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Abstract—Characterizing the video quality seen by an end-user
is a critical component of any video transmission system. In packet-
based communication systems, such as wireless channels or the
Internet, packet delivery is not guaranteed. Therefore, from the
point-of-view of the transmitter, the distortion at the receiver is a
random variable. Traditional approaches have primarily focused
on minimizing the expected value of the end-to-end distortion. This
paper explores the benefits of accounting for not only the mean,
but also the variance of the end-to-end distortion when allocating
limited source and channel resources. By accounting for the vari-
ance of the distortion, the proposed approach increases the relia-
bility of the system by making it more likely that what the end-user
sees, closely resembles the mean end-to-end distortion calculated at
the transmitter. Experimental results demonstrate that variance-
aware resource allocation can help limit error propagation and is
more robust to channel-mismatch than approaches whose goal is
to strictly minimize the expected distortion.

Index Terms—Error analysis, multimedia communication, tele-
conferencing, video coding, videophone systems.

I. INTRODUCTION

NETWORK-BASED video applications have dramatically
increased in popularity in recent years. One of the major

challenges in supporting these applications is that packet de-
livery is not guaranteed in most practical transmission systems,
such as wireless channels and the Internet. Thus, from the
point-of-view of the transmitter, the distortion at the receiver is
a random variable that depends on the probability of packet loss
in the channel. This paper explores the benefits of accounting
for the variance, as well as the mean of the end-to-end dis-
tortion when allocating limited source and channel resources.
By accounting for the variance of the distortion, the proposed
approach increases the likelihood that what the end-user sees
closely resembles the mean end-to-end distortion calculated at
the transmitter, thus increasing the reliability of the system.

Recent work on resilient video coding and transmission for
packet lossy networks has primarily focused on improving the
end-to-end video quality [1]–[10]. These techniques account for
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the distortion due to both source compression and channel er-
rors. A common feature among these works is that they all mea-
sure video quality by the expected distortion, where the expec-
tation is computed with respect to the probability of packet loss.
The work presented here differs from these approaches in that
the variance of the distortion, as well as the expected distortion,
is used to evaluate video quality.

Several methods have been proposed for calculating the ex-
pected distortion. These methods can be divided into two gen-
eral categories. The first is optimal per-pixel estimation methods,
such as [1]–[3]. The main contribution of these approaches is
that they show that under certain conditions, it is possible to ac-
curately compute the expected distortion with finite storage and
computational complexity by using per-pixel accurate recursive
calculations. For example, in [1], Hind’s method recursively cal-
culates the distribution of each reconstructed pixel value. In [2],
the authors present a recursively accurate method for computing
the expected mean absolute difference. In [3], Zhang et al. de-
velop an algorithm called ROPE, which efficiently computes the
expected mean-squared error (MSE) by recursively calculating
only the first and second moment of each pixel. In many advanced
video coding schemes, e.g., H.264/AVC and MPEG-4, nonin-
teger motion compensation, deblocking filters, and complex con-
cealment strategies introduce cross-correlation between pixels
that make ROPE less precise. Recently, there has been work on
approximating these cross-correlation terms in order to extend
ROPE to more sophisticated coding schemes [4], [5].

The second category of distortion estimation techniques con-
sists of schemes that use models to estimate the expected dis-
tortion, e.g., [6]–[10]. Model-based methods are useful when
computational complexity and storage capacity are limited. In
[6], the authors present a recursive distortion estimation algo-
rithm, which only differs slightly from ROPE in that they ap-
proximate the distortion due to concealment. In order to es-
timate the expected distortion, a likely subset of the possible
loss patterns is considered in [7]. In [8], a limited number of
channel simulations and decoder reconstructions are stored at
the encoder in order to estimate the expected distortion. In [9],
a model is developed for estimating both source and channel
distortion based on the intrarefresh rate and the percentage of
zeros among the quantized transform coefficients. Another pop-
ular metric for calculating the expected distortion is to consider
the reduction in distortion given that a packet and all the packets
it depends on are received correctly, as in [10]. This approach
works well when the dependencies between packets are clearly
defined, e.g., when transmitting pre-encoded sequences, but it
may not be well suited for real-time applications.
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Fig. 1. (a) Expected frame and (b), (c) two channel loss simulations.

