
Unravel: Rapid Web Application Reverse Engineering via
Interaction Recording, Source Tracing, and Library

Detection
Joshua Hibschman

Northwestern University
Evanston, IL USA

jh@u.northwestern.edu

Haoqi Zhang
Northwestern University

Evanston, IL USA
hq@northwestern.edu

ABSTRACT
Professional websites with complex UI features provide real
world examples for developers to learn from. Yet despite the
availability of source code, it is still difficult to understand
how these features are implemented. Existing tools such as
the Chrome Developer Tools and Firebug offer debugging
and inspection, but reverse engineering is still a time con-
suming task. We thus present Unravel, an extension of the
Chrome Developer Tools for quickly tracking and visualiz-
ing HTML changes, JavaScript method calls, and JavaScript
libraries. Unravel injects an observation agent into websites
to monitor DOM interactions in real-time without functional
interference or external dependencies. To manage potentially
large observations of events, the Unravel UI provides affor-
dances to reduce, sort, and scope observations. Testing Un-
ravel with 13 web developers on 5 large-scale websites, we
found a 53% decrease in time to discovering the first key
source behind a UI feature and a 32% decrease in time to
understanding how to fully recreate a feature.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces

Author Keywords
Unravel; Reverse Engineering; Inspecting; Web
Applications; Tracing; Recording

INTRODUCTION
Developers can learn from professional websites, but the bar-
riers to understanding unfamiliar code [11] hinder the poten-
tial for authentic learning [20]. Without documentation for
UI features of complex websites, one must search for curated
examples or attempt to reverse engineer the website to dis-
cover how a feature works. Examples may not be available
for unique features or may only provide partial solutions. Pro-
fessional websites combine many web technologies to present
unified interfaces that are not straightforward to disassemble.
Reverse engineering UI components such as a photo carousel,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST’15, November 08 - 11, 2015, Charlotte, NC, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3779-3/15/11...$15.00
DOI: http://dx.doi.org/10.1145/2807442.2807468

Figure 1. The Unravel Chrome Developer Tools extension detects
HTML changes, JavaScript libraries, and JavaScript function calls
while recording.

search autocomplete, or table filter is difficult, because it in-
volves cyclical HTML inspections to follow element changes
and find-all queries in JavaScript files for references to DOM
elements. JavaScript methods have short runtimes, making it
difficult to identify which lines of JavaScript to start examin-
ing [1].

Current approaches including record & replay in the DOM
and JavaScript tracing have inspired this paper (e.g. [2, 5,
7, 9, 19]) as they showed that recording and tracing changes
in-context gives developers a better understanding of what’s
happening in the source code [6, 12]. With some context
clues about where to begin looking, junior developers are
more likely to overcome barriers that would otherwise pre-
vent them from beginning a first attempt at reverse engineer-
ing [15]. But beyond source exposition, existing tools lack
affordances to show the most relevant lines of source code.
Complex features may consist of hundreds of recorded source
code traces; without additional affordances, the inefficient
process of searching, inspecting, and debugging to gain un-
derstanding is tedious and time-consuming.

Unravel aids the reverse engineering of websites by providing
comprehensive yet targeted views of JavaScript invocations,
HTML changes, and included libraries (see Figure 1). Un-
ravel enhances Chrome’s existing developer toolkit by linking
all HTML and JavaScript components to their corresponding
inspection panes for quick examination. Unravel works on all
websites without interfering with existing functionality. For
example, a developer can navigate to a landing page, record
a parallax effect, and watch Unravel identify which lines of

JavaScript were executed, which DOM elements were modi-
fied, and which attributes were modified per each element.

The main conceptual contribution of this work is the idea of
tracing, identifying, and organizing the most relevant func-
tions and DOM elements manipulated to support reverse en-
gineering and understanding interactions on complex pro-
fessional websites. Unravel aggregates changes monitored
from within a website and provides affordances to reduce,
scope, and sort observations. Relevant sources become ob-
vious choices for the user to examine. Complex UI features
can invoke an enormous number of method calls and HTML
changes. Navigating unstructured lists of change events for
inspection is counterproductive. Unravel aggregates similar
JavaScript call-stacks and HTML changes, increasing counts
with each occurrence. Unravel’s change panels are continu-
ally sorted by highest counts first, bubbling the most changed
element or most called trace to the top. Affordances are pro-
vided to constrain observation scope to specific DOM sub-
trees and ignore event floods from SVG element changes.

The fundamental technical contribution of this work is an ob-
servation agent that deploys an API harness for observing
and recording UI interactions from within a website. The API
harness is an approach for monitoring an application’s inter-
action with an API through a removable recording adapter
placed between the application and the API. Unravel’s ob-
servation agent publishes HTML changes and uses the API
harness to monitor calls to the document API. While previ-
ous work was able to record and replay events, these solutions
depended on access to a remote debugging API. Unravel’s ob-
servation architecture only depends on native JavaScript and
HTML, widening its application domain to other UI inspec-
tion toolkits.

In the rest of this paper, we review related work in discovering
and extracting relevant source code. We then introduce Un-
ravel and its main components for tracking HTML changes,
tracing JavaScript method calls, and identifying libraries. We
detail the observation agent and techniques for organizing and
presenting trace information; evaluate the benefits of reverse
engineering with Unravel; and conclude with a discussion of
design principles and the limitations of our approach.

