
Symbolic Solver for Live Variable Analysis of High Level Design Languages
 Debasish Das

Department of EECS

Northwestern University, USA

dda902@ece.northwestern.edu

ABSTRACT
This paper presents an efficient binary decision diagram solver for
live variable analysis of high level design languages like SpecC. A
novel representation of the program as a global structure using
efficient data structure called Binary Decision Diagrams is
presented. Based on the global structure of the program, a
relational framework for live variable analysis is proposed and the
solver algorithm is developed based on the relational framework.
The algorithm obtains the fixed point of live variable analysis in
iterations significantly less than the traditional chaotic iteration
approach. The global representation of the program using Binary
Decision Diagrams and the ease of doing set theoretic operations
in the domain of Binary Decision Diagrams helps the solver
algorithm to determine the fixed points of the analysis efficiently.
Our experimental evaluations using the solver demonstrate a
marked decrease in iterations over traditional approach for fixed
point calculations.

General Terms
Algorithms

Keywords
System Level Design, High Level Synthesis, Algorithms, Binary
Decision Diagrams, Live Variable Analysis

1. INTRODUCTION
 Dataflow analysis is an important part of compiler optimization
procedure for high level languages. Substantial work [5] has been
done in the dataflow analysis of high level languages like C and
C++ but the application of dataflow analysis is not studied in
greater detail for high level design languages like SpecC. Live
variable analysis is one of the several approaches used for
dataflow analysis. This paper proposes a new relational
framework to do live variable analysis and presents a symbolic
solver to find the fixed points of live variable analysis. To the best
of our knowledge there is no work that proposed a framework
other than chaotic iterations to find the solution of live variable
analysis. The relational framework is implemented using Binary
Decision Diagrams and the symbolic solver algorithm works on
the Binary Decision Diagrams to produce the solution of Live
Variable Analysis. The whole structure of the program is taken
into account while doing the iterations and looking at the
complete structure helps in reducing the number of iterations
needed to get the fixed points of the analysis. We considered a
subset of C language to do our experiments and with minor
modifications the framework can be used to do dataflow analysis
of high level design languages like SpecC [13].

 High level design languages like SpecC are increasingly
gaining importance in industry as a mean to specify designs.
System level models written in languages like SpecC and C++ are
used to specify design and then such system level models are
synthesized to RTL. Our analyzer can optimize the designs

written in languages like SpecC which can be used to generate
efficient RTL. As Electronic System Level Design [14] is getting
more popular among designers efficient dataflow analysis
framework for such languages are required and our framework
provides a novel solution to this problem.

 BDDs [1-3, 12] are a representation of Quantified Boolean
Formulae, and can be used to encode relations on finite domains.
BDDs also exhibit efficient encodings of various operations on
these relations. The traditional application of BDDs is in the
program verification community, where they are used to provide
compact encodings of very large state spaces and transition
relations. The use of BDDs has enabled the verification of very
large circuits having hundreds of millions of states.
 Binary Decision Diagrams provides a technique for efficiently
representing predicates over finite domains, and for manipulating
such predicates. Binary Decision Diagrams has been used by [4]
to do points-to analysis of high level languages.

 This paper gives an approach to encode the live variable
analysis by BDDs and then develops an algorithm that works on
the encoding to produce a result. The chaotic iteration approach
[5] is traditionally used to solve live variable analysis which is an
equational approach [5]. Chaotic Iteration approach finds the
solution by finding the fixed points iteratively. BDDs help in
obtaining an efficient representation for the live variable analysis
and that is because of the set theoretic operations that can be
performed very efficiently over BDDs [2]. After that the proposed
algorithm operates over the BDDs produced to obtain the fixed
point and thus gives the live variable analysis results. Finding
fixed point over BDDs is an efficient approach compared to
getting the fixed points in equational approach because of the fact
that we are looking at the complete structure of the program rather
than looking only at the present node in control flow graph and its
frontier.

 This paper is organized as follows. Section 2 presents the live
variable analysis using BDDs. Section 3 describes the algorithm
to find the live variable information. Section 4 presents
performance analysis of the algorithm. Finally the paper
concludes with giving future directions to take advantage of the
relational framework which helped in reducing the number of
iterations significantly to find the fixed points to do efficient
dataflow analysis.

2. BDD TO REPRESENT LIVE VARIABLE
ANALYSIS
 This section formally defines the live variable analysis and also
proposes the relational framework for doing live variable analysis.