At the receiver, the end user sees only one of many possible
reconstructed sequences, depending on which packets are actu-
ally lost. Therefore, the actual distortion at the receiver does not
necessarily equal the expected distortion. To illustrate this point,
consider the images shown in Fig. 1. While the expected recon-
structed frame (averaged over all possible loss realizations) may
be reasonable, as shown in Fig. 1(a), the quality at the receiver
may vary greatly based on which packets are lost [Fig. 1(b) and
(c)]. Therefore, in this paper, we argue that the variance of the
end-to-end distortion should also be considered when character-
izing video quality in lossy packet networks. We introduce the
concept of “Variance-aware per-pixel optimal resource-alloca-
tion” (VAPOR) and present a framework for controlling both the
expected value and the variance of the end-to-end distortion. In
Section VI, experimental results demonstrate that reducing the
variance of the distortion can help limit the propagation of per-
ceptually annoying artifacts. In addition, VAPOR is shown to be
more robust to channel-mismatch than approaches whose goal
is to strictly minimize the expected distortion. This paper builds
on our prior work, some of which can be found in [11] and [12].

In addition to the variance in distortion caused by packet loss,
there are other sources of quality variation that have received
considerable attention in the literature. For example, rate-control
schemes, i.e., assigning bandwidth (bits) to the different frames
in a video sequence, are responsible for the problem of temporal
variations in quality [13], [14]. Similarly, approaches such as
[15]–[17] have looked at the benefits of providing more even
quality across a group of frames. Reducing the spatial variation
in quality within a frame has also been considered. The motiva-
tion behind these approaches is to prevent having some regions
of a frame with excellent quality and others with relatively poor
quality. In [18] and [16], one attempt at producing more even
quality was to minimize the maximum distortion within a frame
as opposed to the average distortion. The approaches mentioned
above are complementary to the work presented here. Our
approach addresses another source of quality variation, i.e., the
variance in distortion caused by random channel losses.

The concept of variance-aware resource allocation is perti-
nent to a wide range of video transmission systems including
wireless communications, wired networks, and Differentiated
Services (DiffServ) Internet systems. In our experimental re-
sults, we consider wireless video communications as a represen-
tative example. The basic ideas presented here can be utilized in
various applications such as video conferencing, target tracking,
surveillance, and personal communications to name a few.

The remainder of the paper is organized as follows. Next, we
describe the system model. In Section III, we characterize the
end-to-end distortion in packet-based video communication sys-
tems. Two variance-aware resource allocation formulations are

presented in Section IV, followed by a discussion of the solution
approach in Section V. Extensive experimental analysis is pre-
sented in Section VI. Section VII contains concluding remarks.

II. SYSTEM MODEL

Consider a packet-based video communication system where
the video is encoded using a block-based motion-compensated
technique (e.g., H.263 [19], MPEG-4 [20]). Each frame is di-
vided into slices that are comprised of consecutive macro-blocks
(MBs). Each slice is independently decodable, i.e., the decoding
of one slice is not affected by the loss of other slices in the same
frame. Losses in other frames, on the other hand, may cause
temporal error propagation due to interframe prediction. After
a slice is encoded, it is transmitted across a channel as a sepa-
rate packet. In the following, slice and packet will be used in-
terchangeably. Let be the number of packets in a given frame
and be the packet index.

For each packet, source-coding parameters, such as the
coding mode (intra/inter/skip) and quantization step-size for
each MB are specified. We use to denote the source-
coding parameters for the th packet in the th frame, and

to denote the coding parameters for all
the packets in the frame. The number of bits used to encode
the th packet is a function of ; we use to
explicitly indicate this dependency.

Error resilient video coding is a well established field of re-
search and includes a broad range of techniques, such as adap-
tive mode and quantizer selection, data partitioning, reversible
variable length coding, and various packetization schemes. In
this paper, our focus is on resilient coding algorithms which
adapt the prediction mode (and quantization parameters) for
each MB in the sequence. In other words, given the bit budget
constraints imposed by the application, these techniques address
the problem of trading off the compression efficiency of inter-
coding with the resilience to error propagation of intracoding.
For more details on other resilient source coding techniques we
refer the reader to [24].

After each packet is encoded, it is transmitted over a commu-
nication channel. Most practical communication systems, such
as wired and wireless networks, are unreliable, and, therefore,
packets are lost during transmission with some probability.1 An
implicit assumption in our system model is that the probability of
loss in the channel can be reasonably estimated at the transmitter
and is, therefore, known when allocating limited source and
channel resources. Channel estimation is a well established and
sophisticated field of research. Many techniques and protocols
have been developed to estimate the probability of loss including
the use of direct feedback from the receiver or intermediate nodes
in the network, measuring the signal strength of a pilot signal in a
wireless channel, or through analytical models. In Section VI-A,
we provide a model for characterizing the probability of loss in
a wireless channel based on the concept of “outage capacity”
developed in [26]. In Section VI-D, we discuss the robustness
of the proposed approach to channel mismatch, i.e., when the
estimate of the channel loss rate is incorrect.

