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ABSTRACT 
This paper presents an efficient binary decision diagram solver for 
live variable analysis of high level design languages like SpecC. A 
novel representation of the program as a global structure using 
efficient data structure called Binary Decision Diagrams is 
presented. Based on the global structure of the program, a 
relational framework for live variable analysis is proposed and the 
solver algorithm is developed based on the relational framework. 
The algorithm obtains the fixed point of live variable analysis in 
iterations significantly less than the traditional chaotic iteration 
approach. The global representation of the program using Binary 
Decision Diagrams and the ease of doing set theoretic operations 
in the domain of Binary Decision Diagrams helps the solver 
algorithm to determine the fixed points of the analysis efficiently. 
Our experimental evaluations using the solver demonstrate a 
marked decrease in iterations over traditional approach for fixed 
point calculations. 
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1. INTRODUCTION 
    Dataflow analysis is an important part of compiler optimization 
procedure for high level languages. Substantial work [5] has been 
done in the dataflow analysis of high level languages like C and 
C++ but the application of dataflow analysis is not studied in 
greater detail for high level design languages like SpecC. Live 
variable analysis is one of the several approaches used for 
dataflow analysis. This paper proposes a new relational 
framework to do live variable analysis and presents a symbolic 
solver to find the fixed points of live variable analysis. To the best 
of our knowledge there is no work that proposed a framework 
other than chaotic iterations to find the solution of live variable 
analysis. The relational framework is implemented using Binary 
Decision Diagrams and the symbolic solver algorithm works on 
the Binary Decision Diagrams to produce the solution of Live 
Variable Analysis. The whole structure of the program is taken 
into account while doing the iterations and looking at the 
complete structure helps in reducing the number of iterations 
needed to get the fixed points of the analysis. We considered a 
subset of C language to do our experiments and with minor 
modifications the framework can be used to do dataflow analysis 
of high level design languages like SpecC [13]. 

    High level design languages like SpecC are increasingly 
gaining importance in industry as a mean to specify designs. 
System level models written in languages like SpecC and C++ are 
used to specify design and then such system level models are 
synthesized to RTL. Our analyzer can optimize the designs 

written in languages like SpecC which can be used to generate 
efficient RTL. As Electronic System Level Design [14] is getting 
more popular among designers efficient dataflow analysis 
framework for such languages are required and our framework 
provides a novel solution to this problem.  

    BDDs [1-3, 12] are a representation of Quantified Boolean 
Formulae, and can be used to encode relations on finite domains. 
BDDs also exhibit efficient encodings of various operations on 
these relations. The traditional application of BDDs is in the 
program verification community, where they are used to provide 
compact encodings of very large state spaces and transition 
relations. The use of BDDs has enabled the verification of very 
large circuits having hundreds of millions of states. 
    Binary Decision Diagrams provides a technique for efficiently 
representing predicates over finite domains, and for manipulating 
such predicates. Binary Decision Diagrams has been used by [4] 
to do points-to analysis of high level languages. 

    This paper gives an approach to encode the live variable 
analysis by BDDs and then develops an algorithm that works on 
the encoding to produce a result. The chaotic iteration approach 
[5] is traditionally used to solve live variable analysis which is an 
equational approach [5]. Chaotic Iteration approach finds the 
solution by finding the fixed points iteratively. BDDs help in 
obtaining an efficient representation for the live variable analysis 
and that is because of the set theoretic operations that can be 
performed very efficiently over BDDs [2]. After that the proposed 
algorithm operates over the BDDs produced to obtain the fixed 
point and thus gives the live variable analysis results. Finding 
fixed point over BDDs is an efficient approach compared to 
getting the fixed points in equational approach because of the fact 
that we are looking at the complete structure of the program rather 
than looking only at the present node in control flow graph and its 
frontier. 

    This paper is organized as follows. Section 2 presents the live 
variable analysis using BDDs. Section 3 describes the algorithm 
to find the live variable information. Section 4 presents 
performance analysis of the algorithm. Finally the paper 
concludes with giving future directions to take advantage of the 
relational framework which helped in reducing the number of 
iterations significantly to find the fixed points to do efficient 
dataflow analysis.   

2. BDD TO REPRESENT LIVE VARIABLE 
ANALYSIS 
    This section formally defines the live variable analysis and also 
proposes the relational framework for doing live variable analysis. 