2.1 Live variable analysis: Live variable analysis is one
of the several approaches that are used in Dataflow analysis which
are namely Available Expressions, Reaching Definitions and Very
Busy Expressions. To understand live variable analysis one

should be familiar with the following definitions related to a
program. [5] deals with a number of dataflow analysis approaches
along with the live variable analysis.

2.1.1 Definitions

a) Label: The program is parsed completely and a unique label is
associated to each statement.

Label: Stmt � Lab
b) Initial label: init returns the initial label of a statement. The
statement can be a composite statement when it returns the label
of the statement that is coming first out of all the statement of the
block.

Init: Stmt � Lab
c) Final label: Final returns the final label of a statement. If the
statement is a composite statement it returns the label of the last
statement of the composite block under consideration. Note that
there might be more than one label if the composite statement is a
decision block.

Final: Stmt � PowerSet(Lab)
d) Flows and reverse flows: For live analysis we have to find the
control flow information from the program. So the flow function
is defined as following:
 Flow: Stmt � Powerset(Lab X Lab)
This function maps statement to sets of flows. Examples are the
following:

Flow(x=a;) = Ø
where Ø represents NULL flow. There is no flow information in
an atomic statement like x=a;

Flow(S1;S2) = Flow(S1) U Flow(S2) U {(l,init(S2))| l є
Final(S1)}

Flow(if(S1) S2;) = Flow(S2) U {(Label(S1),init(S2))}
Flow(if(S1) S2; else S3;) = Flow(S2) U Flow(S3)
U{(Label(S1),init(S2)),(Label(S1),Init(S3))}

Note that the function Flow uses the definitions of functions
Label, Init and Final described above.
Once the flow graph is obtained the reverse flow graph can be
obtained as follows:

ReverseFlow: Stmt � Powerset(Lab X Lab)
ReverseFlow(S) = {(l , m) | (m , l) є Flow(S)}

where S is the whole program.
These definitions help to generate the control flow information of
the program. A prerequisite to this step is a program which is
uniquely labeled.
2.1.2 Mathematical definition of Live Variable
Analysis
 A variable is live at the exit from a label if there is a path from
the label to a use of the variable that doesn’t re-define the
variable. The Live Variable Analysis determines set of variables
that are live at a program point or Label (as defined in section
2.1.1) after the control exits from that particular Label.
 This analysis is used as the basis of Dead Code elimination.
Note that for synthesizing a specified design into RTL, Dead
Code Elimination can result in a RTL with less resources
compared to a flow that do not takes into account live variable
analysis results. Thus live variable analysis of SpecC results into a
RTL that has optimum number of resources. It motivated us to
consider live variable analysis in our work.
 In Live Variable Analysis Kill and Gen expressions [5]
corresponding to each Label are generated. The following table

gives the mathematical formulations to generate Kill and Gen
expression:
For each unique label in the program Kill and Gen expressions are
computed.

KILL FUNCTIONS

KILL (x = a ;) = {x}

KILL (S1) = Ø //S1 is not an assignment statement

 GEN FUNCTIONS

GEN (x = a ;) = FV (a)

GEN (S1) = FV (S1) //S1 is not an assignment statement

The function FV takes a, which can be a function of y1, y2,….,yn
and then FV returns all the y1, y2,….,yn which are the constituents
of a.

After calculating the KILL and GEN functions corresponding to
each label, for each label of the program LVentry and LVexit
equations are obtained.

 LVexit(l) = Ø if l є Final(S)

 U{LVentry(m) | (m , l) є ReverseFlow(S)}

LV entry(l) = (LVexit(l)\KILL(l)) U GEN(l)

where U is the global union, and \ is the set difference.

Live Variable Analysis is a backward analysis so the reverse flow
graph is to be iterated to solve the data flow equations. To solve
the dataflow equations two algorithms are used normally which
are called MFP and MOP [5]. Both iterate through the control
flow graph until a fixed point is reached.

2.2 Representing live variable analysis using
BDDs

This section formally defines the relational framework that is
proposed to do live variable analysis. Equational approaches [5]
do not consider the whole analysis as a single relation but in our
proposed approach analysis are represented as relations over the
semi lattice defined.

2.2.1 Relational framework for live variable analysis:
The analyses expressed in terms of data-flow frameworks [5] like
live variable analysis have a very regular structure. Let us first
restrict ourselves to problems where the solution of the analysis
can be represented as sets, and further to problems that can be
represented in terms of Gen and Kill functions on sets.

a) Analysis Relation: In the above setting, let the meet semi-lattice
be L (or more completely <L Τ∪⊆ ,,, >). In this case the result
of the analysis of a program P can be represented as a relation
from the program point (label) of P to the lattice of L.