RELATED WORK
With Unravel, we are exploring strategies, interfaces, and
methods for developers to quickly and easily overcome bar-
riers in learning how interesting UI features of websites are
constructed. In doing so, we aim to promote authentic learn-
ing that is personally meaningful and exists in a real-world
context [20, 3] for web developers. The event-based and
asynchronous nature of JavaScript poses a unique difficulty
that can discourage those trying to learn [1]. Developers
trying to overcome this difficulty turn to web foraging for
speed and ease in finding help [4]. Unravel seeks to present
JavaScript and HTML tracing in a way that decreases the
need for web foraging and provides authentic learning for
developers curious about features on professional websites.

Relevant Source Code Discovery
Unravel draws inspirations from previous work that aims to
help users discover relevant sources behind a UI interaction.
This includes animating a transition between the rendered UI
and its source with Gliimpse [9], logging analytics on record-
ings of UI interactions with Mimic [5], extracting a REST
API from a web application [22], providing breakpoints for
DOM changes [2], and visualizing JavaScript traces during
runtime with Theseus [16]. Extending this body of work, Un-
ravel contributes a lightweight approach to linking UI fea-
tures to their relevant sources in context within the browser.

Chrome Developer Tools and Firebug
Chrome Developer Tools (CDT) and Firebug both pro-
vide a rich suite for debugging, inspecting, and live-editing
methods. DOM breakpoints in CDT1 and Firebug2 trig-
ger JavaScript breakpoints when elements in the DOM are
changed. This enables bottom-up inspection of a UI fea-
ture, whereas Unravel enables top-down inspection of sources
recorded for a feature. Unravel captures and aggregates
JavaScript traces and HTML changes during a recording and
reduces its findings into a sortable view. The most used
sources and most changed elements bubble to the top. Un-
ravel integrates with CDT by linking lines of HTML and
JavaScript to their corresponding inspection panes.

FireCrystal, WebCrystal, and Source Extraction
Unravel builds upon a body of previous work including Fire-
Crystal [19], Maras et al [18], and WebCrystal [8] by provid-
ing in-context aggregation of the most relevant sources sup-
porting a UI interaction with a study analyzing its effective-
ness.

Maras et al created a strategy for extracting the minimum
amount of sources relevant to a feature by communicating
with a JavaScript debugger. Unravel implements a different
strategy for finding relevant sources by using an API harness
and observation agent, which require no external dependen-
cies. WebCrystal caters to novice learners by allowing them
to ask questions about HTML and CSS features of a web-
site. Unravel provides HTML selectors and attribute changes,
but focuses on the dynamic relationship between JavaScript
and HTML, rather than the structural and stylistic features of
HTML and CSS.

Most relevant to our work, FireCrystal [19] allows users to
record an interaction with the DOM and to replay the inter-
action with highlighting over sources that are active at each
point in time. We address with Unravel three main limita-
tions of this previous work for reverse engineering profes-
sional web applications. First, rich UI features can involve
thousands of lines of JavaScript across multiple call frames;
FireCrystal’s interface requires users to replay through inter-
actions to discover relevant sources via linear search, which
becomes tedious and time-consuming. In Unravel, users are
1Using DOM Breakpoints in Chrome Developer Tools:
https://developer.chrome.com/devtools/docs/

javascript-debugging#breakpoints-mutation-events.
2Using DOM Breakpoints in Firebug: https://getfirebug.

com/doc/breakpoints/demo.html#dom.

https://developer.chrome.com/devtools/docs/javascript-debugging#breakpoints-mutation-events
https://developer.chrome.com/devtools/docs/javascript-debugging#breakpoints-mutation-events
https://getfirebug.com/doc/breakpoints/demo.html#dom
https://getfirebug.com/doc/breakpoints/demo.html#dom

Figure 2. The Unravel recording interface consists of the HTML Changes pane (top), the JS Library Detection pane (middle), and the JavaScript
Function Calls pane (bottom). Unravel has two controls for recording/stopping and resetting change detection (top). The HTML Changes pane shows
the total count, CSS Path, CSS Selector, and HTML Attribute Changes for each element change. The JS Library Detection pane shows libraries
detected. The JavaScript Function Calls pane shows the total count, stack frames, and DOM API call for each JavaScript call-stack recorded.

able to scope which elements to observe, and the system auto-
matically reduces observations by aggregating and displaying
sources with the most activity first. Second, FireCrystal relies
on the Firefox debugging API; the authors noted slow-downs
with large volumes of JavaScript changes. In contrast, Un-
ravel scales well with observing complex UI features and uses
an observation architecture that can be reused in other web
UI toolkits. Finally, while FireCrystal’s effectiveness was not
studied, our user study showed significant reductions in time
to understanding how to recreate UI features on professional
websites with Unravel as well as differences in reverse engi-
neering strategies.

Overcoming Barriers in Programming
Programmers often experience barriers in learning new pro-
gramming concepts [15], and Unravel aims to provide in-
context affordances to overcoming barriers such as not know-
ing where to begin. Front-end languages are delivered to
client browsers with all sources available to be inspected like
sample code. However, if a developer is not familiar with
a programming API, they struggle with understanding sam-
ple code [12] and finding good examples to learn from [14].
The nature of unfamiliar client code promotes unusual bar-
riers [11], but these barriers can be overcome by displaying

relevant starting points and scoped sets of changes through
Unravel.