2.1 Live variable analysis: Live variable analysis is one 
of the several approaches that are used in Dataflow analysis which 
are namely Available Expressions, Reaching Definitions and Very 
Busy Expressions. To understand live variable analysis one 



should be familiar with the following definitions related to a 
program. [5] deals with a number of dataflow analysis approaches 
along with the live variable analysis. 

2.1.1 Definitions 

a) Label: The program is parsed completely and a unique label is 
associated to each statement. 

Label: Stmt � Lab 
b) Initial label: init returns the initial label of a statement. The 
statement can be a composite statement when it returns the label 
of the statement that is coming first out of all the statement of the 
block. 

Init: Stmt �  Lab 
c) Final label: Final returns the final label of a statement. If the 
statement is a composite statement it returns the label of the last 
statement of the composite block under consideration. Note that 
there might be more than one label if the composite statement is a 
decision block.  

Final: Stmt � PowerSet(Lab) 
d) Flows and reverse flows: For live analysis we have to find the 
control flow information from the program. So the flow function 
is defined as following: 
                      Flow: Stmt � Powerset(Lab X Lab) 
This function maps statement to sets of flows. Examples are the 
following: 

Flow(x=a;) =  Ø 
where Ø represents NULL flow. There is no flow information in 
an atomic statement like x=a; 
 

Flow(S1;S2) = Flow(S1) U Flow(S2) U {(l,init(S2))| l є 
Final(S1)} 

Flow(if(S1) S2;) = Flow(S2) U {(Label(S1),init(S2))} 
Flow(if(S1) S2; else S3;) = Flow(S2) U Flow(S3)                                         
U{(Label(S1),init(S2)),(Label(S1),Init(S3))} 

Note that the function Flow uses the definitions of functions 
Label, Init and Final described above. 
Once the flow graph is obtained the reverse flow graph can be 
obtained as follows: 

ReverseFlow: Stmt � Powerset(Lab X Lab) 
ReverseFlow(S) = {(l , m) | (m , l) є Flow(S)} 

where S is the whole program. 
These definitions help to generate the control flow information of 
the program. A prerequisite to this step is a program which is 
uniquely labeled. 
2.1.2 Mathematical definition of Live Variable 
Analysis 
    A variable is live at the exit from a label if there is a path from 
the label to a use of the variable that doesn’t re-define the 
variable. The Live Variable Analysis determines set of variables 
that are live at a program point or Label (as defined in section 
2.1.1) after the control exits from that particular Label. 
    This analysis is used as the basis of Dead Code elimination. 
Note that for synthesizing a specified design into RTL, Dead 
Code Elimination can result in a RTL with less resources 
compared to a flow that do not takes into account live variable 
analysis results. Thus live variable analysis of SpecC results into a 
RTL that has optimum number of resources. It motivated us to 
consider live variable analysis in our work. 
    In Live Variable Analysis Kill and Gen expressions [5] 
corresponding to each Label are generated. The following table 

gives the mathematical formulations to generate Kill and Gen 
expression: 
For each unique label in the program Kill and Gen expressions are 
computed. 

KILL FUNCTIONS 

KILL (x = a ;) = {x} 

KILL (S1) = Ø           //S1 is not an assignment statement 

                                GEN FUNCTIONS 

GEN (x = a ;) = FV (a) 

GEN (S1) = FV (S1) //S1 is not an assignment statement 

The function FV takes a, which can be a function of y1, y2,….,yn 
and then FV returns all the y1, y2,….,yn which are the constituents 
of a.  

After calculating the KILL and GEN functions corresponding to 
each label, for each label of the program LVentry and LVexit 
equations are obtained. 

   LVexit(l) = Ø if l є Final(S)  

                  U{LVentry(m) | (m , l)  є ReverseFlow(S)} 

LV entry(l) = (LVexit(l)\KILL(l)) U GEN(l) 

where U is the global union, and \ is the set difference. 

Live Variable Analysis is a backward analysis so the reverse flow 
graph is to be iterated to solve the data flow equations. To solve 
the dataflow equations two algorithms are used normally which 
are called MFP and MOP [5]. Both iterate through the control 
flow graph until a fixed point is reached. 

2.2 Representing live variable analysis using 
BDDs  

This section formally defines the relational framework that is 
proposed to do live variable analysis. Equational approaches [5] 
do not consider the whole analysis as a single relation but in our 
proposed approach analysis are represented as relations over the 
semi lattice defined. 