AnalysisP: PtP ↔ L

b) CFG Relation: The control flow information of the program P
can also be considered as a relation. CFGP which is a relation
from program points(label) to program points(label) ,where a
point l1 is related to point l2 by CFGP if there is an edge in the
control-flow graph of P taking node l1 to node l2.

CFGP: PtP ↔ PtP

c) Init Relation: The initialization required for the problem can
also be represented as a relation. InitP, relating the entry(or exit)

program-point of the program with the ∩ or ∪ value of the
semi lattice.

InitP: Ptp ↔ L

For live variable analysis the operation is set-union on which the
semi-lattice is defined. As it had already been mentioned that live
variable analysis is a backward analysis.

d) Live Variable Analysis Relation: Using the relations defined
above the Live Variable Analysis can be expressed as the
following equations:

LV entry(pt) = (U LV(pt’)-Kill pt)U Genpt

Where pt’ ∈successor(pt)

Given a relation, S, representing an approximation to the analysis
solution, and the relation for the control-flow graph, the

expression U LV(pt’) in the data-flow framework can be
represented as the relational composition

 CFGP; S

Intuitively, relational composition with CFGP represents the
backward flow information in the analysis. The entire analysis
equation can be represented by the expression

((CFGP; S) – KillP) U GenP U InitP

The analysis equation is now a global equation which takes into
the account the whole program P rather than taking into account
each of the program points of labels which was the initial
representation of live variable analysis in the dataflow framework.

The analysis results can be itself now expressed as the fix-point of
the function

 .Sλ ((CFGP; S) – KillP) U GenP U InitP

2.2.2 Verification of the proposed framework

In this section we are presenting the soundness and correctness of
the mathematical formulation described in section 2.2.1

Proposition 2.2.2.1: Soundness

Proof: Note that the only part of equation 1 that depends on the
analysis being a backward analysis and having the set union as the
operator is

 (CFGP; S)

Only this part of the equation needs to be changed to address
analysis that is not backward analyses or those that have set
intersection as the defined operator on the semi-lattice.

It is quite straight forward to see that in order to consider forward
analysis, it is sufficient to consider the transpose, CFG-1

P , of the
relation representing the control-flow graph for relational
composition.

Proposition 2.2.2.2 Correctness with other operators

Proof: The case of problems where the operator defined on semi-
lattice is set intersection is slightly more complex. In this case, the
relational composition expression has to be of the form

 inv(CFGP; inv(S))

where inv(S) represents the inverse of the set S (with respect to
some universal set).

Proposition 2.2.2.3 Intersection over Finite Domains

Proof: The above results are tabulated in the table shown below.
Note that the relational approach to analysis requires the solution
of different equations for different problems – it, in effect, results
in four different frameworks for different classes of analysis
problems. This is in contrast to data-flow frameworks where the
same framework and equation can be used to solve a large class of
analysis problems.

3. BDD TO REPRESENT LIVE VARIABLE
ANALYSIS
 The last section described the relational framework developed
to do live variable analysis using the binary decision diagram.
This section presents a case study and shows the respective
relations encoded in binary decision digrams which are used by
the BDD solver developed. The section concludes by showing the
execution of the solver algorithm developed.

3.1 Case study

Consider the following high level program code:

//Hypothetical start node: 0
{

 x=1; //1

 y=2; //2

 z=x; //3

 while (x>z) //4

 {

 if(y>z) //5

 {

 x=y+1; //6

 z=x+1; //7

 }

 x=y+z; //8

 }

 x=x-y; //9

}//Hypothetical finish node: 10

 The labelize module takes as input such a code written in high
level language and produces a unique label for each statement. It
also finds the unique variables in the program code. The control
flow graph of the program code is taken as input which represents

 Forward Backward

U (CFGP; S) (CFG-1P; S)

I inv(CFGP; inv(S)) inv(CFG-1
P;inv(S))

the flow information in terms of the labels. For example in this
case the CFG is:

0->1;1->2;2->3;3->4;4->5,9;5->6,8;6->7;7->4,9;8->4,9;9->10

3.2 Global Binary Decision Digrams for BDD
solver

 In this paper BuDDy [6] is used as the package to do the
operations that are related to binary decision diagrams. The binary
decision digrams thus generated respective to each relation is then
visually shown using Graphviz [7] package.

3.2.1 Relation encoding using BDD

 Suppose a relation with 3 2-tuples {(0,1),(1,2),(2,3)} is to be
encoded using BDDs. Now BDDs are function f:Bn

→B, each 2-
tuple of the relation can be encoded using binary bits. In the given
relation it can be encoded using 2 bits. Thus if 0->00,1->01,2-
>10,3->11, then 0001, 0110 and 1011 are true in the BDD
corresponding to this relation while all other combinations lead to
a false value.