UNRAVEL
Unravel is a Chrome Developer Tools extension that provides
affordances for discovering and navigating relevant UI source
code through three main activities: recording source code ac-
tivity triggered by a user’s interaction with a web page, refin-
ing the scope of source code under observation, and linking
lines of source code to corresponding inspection and debug-
ging panes for further analysis (see Figure 2).

Unravel Feature Design
To inform the design of Unravel, we conducted a small ex-
ploratory study that observed the existing approaches for re-
verse engineering web pages. The study consisted of two
senior and two junior developers for 20 minutes each, who
were asked to reconstruct an animated feature from Tum-
blr on their own page. We observed participants repeating
the animation frequently while inspecting the HTML to see
changes. We watched participants slowly scan through nu-
merous JavaScript files to discover source code causing the
animation. One participant said, “I just want to know how

Figure 3. Within the Unravel HTML Changes pane, users can opt into
hiding changes from SVG elements (top left). Users can constrain Un-
ravel’s observation scope by selecting an HTML element to observe (top
right).

they achieved the effect, but it’s not entirely clear from the
web inspector.”

Unravel’s features were designed to help address frustra-
tions and inefficiencies expressed by the test participants.
The Unravel HTML Changes feature was designed to record
and present modifications to lessen repeat behavior (see Fig-
ure 3). The JS Function Calls feature was designed to cap-
ture JavaScript traces with links to executed line numbers in
JavaScript files, making it easier to skim active source code
(see Figure 4). While no inefficiencies were observed related
to JavaScript libraries, we noticed many non-native functions
appearing in JavaScript traces. We decided to add library de-
tection to inform the user about the presence of frameworks,
polyfills, shims, or syntactic sugar (see Figure 5). Unravel’s
three views are presented as one inspection interface to high-
light relevant source code supporting a feature.

Tracking HTML & CSS Changes
Without Unravel, current methods for detecting changes in
HTML elements involve setting DOM breakpoints or watch-
ing for changes in element inspectors. Stepping through
hundreds of attribute changes and looking through a DOM
tree becomes time consuming. Unravel aims to streamline
searches by providing a list of changes instead.

The Unravel extension begins to track HTML changes that
occur in the website as a user starts a new recording. With
each user interaction in the website, changes are streamed
into the Unravel console under the HTML Changes section
(see Figure 3). A DOM element’s attribute and sub-tree mod-
ifications are then viewable in list form with direct links to
structural and CSS inspection in the CDT elements pane (see
Figure 2). While unravel does not capture preloaded CSS or
CSS pseudo-classes like :hover, it monitors CSS class and
style changes in HTML attributes such as changing opacity,
toggling a class, or modifying WebKit attributes.

An Unravel HTML Change Record
Each record in the HTML Changes in the Unravel tool con-
tains:

• Change Count: how many changes were recorded for the
HTML element

Figure 4. The Unravel JavaScript Function Calls pane has captured a
call-stack that was executed 22 times. A stack frame with a method
called setActiveSection on object o.extend initiated the call-stack (top),
which arrived at a document query for elements with class “audio-a”
(shown in Figure 2 bottom right).

• CSS Path: a unique CSS selector based on the element’s
DOM tree location that links to the corresponding node in
the CDT Elements Pane

• CSS Selector: a CSS selector based on common query pat-
terns including id, class, and name

• HTML Attribute Changes: a list of changes that occurred
in the element’s attributes in chronological order

An example user Alice wishes to discover how a modal win-
dow is hidden after clicking an ⇥ icon. She clicks record
in Unravel and watches for changes while clicking the ⇥.
Alice stops the recording and looks at the changes listed
in the HTML Changes Pane of Unravel. She notices that
the list is presorted by highest count of changes first. The
first record shows a div with CSS selector div#modal.
She clicks on the record to see what it is referencing
in the actual website and elements panel. Chrome high-
lights the element in the panel and in the website. Al-
ice confirms it is her element and examines the attribute
changes, listed as class="modal-front" followed by
class="modal-hidden". Alice learns that removing
class modal-front and adding class modal-hidden caused the
desired effect.

Tracing JavaScript Method Calls
The bottom panel of Unravel lists JavaScript call-stacks cap-
tured while recording (see Figure 4). Unravel listens for
calls to window.document and reports JavaScript traces
involved in querying and manipulating the DOM. Every stack
frame of each call-stack is linked to its corresponding file and
line number in the CDT JavaScript inspector.

Each record in the Unravel JavaScript Changes pane contains:

• Call Count: how many times a call-stack was invoked

• Stack Frame(s): the call-stack leading to a document query

• DOM API Call: which document API method was invoked

Figure 5. The Unravel JS Library Detection pane requests detection for
libraries when Unravel starts and as users select re-detect (right). Re-
detection is an affordance provided for libraries added after the initial
page load. In this figure, jQuery, Backbone, and LoDash were detected.

An example user Carol wishes to better understand how a web
application’s card-flip effect revels new data when scrolling
down in the interface. Carol initiates a new recording ses-
sion in Unravel and begins to see stack frames captured in the
JavaScript changes pane. Carol stops the recording and no-
tices a call-stack was captured. Carol clicks the first frame in
the call-stack and is linked to the CDT JavaScript inspector
for index1.js at line 16526:95. She immediately no-
tices a function setActiveSection that contains logic
to change the translate3d style attribute of a div element.
With the first clue, Carol returns to Unravel to search for how
data is loaded. Carol skims the methods and arguments of ad-
ditional stack frames and finds a method called fetchCard.
She clicks the stack frame and discovers an XHR request con-
tained a callback that triggered setActiveSection.

