Hit-or-Wait: Coordinating Opportunistic Low-effort
Contributions to Achieve Global Outcomes in On-the-go
Crowdsourcing

Yongsung Kim
Northwestern University
Evanston, 1L
yk@u.northwestern.edu

ABSTRACT

We consider the challenge of motivating and coordinating large
numbers of people to contribute to solving local, communal
problems through their existing routines. In order to design
such “on-the-go crowdsourcing” systems, there is a need for
mechanisms that can effectively coordinate contributions to
address problem solving needs in the physical world while
leveraging people’s existing mobility with minimal disruption.
We thus introduce Hit-or-Wait, a general decision-theoretic
mechanism that intelligently controls decisions over when to
notify a person of a task, in ways that reason both about system
needs across tasks and about a helper’s changing patterns
of mobility. Through simulations and a field study in the
context of community-based lost-and-found, we demonstrate
that using Hit-or-Wait enables a system to make efficient use
of people’s contributions with minimal disruptions to their
routines without the need for explicit coordination. Interviews
with field study participants further suggest that highlighting
an individual’s contribution to the global goal may help people
value their contributions more.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Physical Crowdsourcing; Mobile Crowdsourcing; Decision
Theory

INTRODUCTION

The growth of mobile devices in recent years has helped to
bring about mobile [17, 15, 3] and physical [1, 2, 5] crowd-
sourcing systems that help connect people to solve local, com-
munal problems. In these mobile and physical crowdsourcing
systems, people make small contributions toward a larger col-
lective problem, such as tracking animal species or air quality
for citizen science projects or providing rides or delivering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

CHI ’18, April 21-26, 2018, Montreal, QC, Canada

ACM 978-1-4503-5620-6/18/04. .. $15.00

DOI: https://doi.org/10.1145/3173574.3173670

Darren Gergle
Northwestern University
Evanston, 1L
dgergle @northwestern.edu

Haoqi Zhang
Northwestern University
Evanston, 1L
hq@northwestern.edu

packages in commercial applications. In these systems, op-
portunistically relying on people to do convenient parts of
the problem often leads to incomplete solutions [18, 35]. For
example, time banking systems may complete only a frac-
tion of the tasks requested, even days after the requests [18].
Yet, directing people to do inconvenient tasks decreases their
willingness to complete them and therefore requires higher in-
centives. For example, tasks can require significant travel that
strongly decreases people’s willingness to complete tasks [35].

To overcome such shortcomings, recent work has proposed
on-the-go crowdsourcing as an alternative model for connect-
ing helpers to physical tasks by notifying people of tasks in
situations where they can effectively contribute during their
existing routines and routes [33, 14, 27]. Doing this should
bring attention to tasks when people are likely to be able to
help, thereby increasing people’s willingness to participate
and reducing the need to incentivize participation. Unlike
existing commercial services where workers are mostly avail-
able on-demand, on-the-go crowdsourcing systems attempt
to opportunistically leverage help resources as they become
available, at low cost and with minimal disruption.

While previous work in on-the-go crowdsourcing has focused
on studying the situations and contexts [14, 27] in which
contributors may be willing and able to help, less attention
has been paid to efficiently leveraging helper efforts where
they are most needed. Fully realizing the benefits of on-the-
go crowdsourcing requires resolving the general challenge
of efficiently eliciting convenient helper contribution during
their routine, while keeping the cost of disruption low by not
inundating a helper with notifications of task opportunities. In
practice, among the many tasks users may encounter during
their routine, deciding which ones to notify them about directly
affects which tasks are completed and what outcomes are
prioritized. Given uncertainty in participation and potential
helpers’ future trajectories, it is challenging to set effective
task notification policies that engage helpers where they are
most needed. For example, we may wait for the best match
of a helper to a task (e.g., where the task is highly valued and
the helper faces low costs of diversion), only to find that the
person never comes near such tasks in their realized routes.
We can also be overly opportunistic, sending a person the
first task they come across, only to realize that adopting this
strategy while aiming to avoid over-disruption may require us
to give up on better matches that become available later.

mailto:Permissions@acm.org
https://doi.org/10.1145/3173574.3173670

To resolve this challenge, we introduce Hit-or-Wait, a general
decision-theoretic mechanism that intelligently controls deci-
sions over when to notify a person of a task among many tasks
that they can contribute to along their existing routes, in ways
that reason both about system needs across tasks and about
a helper’s changing patterns of mobility. Hit-or-Wait deter-
mines whether to send a task that is near a helper now—which
we call hitting—or to wait for a better opportunity. Instead
of simply assigning people to tasks—which is infeasible in
on-the-go settings in which helpers may never go out of their
way and thus may never reach assigned tasks—Hit-or-Wait
continually reasons about the tradeoffs between current and
future situations an individual may come across to make deci-
sions about whether to notify of a task by modeling people’s
movements and the system’s needs across tasks. Hit-or-Wait
thus attempts to make effective use of every potential helper
toward a global goal, while using only people’s existing mobil-
ity and notifying them of tasks on the way that they can best
help with. As such, it achieves much of the benefits of explicit
coordination but without requiring helpers to go out of their
way, to actively seek out tasks, or to reason about which task
they should contribute to.