2.2.1 Relational framework for live variable analysis: 
The analyses expressed in terms of data-flow frameworks [5] like 
live variable analysis have a very regular structure. Let us first 
restrict ourselves to problems where the solution of the analysis 
can be represented as sets, and further to problems that can be 
represented in terms of Gen and Kill functions on sets. 

a) Analysis Relation: In the above setting, let the meet semi-lattice 
be L (or more completely <L Τ∪⊆ ,,, >). In this case the result 
of the analysis of a program P can be represented as a relation 
from the program point (label) of P to the lattice of L. 

AnalysisP: PtP ↔  L 

b) CFG Relation: The control flow information of the program P 
can also be considered as a relation. CFGP which is a relation 
from program points(label) to program points(label) ,where a 
point l1 is related to point l2 by CFGP if there is an edge in the 
control-flow graph of P taking node l1 to node l2. 

CFGP: PtP ↔  PtP 

c) Init Relation: The initialization required for the problem can 
also be represented as a relation. InitP, relating the entry(or exit) 



program-point of the program with the ∩  or ∪  value of the 
semi lattice. 

InitP: Ptp ↔  L 

For live variable analysis the operation is set-union on which the 
semi-lattice is defined. As it had already been mentioned that live 
variable analysis is a backward analysis. 

d) Live Variable Analysis Relation: Using the relations defined 
above the Live Variable Analysis can be expressed as the 
following equations: 

LV entry(pt) = ( U  LV(pt’)-Kill pt)U Genpt 

Where pt’ ∈successor(pt) 

Given a relation, S, representing an approximation to the analysis 
solution, and the relation for the control-flow graph, the 

expression U  LV(pt’) in the data-flow framework can be 
represented as the relational composition 

  CFGP; S 

Intuitively, relational composition with CFGP represents the 
backward flow information in the analysis. The entire analysis 
equation can be represented by the expression 

((CFGP; S) – KillP) U  GenP U  InitP 

The analysis equation is now a global equation which takes into 
the account the whole program P rather than taking into account 
each of the program points of labels which was the initial 
representation of live variable analysis in the dataflow framework. 

The analysis results can be itself now expressed as the fix-point of 
the function 

             .Sλ ((CFGP; S) – KillP) U  GenP U  InitP             

2.2.2 Verification of the proposed framework 

In this section we are presenting the soundness and correctness of 
the mathematical formulation described in section 2.2.1 

Proposition 2.2.2.1: Soundness 

Proof: Note that the only part of equation 1 that depends on the 
analysis being a backward analysis and having the set union as the 
operator is  

      (CFGP; S)  

Only this part of the equation needs to be changed to address 
analysis that is not backward analyses or those that have set 
intersection as the defined operator on the semi-lattice. 

It is quite straight forward to see that in order to consider forward 
analysis, it is sufficient to consider the transpose, CFG-1

P , of the 
relation representing the control-flow graph for relational 
composition. 

Proposition 2.2.2.2 Correctness with other operators 

Proof: The case of problems where the operator defined on semi-
lattice is set intersection is slightly more complex. In this case, the 
relational composition expression has to be of the form 

      inv(CFGP; inv(S)) 

where inv(S) represents the inverse of the set S (with respect to 
some universal set). 

Proposition 2.2.2.3 Intersection over Finite Domains 

Proof: The above results are tabulated in the table shown below. 
Note that the relational approach to analysis requires the solution 
of different equations for different problems – it, in effect, results 
in four different frameworks for different classes of analysis 
problems. This is in contrast to data-flow frameworks where the 
same framework and equation can be used to solve a large class of 
analysis problems. 

  

3. BDD TO REPRESENT LIVE VARIABLE 
ANALYSIS 
    The last section described the relational framework developed 
to do live variable analysis using the binary decision diagram. 
This section presents a case study and shows the respective 
relations encoded in binary decision digrams which are used by 
the BDD solver developed. The section concludes by showing the 
execution of the solver algorithm developed. 