Identifying JavaScript Libraries Used
As a precursor to examining source, a list of libraries active
in a website prepares the user to understand source in con-
text with the libraries. This may help them to reproduce code
for their own use without the frustration of missing libraries.
Further, this provides users with clues to how features are im-
plemented using the libraries.

Unravel detects JavaScript Libraries immediately upon
launch and lists the libraries with their corresponding versions
(see Figure 5). An option to re-detect libraries is provided
for websites that use a lazy-loading strategy for installing li-
braries into the application scope.

An example user Bob wishes to discover how a stock-ticker
web application easily reformats numbers in many varia-
tions. He opens Unravel and finds many sources using a
numeral() function. If Bob tried to invoke numeral in
his own application, he would discover that it is not included
in native JavaScript. Using Unravel’s library detection, Bob
sees that Numeral.js version 1.5.3 is present in the stock-
ticker web application. Bob includes the numeral library in
his application and is now able to use the same numeral con-
version methods as the stock-ticker application.

ORGANIZING AND TRACING RELEVANT SOURCE CODE

Organizing Large Volumes of Trace Information
Complex UI features can generate large volumes of HTML
changes and JavaScript traces. Navigating through long lists
of changes and traces fails to resolve the Information Learn-
ing Barrier [15], because the program’s internal behavior
may remain unclear despite a wealth of information. This
section discusses four strategies Unravel provides to counter

information overload: DOM Tree Scoping, CSS Path Aggre-
gation, SVG Hiding, and Call-Stack Aggregation.

DOM Tree Scoping
Without affordances to reduce observation events, simulta-
neous UI effects can cause confusion. As a user records an
interaction, other dynamic behaviors in the application could
highlight source code not relevant to the user’s interests. Af-
ter selecting an HTML element to observe, users can opt for
Unravel to scope recordings to a single element and its sub-
tree (see Figure 3). With the focus option selected, changes
outside the scope of selection will be ignored.

CSS Paths and Selectors
HTML changes are recorded and reduced in real-time to the
unique DOM tree path of an element. Continuous changes to
one element’s attributes are rolled up under a single record in
Unravel’s HTML change pane (see Figure 3). Elements with
the most changes bubble to the top. While DOM tree paths
can be queried, they can become quite long and difficult to
read. Unravel provides simpler selectors by combining the
elements tag, id, class, and name if present (see top middle of
Figure 2).

SVG Hiding
During a preliminary study with an Unravel prototype, we
discovered that users were being shown too many irrelevant
HTML changes for pages that made use of SVG animations.
The users weren’t interested in the SVG animation itself, but
rather DOM elements and interactions surrounding the SVG
elements. In the HTML Changes pane, users can select an
option to hide superfluous SVG changes (see Figure 3).

Call-Stack Aggregation
Similar to the HTML Changes feature, JavaScript traces are
recorded and reduced by unique call-stack. Continuous calls
through the same set of methods are logged by increasing the
call-stack count. During our pilot study, users sorted lists
by highest count first with stack frames ordered top-down.
This became the default and our measure for source code
relevance. All of Unravel’s columns are sortable, allowing
users to quickly navigate through different perspectives of
their recordings.

Tracing UI Features to Relevant Source Code
In building Unravel, we sought to improve upon architecture
from related systems to provide a scalable and portable
implementation. Systems like FireCrystal and that of Maras
et al depended on the Firefox Debugging API to query
for sources involved behind UI feature [18, 19]. Both the
scalability and portability of this strategy are limited to
the constraints of the Firefox Debugging API. Theseus
proposed a global method-wrapping policy for monitoring
JavaScript traces that depended on a third-party server to
alter sources [16]. We strived to build Unravel without any
dependencies on external servers or environmental APIs so
that it could scale to handling larger UI changes and share a
reusable architecture for implementations in other UI toolkits.

Figure 6. An API harness is placed on the document API. Unravel cap-
tures and serializes call-stacks and arguments made to the API. Normal
interaction with the API resumes after the details of a method call are
broadcast.

API Harness
We introduce an API harness as a novel method for moni-
toring all interactions with an API by placing a removable
recording adapter on top of the API. Unravel’s agent ap-
plies the API harness to monitor call-stacks and arguments to
window.document when the user begins a recording and
removes it when the user stops a recording. By monitoring
the document API, we can see the execution route and argu-
ments of functions asking to query and change the DOM (see
Figure 6). Data from the harness is sorted and reduced prior
to appearing in the Unravel’s JavaScript Function Calls view.
Technical details are discussed in the next section.

IMPLEMENTATION

API Harness
The API harness is a removable device installed during run-
time that captures JavaScript method traces and arguments
(see Figure 6). The harness implementation is straightfor-
ward: for each method in the API, save a reference to the
original method and temporarily replace it with a new method
that implements the following:

1. Capture the call-stack invoking an API method.

2. Capture arguments passed to the API method.

3. Serialize the captures for transport.

4. Propagate the capture to subscribers.

5. Call the original API method with the incoming arguments.

Captures are broadcast from the harness without modification
as method calls are made to the API, giving subscribers flexi-
bility in processing the data. Unravel’s API harness call-stack
captures implement the JavaScript Error interface. As each
method call is made to the document API, an error object
containing a snapshot of the call-stack is thrown and caught.
This snapshot captures comprehensive execution traces from
event handlers down to document queries. Unravel reduces

and sorts its captures to simplify inspection for the user (dis-
cussed earlier). When a recording is finished, the API harness
is removed by restoring the original methods to their respec-
tive endpoints in the API.