1Note that, here, we assume that packets are either received error free or con-
sidered lost due to packet corruption or excessive delay.
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Fig. 2. Example of the probability mass functions ofD ,D ,D ,
and their relationship.

III. DISTORTION CHARACTERIZATION

In this section, we present a framework for characterizing the
distortion between the original video and the reconstructed se-
quence at the receiver. This framework is based on knowledge of
how the original sequence is encoded, the probability of packet
loss in the channel, and the concealment strategy used by the
decoder. Since a pixel is the smallest information symbol in a
digital video sequence, we use per-pixel accurate calculations
to characterize the end-to-end distortion.

Consider a single pixel in the video sequence. For the system
described in Section II, we assume the encoded information for
each pixel is contained in only one packet and that each packet is
either received correctly or lost. This means for example, we as-
sume no layered coding although the concept of variance aware
resource allocation can be extended to such a scenario. In this
case, the distortion between the original and reconstructed value
for the th pixel of the th packet in the th frame is a random
variable with the following distribution

with probability
with probability

(1)

where is the probability that the th packet is lost,
is the distortion if the packet is received correctly, and is
the distortion if the packet is lost. If the pixel is predictively en-
coded, then is a random variable due to random losses in
previous frames. On the other hand, if the pixel is independently
encoded (intracoded), then is deterministic. The distor-
tion if a packet is lost depends on the concealment strategy used
at the decoder. If prediction is used in the concealment strategy,
e.g., temporal concealment, then is also a random vari-
able. The probability mass function (pmf) of the end-to-end dis-
tortion for a given pixel and its relationship to the quan-
tities discussed above are shown in Fig. 2. As shown, the pmf
of is simply the weighted sum of the pmfs of
and , where the weight is controlled by the probability
of loss .

A. Expected Value of the End-to-End Distortion

The expected value of the end-to-end distortion for a given
pixel can be written as

(2)

where indicates the expected value taken with respect to the
probability of loss. The expected distortion for the th packet in
the th frame is defined as

(3)

where is the number of pixels in the th packet. Similarly,
the average expected distortion for the th frame and for the
sequence are simply

(4)

and

(5)

respectively, where is the number of packets in a given frame,
is the number of pixels per frame, and is the number of

frames in the sequence.
One way to minimize the expected distortion for a given

frame is by efficiently allocating source coding resources,
e.g., source bits. For a given bit budget, intercoding typically
has higher compression efficiency than intracoding, but is more
susceptible to temporal error propagation. The expected distor-
tion accounts for the distortion due to both source coding and
error propagation. Therefore, if the objective is to minimize the
expected distortion, and the increase in source distortion caused
by intracoding outweighs the increase in error propagation
distortion caused by intercoding, then it is better to use inter-
coding for the given MB. In Section VI, we show that under
certain conditions, e.g., low to moderate probability of packet
loss, the prevailing selection of intercoding over intra may lead
to prolonged propagation of perceptually visible artifacts.

B. Variance of the End-to-End Distortion

In a video transmission application, the actual distortion in
the reconstructed sequence (i.e., for a single loss realization)
is not equal to the expected distortion. Therefore, to determine
the likelihood that the actual distortion seen by the end-user is
near the expected distortion, one must look at the variance of
the distortion.

The variance of the distortion for a given pixel is by definition
equal to . By substi-
tuting (1) into the previous equation and rearranging terms, we
can express as

(6)

where and are the variance in distor-
tion given that the packet containing the coding information for
this pixel is received and lost, respectively.
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Fig. 3. Relationship between the variance in distortion for a given pixel
Var [D ] and the probability of packet loss � .

As expected, increases when

or increase. Therefore, intracoding, which has

, enables the transmitter to greatly decrease
the variance. Intercoding on the other hand is susceptible to tem-
poral error propagation and, thus, has . This

suggests that is a good indicator of how severely a
packet may be affected by error propagation. This important ob-
servation is discussed further in Section VI-C. From (6), we see

that increases as
increases. This means that if a pixel is difficult to conceal,
i.e., , its distortion varies greatly
depending on whether the packet is received or lost.

From (6), it can be seen that is a concave
quadratic function of , with a maximum at

(7)

as shown in Fig. 3. This is intuitively satisfying since there is
less variability in when the probability of loss is either
very small or very large. For example, if or 1 for all the
packets in the sequence, then from the point of view of the trans-
mitter the reconstructed sequence at the decoder is no longer
random. In this extreme case,

.