3.1 Case study 

Consider the following high level program code: 

//Hypothetical start node: 0 
{    

    x=1;    //1 

    y=2;    //2 

    z=x;    //3 

    while (x>z)    //4 

    { 

        if(y>z)    //5 

        { 

            x=y+1;    //6 

            z=x+1;    //7  

        }      

        x=y+z;    //8 

    } 

    x=x-y;    //9 

}//Hypothetical finish node: 10 

    The labelize module takes as input such a code written in high 
level language and produces a unique label for each statement. It 
also finds the unique variables in the program code. The control 
flow graph of the program code is taken as input which represents 

          Forward           Backward 

U         (CFGP; S)        (CFG-1P; S) 

I    inv(CFGP; inv(S))    inv( CFG-1
P;inv(S)) 



the flow information in terms of the labels. For example in this 
case the CFG is: 

0->1;1->2;2->3;3->4;4->5,9;5->6,8;6->7;7->4,9;8->4,9;9->10 

3.2 Global Binary Decision Digrams for BDD 
solver 

    In this paper BuDDy [6] is used as the package to do the 
operations that are related to binary decision diagrams. The binary 
decision digrams thus generated respective to each relation is then 
visually shown using Graphviz [7] package. 

3.2.1 Relation encoding using BDD 

    Suppose a relation with 3 2-tuples {(0,1),(1,2),(2,3)} is to be 
encoded using BDDs. Now BDDs are function f:Bn

→B, each 2-
tuple of the relation can be encoded using binary bits. In the given 
relation it can be encoded using 2 bits. Thus if 0->00,1->01,2-
>10,3->11, then 0001, 0110 and 1011 are true in the BDD 
corresponding to this relation while all other combinations lead to 
a false value. 

3.2.2 Encoding CFG relation 

    Control flow graph is defined as ProgramPoint X 
ProgramPoint. The 2-tuple (0,1) is in CFG relation and that’s 
because in the control flow graph, the control flows from label 0 
to label 1. Therefore in the BDD corresponding to CFG relation, 
the binary encoding corresponding to (0,1) should evaluate to 
true. As there are 11 unique labels therefore 4 bits are taken by the 
BuDDy package to represent the CFG BDD. The respective CFG 
BDD for the high level program code shown in Figure 1. 

    The 2-tuple (8,9) should be in the CFG BDD. 8 is encoded by 
1000 and 9 is encoded by 1001. BuDDy [6] encoded the relation 
by taking one bit from one member of the 2-tuple’s binary 
representation and the next bit from the next member of 2-tuple. 
This process is carried out alternatively to generate the whole 
encoding. For this example the encoding is: 

9[3]8[3]9[2]8[2]9[1]8[1] 9[0]8[0] = 11000010. 

    The inspection of the CFG BDD shows that the bit pattern 
11000010 leads to true which means that the 2-tuple (8,9) is in the 
CFG BDD. 

 

Figure 1: CFG Binary Decision Diagram                  

3.2.3 Encoding GlobalKill relation 

    GlobalKill relation captures the KILL function as described in 
Section 2.1.2 in a global view. To encode the GlobalKill relation 
a set of labels are found related to each unique variable. From the 
example program the variable x is killed at the label subset 
{1,6,8,9}. The variables are also assigned a unique id and 
therefore the relation GlobalKill is defined on Var X 
ProgramPoint where Var is the set related to unique variable id 
and ProgramPoint represent the labels. The GlobalKill BDD is 
shown in Figure 2. 

3.2.4 Encoding GlobalGen relation 

GlobalGen relation like GlobalKill captures GEN function 
described in Section 2.1.2 in a global view. It is also obtained in a 
similar manner as the GlobalKill relation. For both of them the 
kill and gen sets are calculated by the definitions as given in 
section 2. The corresponding BDD for GlobalGen is shown in 
Figure 3. 

3.3 BDD solver algorithm 

    The algorithm takes as input GlobalCFG, GlobalKill, and 
GlobalGen Binary Decision Diagrams and finds the LVentry and 
LVexit information globally for the given high level code. 

 

 

Figure 2: GlobalKill Binary Decision Diagram 

BDDSolver Pseudocode 

Step 1. Initiliaze BDDs solver and 
tempsolver as empty 

Step 2. while(solver is not equal to 
tempsolver) 

Step 3. tempsolver = (relational_product 
(GlobalCFG,solver)-GlobalKill) U 
GlobalGen 

Step 4.endwhile 

This algorithm provides the LVentry information. The BDD given 
by this algorithm gives the information that which variables are 
live at respective program points. To find the LVexit information 
the line 3 of the algorithm is modified as the following: 



 

Figure 3: GlobalGen Binary Decision Diagram 

tempsolver= (~relational_product(GlobalCFG, 
~solver)-GlobalKill) U GlobalGen,  

where ~ is the negation operation in BDDs. A complete 
description of operations defined on BDD can be found in [1-2].  