Alternative approaches to implementing an API harness ei-
ther require external dependencies or aren’t designed to mon-
itor program execution. The Mozilla Remote Debugging Pro-
tocol3 allows developers to access JavaScript threads and ob-
serve their execution but it is only available to extensions
of Firefox. Lieber et al’s Fondue wraps all functions in the
JavaScript source to monitor execution, but exists as a sep-
arate proxy server that modifies a web page’s JavaScript as
it passes through [16]. Eagan et al’s Scotty enables modifica-
tion to non-extensible components during runtime, but it does
not monitor interactions with those components [10].

Engineering trade-offs limit the capabilities of the API har-
ness but give portability to its implementation. The harness
must be able to modify public methods of the original API,
it must be able to store references to the original method im-
plementations, and it must be able to access callers and ar-
guments. For example, an API harness would not be able
to monitor an API reference that was closured in a private
variable, because the harness requires public access to API
methods. Despite these limitations, the API harness inspects
program activity from within a program and operates without
external dependencies. With minimal performance overhead,
the API harness scales with API demand without causing in-
terference.

HTML Observer and Library Detection
Unravel’s HTML observation implements the JavaScript Mu-
tationObserver interface. When the observation scope is
changed in the Unravel UI, new MutationObservers are cre-
ated to monitor the corresponding subsections of the DOM
tree. As the observers notice events, they are propagated to
Unravel’s sorting and reduction implementation. When each
observation is received, its element’s CSS path is calculated
by determining the DOM tree location relative to parent and
sibling nodes.

The JavaScript libraries are detected by a simple interface de-
tection strategy: for each known library, the Unravel agent
tries to invoke published interface methods from the library.
We began with Hidayat’s try-catch detection strategy [13],
but extended it as we discovered libraries with identical iden-
tifiers and overlapping interface methods such as Under-
score.js and lodash.js, both of whom have array methods like
.reduce(). If the test is successful, the agent detects

the library version and returns the name and version num-
ber. There are many JavaScript libraries available, yet there is
no published standard for declaring the library name and ver-
sion from within the library. To detect all JavaScript libraries
and display information about them is beyond the scope of
Unravel, so we tested Unravel with support for the top 20
JavaScript libraries4.

3Mozilla Remote Debugging Protocol https://wiki.mozilla.
org/Remote_Debugging_Protocol

4These libraries are tracked at http://bower.io/stats

https://wiki.mozilla.org/Remote_Debugging_Protocol
https://wiki.mozilla.org/Remote_Debugging_Protocol
http://bower.io/stats

Website UI Feature Trigger
Tumblr Card Flip View Change Scroll, Click
Apple iPad iPad Cover Change Click
Flickr Effect Sync to Video Scroll, Click
Amazon Product Carousel Interval, Click
Kickstarter Photo Carousel Interval, Click

Figure 7. Participants reverse engineered 2 UI features from a set of
5. The top table lists each website with its corresponding feature and
trigger under inspection. The screen-shots are of Tumblr, iPad, Flickr,
Amazon, and Kickstarter (mid left to bottom right).

UNRAVEL USER STUDY
Method
Our study aims to answer the following research questions:

RQ1 How does a user’s strategy for reverse engineering a
web application UI feature differ with and without Unravel?

RQ2 How does Unravel affect the amount of time it takes a
user to reverse engineer a web application UI feature?

RQ3 Which features in Unravel are the most effective while
reverse engineering a web application UI feature?

RQ4 How do junior developers’ use of Unravel and reverse
engineering strategies differ from senior developers?

The target users of our study are junior web developers with
less than one year of professional experience and senior web
developers with greater than five years of professional experi-
ence. The study is a within-subjects design, where each user
was asked to reverse engineer a UI feature in each of two web-
sites from a pool of five, one website with CDT and one with
CDT + Unravel (see Figure 7). CDT as the control requires
no training or installation, and our initial study showed that
both junior and senior developers could discover key sources
using just CDT. 13 web developers, both junior and senior,
participated in study sessions lasting 45 minutes. Time was
limited to 15 minutes each for each reverse engineering task
with a 15-minute follow-up discussion. Each participant was
compensated $20. The assignment of websites to participants
was randomized, and the order of using Unravel first was re-
versed for half of the participants.

We chose UI features from five popular professional web-
sites: Tumblr, Apple, Flickr, Amazon, and Kickstarter. While

widely used, each contains a clever implementation. When
scrolling down on Tumblr’s homepage, a card flip effect
peels away each page view. Selecting different iPad covers
on Apple’s product page fades through user choices without
changing the iPad image. Flickr’s mobile demo synchronizes
changes on its virtual phone screen with background fades.
Amazon animates its product carousel with easing transi-
tions based on user selection. Kickstarter flips through its
banner carousel with fades during pre-programmed intervals.
Though not obvious, functionality in these features consists
of changing CSS classes, modifying HTML positioning at-
tributes, and loading media in subtle ways.