Let represent the standard de-
viation of the distortion for a given pixel. The average standard
deviation in distortion for the th packet in the th frame is de-
fined as

(8)

Similarly, the average standard deviation in distortion for the
th frame and for the sequence are respectively

(9)

and

(10)

It is important to note that the average variance in distortion
per pixel as in (9) is not equal to the variance of the average
distortion for a frame, i.e.,

(11)

The expression on the right hand side of (11) is more difficult
to compute since it requires calculating the cross-correlation be-
tween the distortion of all the pixels in the frame. In addition, the
problem of optimally encoding and transmitting a video frame
based on the variance in quality, as done in Section IV, becomes
infeasible if the is used. An-
other motivation for using (9) is that it captures local variations
in quality better than the variance of the average distortion.

C. Squared Error Distortion Metric

The expressions for the mean (2) and variance (6) of the
end-to-end distortion derived in Sections I and II hold for a wide
range of distortion metrics. In our experimental results, we con-
sider the case where distortion is defined as the squared error
between the original pixel value and the reconstructed pixel
value at the receiver . In this case, the first two moments of
the reconstructed pixel value, i.e., and , are needed
to accurately calculate the expected distortion

. Similarly, the first four moments of the reconstructed pixel
value are needed to accurately calculate

.
In certain cases, optimal distortion estimation methods, such

as ROPE [3] and [1] can be used to accurately and recursively
calculate the necessary reconstructed pixel moments. In other
cases, such as noninteger pixel motion compensation, models
may be needed to estimate the mean and variance of the distor-
tion. Developing efficient models for estimating the variance of
the end-to-end distortion is an area requiring future research.

IV. VARIANCE-AWARE RESOURCE ALLOCATION

Our objective is to efficiently allocate limited resources at
the transmitter in order to minimize the end-to-end distortion
while satisfying the delay constraints imposed by the appli-
cation. The specific parameters which can be adapted at the
transmitter depend on the application. For example, in wireless
communications, the transmitter may be able to adapt how the
source is encoded, as well as the transmission power and mod-
ulation scheme. Examples of other control parameters include
the channel coding rate or the packet classification in a DiffServ
Internet system. To better illustrate the potential benefits of the
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proposed approach, we consider the problem of optimally con-
trolling the source coding parameters , i.e., the prediction
mode and quantizer. It should be noted though that the concepts
developed here can be used in a wide range of applications in
which both source and channel resources may be adapted.

We can now formally state our objective as

(12.1)

subject to (12.2)

where is the cost function representing the end-to-end dis-
tortion, is the total transmission delay, and is the max-
imum transmission delay for the th frame. In this paper, we
assume that the transmission rate is fixed, although the for-
mulation can easily be extended to allow variable transmission
rate per packet.

We consider a real-time application in which there is a limited
amount of time between when a frame is captured at the trans-
mitter and when it must be displayed at the receiver. To manage
the delay requirements imposed by the application, we assume
that a higher-level controller assigns a transmission delay con-
straint to each frame in the sequence. The design of this
controller is outside the scope of this paper. The value of
may vary from frame to frame, but it is assumed to be a known
constant when optimizing each frame. Note that when the trans-
mission rate is fixed, the delay constraint in (12.2) can also be
viewed as an equivalent bit budget constraint.

In previous sections, we discussed the need to account for
both the mean and the variance of the end-to-end distortion
when evaluating video quality. One way to do this is by defining
the cost function to be minimized in (12.1) as the weighted sum
of the expected distortion plus the standard deviation in distor-
tion, i.e.,

(13)

where defines the relative importance of the variance
of the end-to-end distortion. We use instead of

so that the units of are consistent. By using
(13) as the objective in the optimization problem (12) and
solving for different values of , we can observe the tradeoff
between minimizing the expected value and the variance of
the distortion. For example, in Fig. 4, we plot the mean and
the standard deviation in distortion versus for frame 43
of the “Foreman” test sequence. As expected, increasing
reduces the standard deviation at the cost of increased expected
distortion. When , we obtain a special case of the general
formulation in which the objective is to strictly minimize the
expected distortion per frame, as in [1]–[10]. In Section VI, this
special case is referred to as the minimum expected distortion
(MED) approach. As shown in Fig. 4, it may be possible to

Fig. 4. Impact of � on the average expected distortion (D ) and average
standard deviation in distortion (� ) for frame 43 of the “Foreman” sequence
coded at 30 fps with R = 150 kbps and � = 0:01.

significantly reduce while only slightly increasing .2 This
observation motivates the following alternative variance-aware
formulation.

