
P3 124 While,if, 29 7
else
P4 129 While,if, 29 7
else
P5 139 While,if, 34 9
else
Table 3. Runtime of BDDSolver
Program C-- Tokens Execution
Time
P1 65 6.357ms
P2 69 6.59ms
P3 124 7.266ms
P4 129 7.501ms
P5 139 7.903ms