We taught users about the tool, verified their background, and
recorded their tests to ensure result accuracy. Before start-
ing the test, participants were asked to watch a two-minute
demo to help them become familiar with how to use Unravel.
While participants were recruited by the experience on their
CV, they were asked to confirm their amount of professional
engineering experience before starting the experiment. Each
participant provided a screen recording with audio and click
history for the entire experiment.

We tracked three key milestones for reverse engineering. The
milestones correspond to events happening at certain times,
but participants were encouraged to proceed at their own pace
throughout the tests.

M1. Time to finding the first key source.

M2. Time to finding the second key source.

M3. Time to fully understanding how to recreate a feature.

These milestones were tracked via each participant’s screen
recording to assess understanding. A key source is defined
as a high-level code snippet that provides critical-path func-
tionality for a behavior such as a click handler that adjusts the
opacity of a div. Some participants had enough experience
to describe a solution without reverse engineering, but they
were required to find sources to support their claims. Prior
to performing the study, the test set of five UI features were
fully reverse engineered to identify significant methods, line
numbers, classes and variable names in JavaScript, CSS, and
HTML. For each solution, two key sources were identified
that users must find for each UI feature in order to fully de-
fend how the behavior is functioning. Timestamps for M1
and M2 were logged if a user displayed a key source in view
for three or more seconds. M3 was logged when a participant
gave notice of complete understanding.

Study pre-tests revealed inconsistency between web applica-
tions caused by source minification and obfuscation. Some
users knew of the Chrome Dev Tools “Pretty Print” feature
that reformats JavaScript source to be readable, while others
were confused by large undecipherable blobs of JavaScript.
To remedy source minification, we cloned versions of the
popular web applications, manually unminified their sources,
and hosted them on a private mirror. Subsequent tests showed
that mirroring unminified versions resolved the testing incon-
sistency.

Figure 8. Results of the users study are compared in total times to mile-
stones. Boxes indicate inner quartile range. Means are shown as dotted
lines and medians are solid lines. The box whiskers indicate range in-
cluding outliers. There is a significant difference in each of total times
for M1, M2, M3.

Participants were given a short follow-up discussion to as-
sess how using Unravel altered their strategy and understand-
ing of web application engineering. Questions about specific
features of Unravel were included to assess their qualitative
value and provide opportunities for feedback on feature us-
ability. Survey results were compiled into four categories:
useful features, improvements, learning, and strategies.

Data recordings from each participant were analyzed for
statistics on 25 distinct user activities in CDT and Unravel and
the time signatures of the major milestones. User activities in-
clude actions with similar complexity to switching an inspec-
tor pane, inspecting an event handler, or setting a breakpoint.
Paired t-tests for with-Unravel vs without-Unravel were per-
formed across all the coded data in the screen recordings to
check for significant differences. Distributions were analyzed
on an aggregate to determine average milestone times and ac-
tivity counts.

STUDY RESULTS

How did Unravel affect task completion times?
Unravel significantly decreased time to all three milestones
(see Figure 8). Developers achieved milestone I, finding their
first key source responsible for the UI interaction 53.4% faster
with Unravel (t(13) = 4.2, p = 0.0012, µ1 = 184s, µ2 = 344s)
where µ1 is CDT + Unravel. Developers achieved milestone
II, finding their second key source 39.8% faster with Unravel
(t(13) = 4.533, p = 0.0007, µ1 = 291s, µ2 = 484s). De-
velopers achieved milestone III, reaching full understanding
32.1% faster with Unravel (t(13) = 3.81, p = 0.0025, µ1 =
386s, µ2 = 569s).

Figure 9. Results of the users study are compared in split times between
milestones. There is a statistically significant difference between M1 and
M1 with Unravel. However, there was no significant difference for the
M2 or M3 split times. This means that Unravel was most effective for
decreasing the time to first key source.

No significant difference was found in the split times between
M1, M2, and M3 (see Figure 9). Developers had no signif-
icant difference between M1 and M2 (t(13) = �0.24, p =
0.81, µ1 = 131, µ2 = 140s) where µ1 is CDT + Unravel. De-
velopers had no significant difference between M2 and M3
(t(13) = 0.33, p = 0.75, µ1 = 95s, µ2 = 86s).

Differences in milestone times with and without Unravel are
explained by variations in user interactions. Developers noted
difficulty in finding a starting point during tests without Un-
ravel, which increased their time to M1. Without significant
differences in M2-M1 and M3-M2, some participants may
have altered their strategy to depend on existing developer
tools to find related sources. Total times to M2 and M3 show
that no major inefficiencies affected overall time savings by
using Unravel.

How did Unravel affect reverse engineering strategy?
Unravel significantly altered the reverse engineering strategy
developers used when completing their tasks. Developers
browsed an average of 2 JavaScript source files with Unravel
compared to 10 without Unravel (t(13) = 2.84, p = 0.015).
Developers searched for text in sources an average of 1
time with Unravel compared to an average of 9 times
without Unravel (t(13) = 5.6, p = 0.0001). Developers
focused on an element for inspection an average of 1
time with Unravel compared to 10 times without Unravel
(t(13) = 4.67, p = 0.0005). Developers recreated the UI
interactions an average of 5 times with Unravel compared to
11 times without Unravel (t(13) = 3.45, p = 0.0048).

