Content-Aware Image and Video Resizing by Anchor Point Sampling and Mapping

Fan Jiang, Jing Xiao
Epson Research and Development, Inc.
August, 2008

Motivation: Image Resizing

• Preserve the properties of important contents when resizing.

Original Image

Uniform Scaling

Content-Aware Resizing

Motivation: Video Resizing (1)

Preserve important contents consistently across the video when resizing.

Uniform

Scaling

Content-Aware

Resizing

Uniform

Scaling

Time 3

Uniform Scaling

Motivation: Video Resizing (2)

• Preserve important temporal events when shortening/stretching the video.

Nearly static frames (no event)

Swing event

Content-Aware Shortening

Our Method (Image)

- Compute the importance (saliency) of image/video pixels.
- Important features such as faces and strong edges lead to high saliency value.

Original Image

Saliency Map (brighter color refers to higher importance)

Our Method (Video)

- Compute the importance (saliency) of image/video pixels.
- Important features such as faces and strong edges lead to high saliency values.
- For videos, pixels with high spatio-temporal gradient have high saliency values.

Original Video

Saliency Map (brighter color refers to higher importance)

Our Method (Image)

- Select representative anchor points by sampling.
- Pixels with higher saliency have higher probability to be sampled.

Saliency Map (brighter color refers to higher importance)

Selected anchor points (blue dots)

Our Method (Video)

- Select representative anchor points by sampling.
- Pixels with higher saliency have higher probability to be sampled.
- To save computational cost, only a small number of anchor points are selected for video resizing.

Saliency Map (brighter color refers to higher importance)

Selected anchor points (blue dots)

Our Method (Image/Video)

- Compute mapping of the anchor points from original size to target size.
- Criterion: Preserve high-saliency pixel properties more that others.
- Linear constraints on anchor points x_1 and x_2 with saliency s_{12} :

$$s_{12}(x_1'-x_2') = s_{12}(x_1-x_2)$$

Mapping illustration for video resizing. Image resizing is similar.

Our Method (Image)

• Construct 2D (images) or 3D (videos) mesh model of the anchor points by Delaunay triangulation.

• Warp each mesh unit to the target images or videos by interpolation based on the

mapping of anchor points.

Our Method (Video)

- Construct 2D (images) or 3D (videos) mesh model of the anchor points by Delaunay triangulation.
- Warp each mesh unit to the target images or videos by interpolation based on the mapping of anchor points.

Content-Aware Resizing

Uniform Scaling

Examples: Temporal Resizing (Video)

Original Video

Content-aware shortening preserves the swing event.

Uniform shortening changes the swing event.

More Examples (Image)

Original

Shrinking

Enlarging

More Examples (Image)

Enlarging

More Examples (Image)

Enlarging

More Examples (Video)

Content-Aware Heightening