By adjusting , we can control the value of both the mean and
the variance of the distortion. Let be the MED for the frame
(i.e., the solution to (12) with ). We modify (12) slightly
to include the optimal selection of , by constraining the differ-
ence between the expected distortion and the minimum achiev-
able value . In other words, we solve the following optimization:

(14.1)

subject to (14.2)

and

(14.3)

where represents the maximum increase in expected
distortion we are willing to tolerate in order to decrease the vari-
ance of the distortion. Note that the formulation in (14) is equiv-
alent to minimizing the variance given an expected distortion
constraint. In Section VI, we show that for a small increase in
expected distortion, the standard deviation of the distortion can
be reduced significantly.

To the best of our knowledge, the formulations in (12) and
(14) are the first to account for both the mean and the vari-
ance of the end-to-end distortion. We refer to formulations of
this type as a “variance-aware per-pixel optimal resource-allo-
cation” (VAPOR) techniques. The formulation in (12) is less
complex than (14) in that is fixed. The drawback is that it may
not be very intuitive how to set , and the same may not be
desirable for every frame. This problem is addressed in (14) be-
cause is optimally set based on a specified tolerable increase
in expected distortion.

2Similar results have been obtained using other sequences. Note that the ex-
tent to which the standard deviation decreases relative to the expected distortion
depends on the signal content as well as the parameter settings.
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V. SOLUTION APPROACH

In order to solve (12), we use Lagrange relaxation and dy-
namic programming (DP). First, we introduce a Lagrange mul-
tiplier and solve the relaxed problem

(15)

By appropriately choosing , the solution to (12) can be ob-
tained within a convex-hull approximation by solving (15) [21],
[22]. Various methods, such as cutting-plane or sub-gradient
methods, can be used to search for [23]. In our experimental
results, we use a simple yet effective bisection method.

For each choice of , we can solve (15) using DP. Predictive
coding and error concealment both introduce dependencies be-
tween packets. For example, temporal concealment based on the
motion vectors (MVs) of neighboring packets causes the distor-
tion for a given packet to depend on how neighboring packet(s)
in the same frame are encoded as well as their probability of
loss. Accounting for the dependencies between packets is what
makes solving (15) a difficult problem. DP can be used to effi-
ciently find the optimal for each packet in the frame when
the dependencies between packets are limited, e.g., to a small
neighborhood. For more details, please see [11], [21], and [22].
To solve (14), we can iteratively adjust and solve (12) until
the resulting expected distortion is less than or equal to

.

VI. EXPERIMENTAL RESULTS

The basic ideas developed throughout this paper are relevant
to a wide range of applications. In this section, we focus on one
example, i.e., real-time wireless video communications. Exper-
imental results highlight the potential benefits of accounting for
both the expected value and the variance of the distortion when
allocating limited resources in packet-based video transmission
systems. As a comparison to the proposed VAPOR approach, we
consider a more traditional approach whose goal is to minimize
the expected distortion per frame, as in [1]–[10]. We refer to this
scheme as the MED approach. As mentioned in Section IV, the
MED approach is a special case of (12) in which .

In Section VI-B, we consider the problem of optimal source
coding assuming that the probability of loss in the channel
is known or can be reasonably estimated at the transmitter.
In Sections VI-C and VI-D, we present results suggesting
that VAPOR can help reduce error propagation and channel
mismatch sensitivity.

A. Experimental Setup

Source Coding: An [19] codec is used to encode
QCIF resolution video sequences using a limited number of
quantization step sizes for “intra” and “inter” MBs. In addition,
integer pixel motion compensation is used in order to ensure ac-
curate distortion estimation at the transmitter. A thorough dis-
cussion on the necessary conditions for accurately calculating
the expected distortion at the transmitter using methods such
as ROPE can be found in [3]. As in [11], we consider the case
where each packet contains one MB, i.e., each MB is inde-
pendently decodable. Although this packetization scheme has

low coding efficiency, it is highly resilient to channel errors
[24], [25].

Similarly, we consider a relatively simple concealment
strategy in which the concealment MV for a lost MB is defined
as the MV of the MB to the left of the lost MB. If the lost MB
is on the left edge of the frame, or if the MB to the left is also
lost, then the concealment MV is set to zero.

We consider a real-time application with an allowable trans-
mission delay of one frame duration. Therefore, a sequence
coded at 30 frames per second (fps) has a delay constraint

ms. At 15 fps, ms. Since the transmission rate is
fixed, the delay constraint imposed by the application translates
to an equivalent bit budget constraint per frame. In other words,
all the approaches considered here use roughly the same number
of bits when encoding a given frame in the sequence. The only
difference between the various approaches is how they encode
the frames, i.e., what mode and quantizer they use to encode
each MB. In all the experiments, the “generalized skip mode,”
introduced in [11], enables the transmitter to intentionally not
transmit certain packets if their concealment at the decoder re-
sults in adequate quality. Note that the decision not to transmit
a packet is made within the optimization framework and can be
viewed as one of the possible coding modes for each packet.