How do junior developers compare to senior developers?
Junior developers reached M1 without Unravel faster than
senior developers and had no significant difference in other
areas (t(13) = 2.24, p = 0.05, µ1 � µ2 = 141s), where
µ1 is for senior developers. Differences with less statisti-
cal significance include: senior developers set more break-
points (t(13) = 1.99, p = 0.09, µ1 � µ2 = 4), senior devel-
opers were more likely to inspect network (t(13) = 2.29, p =
0.06, µ1 = 1, µ2 = 0), senior developers inspected more ele-
ments (t(13) = 1.8, p = 0.11, µ1 � µ2 = 6), and senior de-
velopers inspected more event handlers (t(13) = 1.84, p =
0.11, µ1 � µ2 = 3). While senior developers used different
CDT interface controls to reverse engineer, they desired a
broader understanding of the UI feature in the context of the
website. A senior developer stated, “I had an idea of how the
feature worked before I started, so I wanted to see how the
feature was situated in the application first.”

Which features of Unravel were the most effective?
In the follow-up discussion, all 13 participants were inter-
viewed for their opinion on Unravel’s features, Unravel’s
weaknesses, reverse engineering strategies, and concepts
learned. 10 out of 13 developers stated the JavaScript method
traces were most helpful for them to understand a solution.
The remaining 3 out of 13 developers stated the HTML
changes pane was most helpful. 5 out of 13 developers found
the library detection pane useful, while the other 8 stated it
did not provide any help. 4 out of 13 participants noted that
Unravel could be improved by integrating library detection
into the JavaScript stack-traces to highlight the difference be-
tween library vs non-library source. 7 out of 13 participants
stated a new programming concept they learned while reverse
engineering with Unravel. 5 out of 13 participants found con-
straining the scope of observation useful.

DISCUSSION
Having demonstrated the effectiveness of Unravel for help-
ing web developers reverse engineer professional websites
quickly, we revisit techniques that contribute to Unravel’s ef-
fectiveness.

Organizing and Presenting Large Volumes of Traces
Compared to the performance and interfaces of other source-
tracking systems, Unravel is distinguished by its abilities to
reduce, scope, and filter large amounts of source detection in-
formation in a way that highlights relevant data for the user. A
participant stated, “Unravel was way easier to locate specifi-
cally where and when in the files the code was executed.” We
observed through the study that participants found relevant
sources by looking at the top items in the HTML JS tracking
panels in Unravel. A different participant stated, “Without a
doubt I prefer Unravel over sifting through element changes
in the Chrome Inspector.”

Tracing UI Features to Relevant Sources
Advancing related work [19, 18, 8, 5, 7, 12, 22], Unravel in-
troduces a reusable architecture that is both portable and scal-
able. Unravel serves as a recorder and reducer of meaning-
ful information, with detailed inspection delegated externally.

The implementation for this paper was in CDT, but a partic-
ipant asked, “Could we have this for Node.js?” While there
isn’t a DOM to observe, Unravel’s JavaScript source tracing
and library detection would work in Node.js. For example,
an API harness placed on the HTTP API could capture mean-
ingful traces supporting a GET or POST request. The API
harness and application agent allow Unravel’s architecture to
be reused in any JavaScript environment. The scalable na-
ture of Unravel’s architecture allows it to accommodate long
recordings of complex features. A participant stated, “I don’t
even need to inspect, I just hit record and it goes. That by
itself is great.”

LIMITATIONS
Unravel only provides recordings of client-side traces and ex-
ecution. Server-side source code typically isn’t made avail-
able for external inspections, but there is an effort to study
how to expose API endpoint and behaviors from front-end
source [18]. Further, professional websites typically use
source-code minification techniques to decrease the size of
their files an average of 20% [21]. For our user tests, sources
were manually unminified for participants. This feature can
be added to Unravel with the use of JavaScript libraries like
js-beautify [17], where sources would be parsed and reloaded
in unminified form.

Our study did not attempt to identify UI features for which
Unravel is not able to provide meaningful information. In our
preliminary study, we discovered shortcomings from SVG
transitions where elements had hundreds of positioning at-
tribute changes each second. This flood of changes carries
a risk of burying relevant sources. Pseudo-elements and CSS
pseudo-classes are outside Unravel’s scope of observation but
can be easily discovered with existing inspection tools.

In-memory state storage techniques are outside the observa-
tion scope of Unravel. Unravel’s API harness will not be able
to monitor communication with privately closured references
to an API. If a web application is designed to preload DOM
API queries into memory on page load, Unravel will not cap-
ture the query in its API harness if it was not actively record-
ing at page load. A potential workaround is to detect these
behaviors and inject the API harness and observation agents
prior to page load.

FUTURE WORK
Our future work seeks to understand the needs of develop-
ers as they face reverse engineering and learning challenges
in their own projects and while assisting others. We wish to
provide new methods and tools for authentic learning through
real-world examples that support novice learners wanting to
become professional developers. We are currently exploring
methods for providing readily available learning experiences
that scaffold the learning process for recreating and adapting
complex examples. One such application is to automatically
extract relevant source code for a feature to generate a learn-
ing example. By providing developers with tools like Unravel
to quickly expose and disassemble the hidden complexities of
web applications, we hope to increase interest and lower the
resistance in learning from professional examples.

REFERENCES
1. Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and

Karthik Pattabiraman. 2014. Understanding JavaScript
event-based interactions. In Proceedings of the 36th
International Conference on Software Engineering.
ACM, 367–377.

2. John J Barton and Jan Odvarko. 2010. Dynamic and
graphical web page breakpoints. In Proceedings of the
19th international conference on World wide web. ACM,
81–90.