3.2.2 Encoding CFG relation

 Control flow graph is defined as ProgramPoint X
ProgramPoint. The 2-tuple (0,1) is in CFG relation and that’s
because in the control flow graph, the control flows from label 0
to label 1. Therefore in the BDD corresponding to CFG relation,
the binary encoding corresponding to (0,1) should evaluate to
true. As there are 11 unique labels therefore 4 bits are taken by the
BuDDy package to represent the CFG BDD. The respective CFG
BDD for the high level program code shown in Figure 1.

 The 2-tuple (8,9) should be in the CFG BDD. 8 is encoded by
1000 and 9 is encoded by 1001. BuDDy [6] encoded the relation
by taking one bit from one member of the 2-tuple’s binary
representation and the next bit from the next member of 2-tuple.
This process is carried out alternatively to generate the whole
encoding. For this example the encoding is:

9[3]8[3]9[2]8[2]9[1]8[1] 9[0]8[0] = 11000010.

 The inspection of the CFG BDD shows that the bit pattern
11000010 leads to true which means that the 2-tuple (8,9) is in the
CFG BDD.

Figure 1: CFG Binary Decision Diagram

3.2.3 Encoding GlobalKill relation

 GlobalKill relation captures the KILL function as described in
Section 2.1.2 in a global view. To encode the GlobalKill relation
a set of labels are found related to each unique variable. From the
example program the variable x is killed at the label subset
{1,6,8,9}. The variables are also assigned a unique id and
therefore the relation GlobalKill is defined on Var X
ProgramPoint where Var is the set related to unique variable id
and ProgramPoint represent the labels. The GlobalKill BDD is
shown in Figure 2.

3.2.4 Encoding GlobalGen relation

GlobalGen relation like GlobalKill captures GEN function
described in Section 2.1.2 in a global view. It is also obtained in a
similar manner as the GlobalKill relation. For both of them the
kill and gen sets are calculated by the definitions as given in
section 2. The corresponding BDD for GlobalGen is shown in
Figure 3.

3.3 BDD solver algorithm

 The algorithm takes as input GlobalCFG, GlobalKill, and
GlobalGen Binary Decision Diagrams and finds the LVentry and
LVexit information globally for the given high level code.

Figure 2: GlobalKill Binary Decision Diagram

BDDSolver Pseudocode

Step 1. Initiliaze BDDs solver and
tempsolver as empty

Step 2. while(solver is not equal to
tempsolver)

Step 3. tempsolver = (relational_product
(GlobalCFG,solver)-GlobalKill) U
GlobalGen

Step 4.endwhile

This algorithm provides the LVentry information. The BDD given
by this algorithm gives the information that which variables are
live at respective program points. To find the LVexit information
the line 3 of the algorithm is modified as the following:

Figure 3: GlobalGen Binary Decision Diagram

tempsolver= (~relational_product(GlobalCFG,
~solver)-GlobalKill) U GlobalGen,

where ~ is the negation operation in BDDs. A complete
description of operations defined on BDD can be found in [1-2].

Figure 4: Solver Binary Decision Diagram

3.3.1 Correctness of the solver algorithm

 In section 2.2.1 while defining the relational framework for live
variable analysis the correctness of the respective equations are
shown. The equations are analogous to the live variable analysis
defined in the previous section.

3.3.2 Termination of the solver algorithm

 Since the live variable analysis is defined as a lattice structure
therefore there is always a fixed point of the lattice and therefore
the algorithm is guaranteed to terminate.

3.3.3 Revisiting the example

The LVentry BDD corresponding to the example is shown in
Figure 4.

 This provides the same result as the result provided by the
traditional worklist [8] algorithm which iteratively tries to find out
the fixed point and thus the LVentry and LVexit information.