The proposed VAPOR approach is applicable to a wide range
of coding and transmission schemes including wireless video
communications and Interne-based video transmission. There-
fore, it is important to note that the experimental setup is chosen
to illustrate the concepts introduced in this paper and can easily
be adapted based on the application and system requirements.
For example, the formulations in (12) and (14) can be used with
other packetization schemes in which several MBs or even entire
frames are placed in each packet. Selecting the optimal pack-
etization scheme is application specific and depends on many
factors including the source content, the available channel band-
width, and how source packets are repacketized at other layers in
the network protocol stack. Smaller packets provide more flex-
ibility and resilience to errors but have more overhead. Larger
packets provide improved coding efficiency, but cause large lo-
calized distortions when they are lost. Balancing the tradeoff
between coding efficiency and error resilience by optimally se-
lecting the packetization scheme is an important topic, but is
outside the scope of this paper. Here our goal is to propose a
new variance-aware approach to video communications. This
framework can be used to design and evaluate the performance
of future video transmission systems.

Channel Model: We use the wireless channel model from
[11], where each packet is sent over a flat (frequency nonselec-
tive) slowly fading channel with additive white Gaussian noise.
We model in the capacity versus outage framework intro-
duced in [26]. For this channel model

(16)

where is the bandwidth, is the noise power, is the
transmission rate in source bits per second, is the transmis-
sion power for the th packet, and is the expected value
of the channel fading level for the th packet . We assume
that the fading is independent identically distributed (i.i.d.) per
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Fig. 5. Impact of � on the expected distortion (D ) and standard deviation
in distortion (� ) averaged over all the frames of the “foreman” sequence
coded at 30 fps with R = 150 kbps and � = 0:01.

packet, i.e., for all .3 In our experiments,
and . We consider trans-

mission rates ranging from kbps to 300 kbps. These
values are similar to the ones being proposed for next genera-
tion wireless standards [27].

In the experiments presented here, we assume that techniques
such as packet interleaving can be used to spread out burst error,
and thus, model the fading as i.i.d. for the packets in a given
frame. A detailed analysis of the robustness of the proposed
approaches under bursty error conditions is presented in [28].
The results in [28] show that the performance advantages of the
proposed scheme still hold when more complex channel models
are used.

B. Error Resilient Source Coding

In this section, we consider the problem of optimal source
coding. That is, we focus on how adapting the source coding
parameters, such as the prediction mode and quantizer, impacts
the end-to-end distortion.

Consider the “Foreman” test sequence coded at 30 fps and
transmitted over a 150 kbps channel with probability of packet
loss for all , . In Fig. 5, we plot the expected
distortion (5) and the average standard deviation (10)
for the sequence as a function of . In other words, for each fixed
value of we solve (12) and plot the corresponding and

. The motivation behind this experiment is to study how
affects the statistical properties of the end-to-end distortion for
the sequence. As shown in Fig. 5, decreases as increases.
This is intuitively satisfying since a larger means that more
weight is placed on reducing the variance in distortion when
allocation resources in (12).

Surprisingly, though, the expected distortion for the sequence
does not necessarily increase as increases, as shown in

Fig. 5. Recall that the optimization is carried out on a per frame
basis and, therefore, ignores the effects of the current optimiza-
tion on future frames. Therefore, although setting re-
sults in the lowest for a single frame (as shown in Fig. 4),

3Note that the fading level is assumed to be i.i.d. for all the packets in a single
frame, but that the average fading level may vary from frame to frame.

Fig. 6. Expected distortion per frame D for the “silent” sequence.

Fig. 7. Average standard deviation in distortion per frame � for the “silent”
sequence.

it is not guaranteed that is minimized by myopically min-
imizing the expected distortion per frame. This result is due to
interframe dependencies. Reducing the variance in the current
frame may lead to a more reliable prediction for the next frame,
which in turn may reduce the overall expected distortion for the
sequence.

Recently, there has been work on prescient video coding, i.e.,
accounting for the effects on future frames when encoding the
current frame [29]. The drawback of this work is that a certain
number of frames must be captured before the optimization can
begin, thus increasing delay. In addition, the reduction in overall
distortion gained from optimizing over a group of frames is re-
ported to be relatively small in [29]. Our results suggest that by
reducing the variance of the distortion for the current frame we
can achieve similar reductions in without the added delay
or optimization complexity.