 

Figure 4: Solver Binary Decision Diagram 

3.3.1 Correctness of the solver algorithm 

    In section 2.2.1 while defining the relational framework for live 
variable analysis the correctness of the respective equations are 
shown. The equations are analogous to the live variable analysis 
defined in the previous section. 

3.3.2 Termination of the solver algorithm 

    Since the live variable analysis is defined as a lattice structure 
therefore there is always a fixed point of the lattice and therefore 
the algorithm is guaranteed to terminate. 

3.3.3 Revisiting the example 

The LVentry BDD corresponding to the example is shown in 
Figure 4. 

    This provides the same result as the result provided by the 
traditional worklist [8] algorithm which iteratively tries to find out 
the fixed point and thus the LVentry and LVexit information. 

4. PERFORMANCE ANALYSES 
    We have proposed a new approach to do Live Variable 
Analysis. The traditional worklist algorithm [8-10] is one of 
the oldest and heavily studied algorithm for performing 
dataflow analysis. This algorithm finds the fixed point by 
iterations on the control flow graph but this algorithm 
doesn’t look into the whole structure of the program at one 
time. The relational framework captures the whole structure 
of the program and the BDD Solver finds out the fixed 
points of the analysis in much less number of iterations than 
worklist algorithm. [11] gives a survey of algorithms that 
use iterative approach to do dataflow analysis. To compare 
our solver we have implemented the iterative worklist 
algorithm mentioned in [11]. 
    We considered intra-procedural Live Variable Analysis 
in this paper. For intra-procedural analysis generally the 
code length is not more than 50 or 100 lines. We checked 
the solver on codes of varying lengths to compare the 
performance of our algorithm over the traditional iterative 
algorithm. Note that the framework we proposed is more 
general and can be applied to both inter-procedural and 
intra-procedural analysis with appropriate modifications. 
    The results we obtained are provided in the Table 2. We 
obtained a significant gain in the iterations that are required 
to find the fixed points of live variable analysis. Table 3 
shows the runtime of the BDD Solver. From Table 2 we 
notice a marked decrease in number of iterations compared 
to the traditional chaotic iterations. The run time of BDD 
Solver includes the time spent in initialization of the Binary 
Decision Diagram package and formation of global binary 
decision diagrams corresponding to Control Flow Graph, 
Kill and Gen relations. The next section shows how we can 
use the gain from the relational framework and decrease the 
run time of the BDD Solver. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a relational framework to do 
Live Variable Analysis and gave an algorithm to do Live 
Variable Analysis. The Binary Decision Diagram based 
solver finds out the fixed points of Live Variable Analysis 
in iterations much less than the traditional iterative method 
of finding the fixed points of Live Variable Analysis. This 
paper obtained a marked improvement in iterations to find 
the fixed points and therefore the relational framework can 
help in finding the fixed points faster than the equational 
approach. The Symbolic Solver algorithm is implemented 
using Binary Decision Diagrams and due to the 
initialization routines of Binary Decision Diagram package 
the time taken is higher.  
    We are looking at other symbolic methods to use the 
relational framework so that we can gain in time. One 



important future research direction is to map the relational 
framework to a SAT solver and the Solver algorithm will 
query the SAT solver to do membership queries for the 
fixed points. Since SAT based frameworks are proven much 
faster in the verification community, which traditionally 
used Binary Decision Diagrams, we also expect a gain in 
time when a SAT based symbolic solver will be used to 
query the fixed points.  
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Table 2. Performance Analysis of BDDSolver 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3. Runtime of BDDSolver 

  

    

Program C--
Tokens 

Constructs Chaotic 
Iterations 

BDDSolver 
 Iterations 

P1 65 While,if 20 3 
P2 69 While,if, 

else 
13 5 

P3 124 While,if, 
else 

29 7 

P4 129 While,if, 
else 

29 7 

P5 139 While,if, 
else 

34 9 

Program C-- Tokens Execution 
Time 

P1 65 6.357ms 

P2 69 6.59ms 

P3 124 7.266ms 
P4 129 7.501ms 

P5 139 7.903ms 


