Incentive Design for Adaptive Agents

Yiling Chen

Jerry Kung

David Parkes

Ariel Procaccia

Haoqi Zhang

We are adaptive agents

- "This restaurant doesn't live up to the hype."
- "This napkins brand is good, but not that good."
- "Boston weather isn't so bad after all."
- "This cereal is awesome!"

Influencing an adaptive agent

Influencing an adaptive agent with rewards

1-on-1 time

How can a principal use incentives to induce an adaptive agent to select a particular target action?

How can a principal use incentives to induce an adaptive agent to select a particular target action?

- Agent's values for actions update with experience
- Principal observes actions, but does not know the agent's values nor update process

A simple model

- A simple model
- Optimal incentive policies
 - online vs. offline

- A simple model
- Optimal incentive policies
 - online vs. offline
 - per-period budget (possible)
 - across-period budget (impossible)

- A simple model
- Optimal incentive policies
 - online vs. offline
 - per-period budget (possible)
 - across-period budget (impossible)
 - » know everything
 - » know something

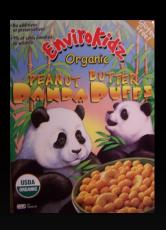
related work on influencing agents

	adaptive or learning agents	intervention method
This paper	yes	incentives
Policy teaching [Z. et al.]	no	incentives
Ad-hoc teams [Stone & Kraus]	yes	actions
Partially-Controlled MAS [Brafman & Tennenholtz]	yes	actions

• Set of actions, one is the target.

- Set of actions, one is the target.
- Discrete time *t* = 1, 2, 3, ...

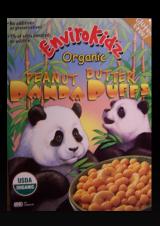
- Set of actions, one is the target.
- Discrete time t = 1, 2, 3, ...
- State of an action updates independently of other actions if selected, otherwise state is fixed.


- Set of actions, one is the target.
- Discrete time *t* = 1, 2, 3, ...
- State of an action updates independently of other actions if selected, otherwise state is fixed.
- Agent's belief about an action's value is based only on its state.

- Set of actions, one is the target.
- Discrete time *t* = 1, 2, 3, ...
- State of an action updates independently of other actions if selected, otherwise state is fixed.
- Agent's belief about an action's value is based only on its state.
- The principal can provide an external reward for choosing a particular action.

- Set of actions, one is the target.
- Discrete time *t* = 1, 2, 3, ...
- State of an action updates independently of other actions if selected, otherwise state is fixed.
- Agent's belief about an action's value is based only on its state.
- The principal can provide an external reward for choosing a particular action.
- Agent takes action with highest sum of value and external reward.

4


2.5

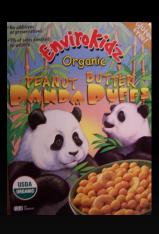
4


5

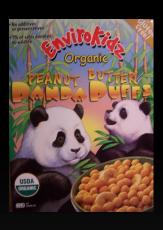
2.5

4

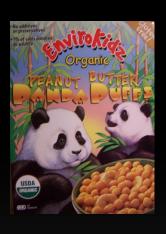
5


2.5

4

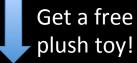

5

2.5



2.5

2.5

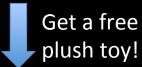


4 5

2.5

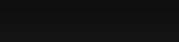
4

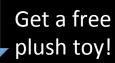
5


2.5 + 2

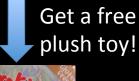
4

5




2.5 + 2

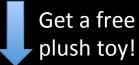
5


$$2.5 + 2$$

4

5

2.5 + 2



5

2 10

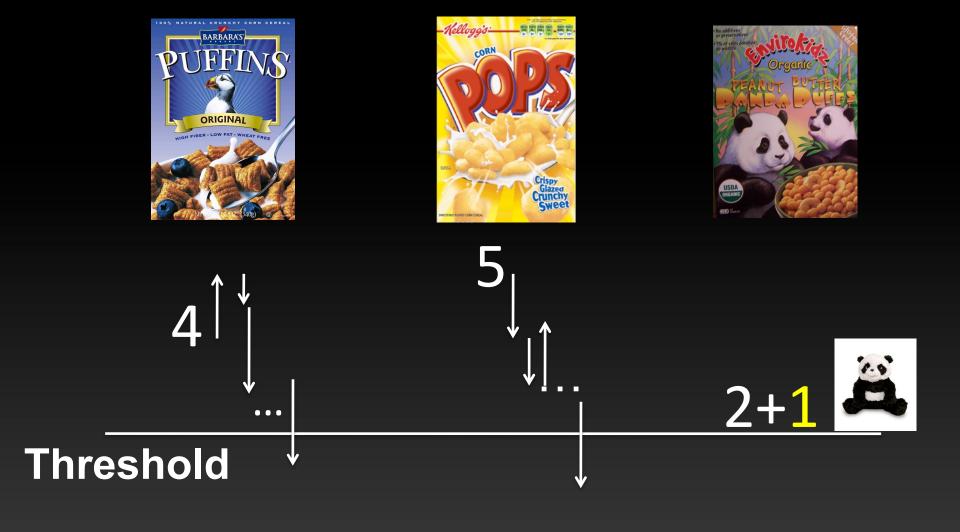
2.5 + 2

- Beliefs about value of an action can encode:
 - Empirical average of realized rewards
 - Explore/Exploit tradeoff (avg. + variance)
 - Bayesian learning
- Assumption: value updates based on experience ONLY, does not factor in incentives

 Assumption: decisions are myopic with respect to the principal's interventions

Per-period budget

Can provide up to budget at each time step


Candidate policy: always provide to target

 Is this the best policy? May it benefit to intervene on other actions?

Theorem

Providing the budget to the target induces the target as soon as possible, and as many times as possible within a fixed number of time steps.

Threshold Lemma

Implications

 Optimal incentive policy does not depend on the agent's values or update process

 The principal cannot otherwise speed up the agent's exploration of currently better actions

Across-Period budget

Fixed budget to spend across time frame

 To induce target once, reduces to per-period budget case

 To induce target multiple times, we need to think about how to split the budget

Theorem

There is no (randomized) algorithm that provides a bounded competitive ratio for Induce-Multi, even if the algorithm can see the current values of the actions.

Implications

 Strong negative theoretical result, but in practice inputs may not be adversarial

To make progress, important to consider
 empirical or average case performance for
 particular agent models and value distributions

Knowledge helps

 If know agent's values in any state, can compute optimal incentives in polynomial time

In practice, more likely to only have distributional information on values

Case study: induce a new action

- Two actions
 - Incumbent action has fixed value of \$1
 - New action's value is drawn Uniform[0,1]
- Belief updates by empirical average

Case study: induce a new action

- Two actions
 - Incumbent action has fixed value of \$1
 - New action's value is drawn Uniform[0,1]
- Belief updates by empirical average

Question: What is the optimal incentive policy when there is \$1 to spend across two rounds?

Case study: induce a new action

- Two actions
 - Incumbent action has fixed value of \$1
 - New action's value is drawn Uniform[0,1]
- Belief updates by empirical average

Question: What is the optimal incentive policy when there is \$1 to spend across two rounds?

Answer: 4/9 in 1st round, rest in 2nd


Conclusion

- Incentive design for adaptive agents explores connections among incentives, actions, and learning
- Strong possibility and impossibility results
- Case study on using partial knowledge
- Rich space of computational and analytical problems

thank you

For more info: poster R62

For comments: hq@eecs.harvard.edu

For plush toys: econcs.seas.harvard.edu