Next, we consider the formulation in (14) where is adapted
per frame based on a tolerable increase in expected distortion

. Here, we set (i.e., a 5% increase). In this ex-
periment, we use the “silent” test sequence coded at 30 fps with

kbps and . For these settings, the av-
erage value of is 0.64. In Figs. 6 and 7, we compare the
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TABLE I
EXPECTED DISTORTION D AND STANDARD DEVIATION IN DISTORTION � FOR SEVERAL SEQUENCES

IN UNITS OF MSE. ALL THE SEQUENCES ARE CODED AT 30 FPS WITH R = 150 kbps AND � = 0:01

Fig. 8. Mode selection as a function of � for the “silent” sequence with R =

150 kbps and � = 0:01.

proposed adaptive approach with the MED approach (i.e.,
). As shown in Figs. 6 and 7, the expected distortion

per frame (4) is similar for both approaches, while the stan-
dard deviation per frame (9) is significantly smaller for the
VAPOR approach. This suggests that by accepting even a small
increase in expected distortion it is possible to greatly reduce
the variation in quality between different loss realizations. Sim-
ilar results have been obtained using other sequences. In Table I,
we compare the average expected distortion and average stan-
dard deviation for several sequences coded using the MED and
VAPOR approaches. As seen, the VAPOR approach greatly re-
duced the standard deviation in distortion while only slightly in-
creasing the expected distortion. As discussed above, for some
sequences, such as “Foreman” and “Susie,” the expected distor-
tion for the sequence may actually decrease slightly when using
VAPOR.

The value of affects how much of the end-to-end distortion
is due to source coding and how much is caused by channel
errors. This is primarily a function of mode selection. For each
value of in (12), Fig. 8 shows the average number of MBs
per frame that are coded as intra (IMBs), inter (PMBs), or are
intentionally not transmitted (generalized skip). As increases,
the number of IMBs increases, as shown in Fig. 8. Since the
bit budget is constrained and because IMBs have lower coding
efficiency than PMBs, the source coding distortion increases as

increases. On the other hand, increasing the number of IMBs
reduces the distortion caused by error propagation. This tradeoff
is discussed next.

Fig. 9. Average error propagation length per root versus probability of error
for the “silent” sequence.

C. Error Propagation

As in Section VI-B, we focus here on resilient source coding,
i.e., mode and quantizer selection given a fixed probability of
packet loss in the channel. We consider the “silent” sequence
encoded at 30 fps and sent over a 150 kbps channel. The ob-
jective in this section is to analyze how sensitive the MED and
VAPOR approaches are to error propagation.

Let us define a pixel to be in error if its reconstructed value at
the decoder differs from that at the encoder. At the receiver, we
can track the temporal propagation of each error in order to iden-
tify error propagation paths. Each propagation path has a root,
i.e., the origin of the error path, and a length, i.e., the number of
pixels in error due to the initial root error. Note that only pixels
that are lost and which start a new error path are defined to be
root errors. In other words, a lost pixel which propagates a pre-
vious error is not considered to be a root error.

The average number of root errors per frame is a function of
the probability of packet loss . Since the probability of loss is
fixed, both the MED and VAPOR approaches have roughly the
same number of root errors per frame. As expected, the average
number of roots per frame increases as increases, for both
approaches.

In Fig. 9, we plot the average length of error propagation per
root as a function of . The results are obtained by averaging
over 50 channel loss simulations. As shown, the average number
of pixel errors caused by an initial root error is significantly
smaller for the VAPOR approach than the MED approach. This
is especially true at lower probabilities of loss.
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Fig. 10. Error propagation example. MED approach: frame number (a) 109,
(b) 110, and (c) 123. VAPOR approach: frame number (d) 109, (e) 110, and
(f) 123.

When the probability of loss is low, the expression for the
expected distortion (2) is dominated by the expected distortion
if the packet is received . In addition, at low loss
probabilities the reference frame at the decoder is more likely
to be correctly reconstructed, and, hence, source coding distor-
tion becomes the primary component of . Therefore,
as channel conditions improve, an approach whose goal is to
minimize the expected distortion will use more intercoding in
order to reduce the distortion due to compression (as shown in
Fig. 8). The side effect of increased intercoding is susceptibility
to prolonged error propagation. This is why the average length
of error propagation drastically increases for the MED approach
as the probability of loss decreases, as seen in Fig. 9.