3. Matthew Berland, Taylor Martin, Tom Benton, Carmen
Petrick Smith, and Don Davis. 2013. Using learning
analytics to understand the learning pathways of novice
programmers. Journal of the Learning Sciences 22, 4
(2013), 564–599.

4. Joel Brandt, Philip J Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 1589–1598.

5. Simon Breslav, Azam Khan, and Kasper Hornbæk.
2014. Mimic: visual analytics of online
micro-interactions. In Proceedings of the 2014
International Working Conference on Advanced Visual
Interfaces. ACM, 245–252.

6. Brian Burg. 2013. Answering program understanding
questions on demand with task-specific runtime
information. In Visual Languages and Human-Centric
Computing (VL/HCC), 2013 IEEE Symposium on. IEEE,
167–168.

7. Brian Burg, Richard Bailey, Andrew J Ko, and
Michael D Ernst. 2013. Interactive record/replay for web
application debugging. In Proceedings of the 26th
annual ACM symposium on User interface software and
technology. ACM, 473–484.

8. Kerry Shih-Ping Chang and Brad A Myers. 2012.
WebCrystal: understanding and reusing examples in
web authoring. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 3205–3214.

9. Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier.
2011. Gliimpse: Animating from markup code to
rendered documents and vice versa. In Proceedings of
the 24th annual ACM symposium on User interface
software and technology. ACM, 257–262.

10. James R Eagan, Michel Beaudouin-Lafon, and Wendy E
Mackay. 2011. Cracking the cocoa nut: user interface
programming at runtime. In Proceedings of the 24th
annual ACM symposium on User interface software and
technology. ACM, 225–234.

11. Paul Gross and Caitlin Kelleher. 2010.
Non-programmers identifying functionality in
unfamiliar code: strategies and barriers. Journal of
Visual Languages & Computing 21, 5 (2010), 263–276.

12. Paul Gross, Jennifer Yang, and Caitlin Kelleher. 2011.
Dinah: An interface to assist non-programmers with
selecting program code causing graphical output. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 3397–3400.

13. Ariya Hidayat. 2015. Detecting JavaScript Libraries and
Versions. Don’t Code Today What You Can’t Debug
Tomorrow. (2015). http://ariya.ofilabs.com/2013/
07/detecting-js-libraries-versions.html

14. Raphael Hoffmann, James Fogarty, and Daniel S Weld.
2007. Assieme: finding and leveraging implicit
references in a web search interface for programmers. In
Proceedings of the 20th annual ACM symposium on
User interface software and technology. ACM, 13–22.

15. Andrew Jensen Ko, Brad A Myers, and Htet Htet Aung.
2004. Six learning barriers in end-user programming
systems. In Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on. IEEE, 199–206.

16. Tom Lieber, Joel R Brandt, and Rob C Miller. 2014.
Addressing misconceptions about code with always-on
programming visualizations. In Proceedings of the 32nd
annual ACM conference on Human factors in computing
systems. ACM, 2481–2490.

17. Einar Lielmanis. 2015. Beautify-web/js-beautify. (2015).
https://github.com/beautify-web/js-beautify

18. Josip Maras, Jan Carlson, and Ivica Crnkovi. 2012.
Extracting client-side web application code. In
Proceedings of the 21st international conference on
World Wide Web. ACM, 819–828.

19. Stephen Oney and Brad Myers. 2009. FireCrystal:
Understanding interactive behaviors in dynamic web
pages. In Visual Languages and Human-Centric
Computing, 2009. VL/HCC 2009. IEEE Symposium on.
IEEE, 105–108.

20. David Williamson Shaffer and Mitchel Resnick. 1999. ”
Thick” Authenticity: New Media and Authentic
Learning. Journal of interactive learning research 10, 2
(1999), 195–215.

21. Steve Souders. 2008. High-performance web sites.
Commun. ACM 51, 12 (2008), 36–41.

22. Bipin Upadhyaya, Foutse Khomh, and Ying Zou. 2012.
Extracting RESTful services from Web applications.. In
SOCA. 1–4.

http://ariya.ofilabs.com/2013/07/detecting-js-libraries-versions.html
http://ariya.ofilabs.com/2013/07/detecting-js-libraries-versions.html
https://github.com/beautify-web/js-beautify

	Introduction
	Related Work
	Relevant Source Code Discovery
	Chrome Developer Tools and Firebug
	FireCrystal, WebCrystal, and Source Extraction
	Overcoming Barriers in Programming

	Unravel
	Unravel Feature Design
	Tracking HTML & CSS Changes
	An Unravel HTML Change Record

	Tracing JavaScript Method Calls
	Identifying JavaScript Libraries Used

	Organizing and Tracing Relevant Source Code
	Organizing Large Volumes of Trace Information
	DOM Tree Scoping
	CSS Paths and Selectors
	SVG Hiding
	Call-Stack Aggregation

	Tracing UI Features to Relevant Source Code
	API Harness

	Implementation
	API Harness
	HTML Observer and Library Detection

	Unravel User Study
	Method

	Study Results
	How did Unravel affect task completion times?
	How did Unravel affect reverse engineering strategy?
	How do junior developers compare to senior developers?
	Which features of Unravel were the most effective?

	Discussion
	Organizing and Presenting Large Volumes of Traces
	Tracing UI Features to Relevant Sources

	Limitations
	Future Work
	REFERENCES