4. PERFORMANCE ANALYSES
 We have proposed a new approach to do Live Variable
Analysis. The traditional worklist algorithm [8-10] is one of
the oldest and heavily studied algorithm for performing
dataflow analysis. This algorithm finds the fixed point by
iterations on the control flow graph but this algorithm
doesn’t look into the whole structure of the program at one
time. The relational framework captures the whole structure
of the program and the BDD Solver finds out the fixed
points of the analysis in much less number of iterations than
worklist algorithm. [11] gives a survey of algorithms that
use iterative approach to do dataflow analysis. To compare
our solver we have implemented the iterative worklist
algorithm mentioned in [11].
 We considered intra-procedural Live Variable Analysis
in this paper. For intra-procedural analysis generally the
code length is not more than 50 or 100 lines. We checked
the solver on codes of varying lengths to compare the
performance of our algorithm over the traditional iterative
algorithm. Note that the framework we proposed is more
general and can be applied to both inter-procedural and
intra-procedural analysis with appropriate modifications.
 The results we obtained are provided in the Table 2. We
obtained a significant gain in the iterations that are required
to find the fixed points of live variable analysis. Table 3
shows the runtime of the BDD Solver. From Table 2 we
notice a marked decrease in number of iterations compared
to the traditional chaotic iterations. The run time of BDD
Solver includes the time spent in initialization of the Binary
Decision Diagram package and formation of global binary
decision diagrams corresponding to Control Flow Graph,
Kill and Gen relations. The next section shows how we can
use the gain from the relational framework and decrease the
run time of the BDD Solver.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a relational framework to do
Live Variable Analysis and gave an algorithm to do Live
Variable Analysis. The Binary Decision Diagram based
solver finds out the fixed points of Live Variable Analysis
in iterations much less than the traditional iterative method
of finding the fixed points of Live Variable Analysis. This
paper obtained a marked improvement in iterations to find
the fixed points and therefore the relational framework can
help in finding the fixed points faster than the equational
approach. The Symbolic Solver algorithm is implemented
using Binary Decision Diagrams and due to the
initialization routines of Binary Decision Diagram package
the time taken is higher.
 We are looking at other symbolic methods to use the
relational framework so that we can gain in time. One

important future research direction is to map the relational
framework to a SAT solver and the Solver algorithm will
query the SAT solver to do membership queries for the
fixed points. Since SAT based frameworks are proven much
faster in the verification community, which traditionally
used Binary Decision Diagrams, we also expect a gain in
time when a SAT based symbolic solver will be used to
query the fixed points.

6. REFERENCES
[1] Randal E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers, 8(C-
35):677-691, 1986.

 [2] Randal E. Bryant. Symbolic Boolean manipulation with
ordered binary-decision diagrams. ACM Computing Surveys,
24(3):293-318, September 1992.

[3] Henrik Reif Anderson. An introduction to Binary Decision
Diagrams. Lecture notes for 49285 Advanced Algorithms E97,
October 1997.

[4] Marc Berndl, Ondrej Lhotak, Feng Qian, Laurie Hendren, and
Navindra Umanee. Points-to analysis using BDDs. In PLDI 2003.

[5] Flemming Nielson, Hanne Riis Nielson, Chris Hankin.
Principles of Program Analysis. Springer Verlag.

[6] Jørn Lind-Nielsen. BuDDy, A Binary Decision Diagram
Package. Department of Information Technology, Technical
University of Denmark,http://www.itu.dk/research/buddy/.

[7] AT&T Lab Research. Graphviz – Graph Visualization
Software. http://www.graphviz.org/.

[8] John B. Kam and Jeffrey D. Ullman. Global data flow analysis
and iterative algorithms. Journal of the ACM, 23(1):158–171,
January 1976.

 [9] Ken Kennedy and Scott K. Warren. Automatic generation of
efficient evaluators for attribute grammars. In Conference Record
of the Third ACM Symposium on Principles of Programming
Languages, pages 32–49, Atlanta, Georgia, January 1976.

[10] John B. Kam and Jeffrey D. Ullman. Monotone dataflow
analysis frameworks. Acta Informatica,7:305–317, 1977.

[11] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy.
Iterative Data-flow Analysis, Revisited. Rice Technical Report,
TR04-100.

[12] Somenzi, Binary Decision Diagrams. M. Broy and R.
Steinbruggen, editors, Calculational System Design, volume 173
of NATO Science Series F: Computer and Systems Sciences,
pages 303--366. IOS Press, 1999.

[13] SpecC System, http://www.ics.uci.edu/~specc/.

[14] ESL: Tales from the trenches, Panel Discussion, Proceedings
of Design Automation Conference 2005, June 13-17, 2005,
Anaheim, California, USA

Table 2. Performance Analysis of BDDSolver

Table 3. Runtime of BDDSolver

Program C--
Tokens

Constructs Chaotic
Iterations

BDDSolver
 Iterations

P1 65 While,if 20 3
P2 69 While,if,

else
13 5

P3 124 While,if,
else

29 7

P4 129 While,if,
else

29 7

P5 139 While,if,
else

34 9

Program C-- Tokens Execution
Time

P1 65 6.357ms

P2 69 6.59ms

P3 124 7.266ms
P4 129 7.501ms

P5 139 7.903ms