At low probability of loss, the expression for the variance in
distortion (6) is dominated by . As discussed in

Section III-B, intracoding results in , while

intercoding has . Therefore, a variance-aware
resource allocation scheme, such as (12) or (14), uses more in-
tracoding than a MED approach in order to reduce the variance
in quality if a packet is received, as shown in Fig. 8. Perceptually,
the increased number of intra MBs results in faster termination
of error propagation.

In Fig. 10, we compare a series of reconstructed frames at
the decoder for the MED and VAPOR approaches. Note that
these images are for a single channel loss simulation, i.e., the
same MBs are lost in both schemes. As shown, both approaches
suffer a loss in frame 109 where the woman’s hand goes across
her chin. The difference between the two approaches is that
in frame 110, the VAPOR approach intra refreshes this region
while the MED approach does not. Thus, this error persists till
frame 123 in the MED approach while it has been quickly re-
moved by VAPOR. It is important to note that no feedback is
used in either approach and that the difference in mode selec-
tion is purely due to estimates of the mean and variance of the
end-to-end distortion.

Fig. 11. Channel mismatch resilience for the “Foreman” sequence.

From a communications point of view, transmitting informa-
tion at the lowest possible probability of error is desirable. The
point of the above discussion is that at this desired operating
point, an approach whose goal is to minimize the expected dis-
tortion may become susceptible to prolonged error propagation.
A variance-aware approach on the other hand helps prevent pro-
longed error propagation because it accounts for the variability
in quality caused by error propagation. As shown in Fig. 9,
VAPOR reduces error propagation even at higher probabilities
of packet loss. Thus, we argue that to be more resilient to error
propagation, source coding techniques should account for both
the mean and the variance of the distortion.

D. Channel Mismatch

In order to compare the robustness of the MED and VAPOR
approaches we analyze their sensitivity to channel mismatch.
Channel mismatch arises when the actual probability of loss
in the channel is different from the loss probability estimated
at the transmitter. Consider the “Foreman” sequence coded at
30 fps with kbps. In this experiment, both the MED
and VAPOR approaches are optimized assuming that the prob-
ability of loss in the channel is . We then transmit
the same encoded sequences over a channel with different prob-
ability of packet loss in order to measure their robustness to
channel mismatch.

As seen in Fig. 11, at , both approaches have roughly
the same expected distortion. If the probability of loss in the
channel is lower than expected, e.g., , then the MED
approach has slightly lower expected distortion than VAPOR.
This is because the MED approach has smaller source coding
distortion. If the channel is worse than expected, the VAPOR ap-
proach shows significant resilience to channel mismatch as com-
pared with MED. One explanation for this is that the VAPOR
approach inherently uses more intracoding then the MED ap-
proach, as shown in Fig. 8. Similar results have been obtained
for other sequences and parameter settings.

In Fig. 11, the line labeled “matched MED” is the MED
approach optimized for each . Similarly, the curve labeled
“matched VAPOR” is the VAPOR approach optimized for each

. It is interesting to note that the mismatched VAPOR approach
(i.e., optimized for ) performs relatively close to the
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matched VAPOR and matched MED approaches over a large
range of loss probabilities. On the other hand, the difference be-
tween the mismatched MED and the matched MED approaches
increases more rapidly as the channel mismatch increases.
Thus, it may be more critical to know the actual probability of
loss in the channel, when using a MED approach. By using a
variance-aware resource allocation technique, one can be more
confident that the distortion will not increase as dramatically if
the probability of loss is higher than expected.

VII. CONCLUSION

This paper identifies the variance of the end-to-end distor-
tion as an important quantity for characterizing video quality in
packet lossy networks. A major contribution is the added flexi-
bility and capability to control both the expected value and the
variance of the distortion. As shown through experimental re-
sults, the proposed approach helps limit error propagation and
is more robust to channel mismatch than approaches which only
account for the expected distortion.

Although resilient video coding has been the primary focus,
the concepts introduced in this paper are applicable to other
coding and transmission systems. For example, in [12], vari-
ance-aware resource allocation has been considered in the con-
text of joint source coding and transmission power adaptation.
In addition, the ideas presented here can be utilized in other cost-
distortion optimization frameworks [30], such as joint source-
channel coding, and video over DiffServ networks [31].

The distortion estimation techniques as well as the resource
allocation schemes developed here are optimal and, thus, com-
putationally intensive. Developing low complexity algorithms
based on the concepts introduced here is an important area of
future work. Understanding human sensitivity to the different
spatio-temporal artifacts caused by source and channel distor-
tion is another area that requires significant research. This un-
derstanding will help determine the perceptual importance of
the mean and the variance of the end-to-end distortion in video
communication systems.
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