We evaluate Hit-or-Wait both in simulations and in a field de-
ployment in the context of community-based lost-and-found,
where we use Hit-or-Wait to indirectly coordinate people to
look for a lost item on their way by recruiting individuals
to collectively search for the item across small subregions
(i.e. tasks) they may encounter. In simulations, we found
that Hit-or-Wait significantly outperforms our baseline task
notification strategy and approaches the performance of the
myopic optimal solution which has full knowledge about fu-
ture trajectories. In a field study with 25 participants, we found
that Hit-or-Wait coordinated small, opportunistic contributions
to achieve globally effective solutions by minimizing disrup-
tions and maximizing the value of individual contributions.
Interviews with field study participants further suggest that
highlighting an individual’s contribution to the global goal
may help people value their contributions more.

BACKGROUND

A general challenge facing all crowdsourcing systems is the
dual need to recruit contributors and to make effective use of
contributions to best address task needs. In online crowdsourc-
ing, system designers can reason about such needs separately;
once a person is recruited to an effort, they land on a web-
site where the most valued, compatible task (i.e. user can
contribute) can be delivered. This separation of concerns al-
lows one to design mechanisms for motivating and recruiting
users (e.g., [6, 8, 38, 39]) independently of mechanisms for
coordinating contributions (e.g., [7, 31, 41, 12]), regardless
of whether tasks are assigned to workers by a system (as is
typical) or dynamically determined by workers (as in [41, 12]).

In contrast, in mobile and physical crowdsourcing systems the
tasks that a person can readily contribute to depend largely
on the person’s physical location relative to the location of
tasks [21]. In other words, the tasks that are most in need
of completion or that best match a worker’s abilities cannot
be readily presented unless the person can be motivated to

arrive at the task’s location. As a consequence, efforts to
motivate and coordinate physical crowds cannot consider these
two problems in isolation, and instead require the design of
system-level mechanisms like Hit-or-Wait that are capable
of reasoning jointly about the needs of the system and the
changing availability of contributors.

The different models of mobile and physical crowdsourcing
lead to particular challenges and tradeoffs for recruiting and
coordinating workers. In the opportunistic, or pull-based
approach, it is up to the workers to choose which tasks to
contribute to. Even though a system can display, upon request,
nearby tasks a worker can best contribute to, this approach
can lead to many missed opportunities as it is only effective
if workers actively look for tasks as they move about so as to
happen upon high-valued tasks nearby [18].

In the directed, or push-based approach, workers are assigned
tasks that best address system needs given worker locations
and characteristics with the assumption that users’ future
routes can be determined by the system (e.g., in commer-
cial services like Uber and PostMates) or the routes are known
a priori [22, 40, 10]. This admits the use of standard opti-
mization techniques to maximize the efficiency of the system
through effective task assignments [9], but requires strong
incentives to recruit on-demand workers who may have to go
out of their way to complete tasks [35, 34].

In the on-the-go approach, workers are sent proactive task no-
tifications in situations where they are likely able to contribute
to tasks that are valued by the system. Given many tasks with
differing values and priorities that need to be completed, ef-
fectively connecting users to tasks requires mechanisms to
manage a delicate balance between recruiting users in situ-
ations where they are able to help and making efficient use
of their efforts. While existing task assignment mechanisms
are effective for directed approaches [11, 25, 26], they are not
effective in the on-the-go setting where the user determines
their own future routes and thus may never reach the tasks they
are assigned. Even if these mechanisms took into account the
uncertainty in future routes [9], pre-assigning tasks to users is
still ineffective as it unnecessarily pre-determines who should
do what tasks, which in the on-the-go setting will depend on
the tasks that users actually encounter in their routes. Instead
of assigning tasks, Hit-or-Wait offers a more flexible approach
that reasons about whether to surface a task need at the current
location or to wait to surface a different task need at a later
time. To do this, Hit-or-Wait uses decision-theory over pre-
dictive models of people’s routes and models of system needs
to determine, on-the-fly, when to engage users for opportunis-
tic contributions that are convenient to them, valued by the
system, and that ultimately lead to globally effective solutions.

While prior work in opportunistic planning [19, 24, 20] had
considered the problem of choosing which task to present
given uncertainty over a user’s route, this choice was static
and assumed that a system had to make a decision at a fixed
moment in time [20]. When unsure of which tasks a user may
encounter, such a system may resort to asking a user directly
for information about their route, which reduces uncertainty
but adds extra effort on the part of the user. In order to reason

flexibly about changing conditions without user intervention,
Hit-or-Wait moves away from optimizing among a set of tasks
towards optimizing over immediate situations and possible
future situations. This allows Hit-or-Wait to coordinate con-
tributions dynamically, by controlling when and whether to
engage a helper as they move from place to place.

In considering a dynamic sequence of decisions over whether
to hit or wait, our approach bears resemblance to the use
of decision-theoretic methods in online crowdsourcing that
optimally control what tasks to allocate and when to stop allo-
cating tasks [13]. Whereas efficiency is the primary reason for
using decision-theory in earlier work, in our setting, the use of
decision theory is further motivated by its ability to empower
a seamless and lightweight form of interaction that requires
no attention of potential helpers until a task request is made.
Following arguments made by Kim et al. [27], we hypothesize
that increasing the ability for people to conveniently contribute
to local, communal problems may help to engage and sustain
contributions over time, providing important benefits beyond
any efficiency gain in a single scenario. As previous work has
shown that highlighting the uniqueness and benefits of user
contributions can elicit more contributions [4, 32], we study
how helpers perceive the value of their contributions and ex-
plore ways to better communicate how Hit-or-Wait decisions
make effective use of helpers’ efforts.

COORDINATE ON-THE-GO CROWDS WITH HIT-OR-WAIT
In this section, we briefly review the core challenges of co-
ordinating on-the-go contributions, introduce opportunistic
Hit-or-Wait for coordinating on-the-go contributions in a way
that achieves desired global outcomes, and describe our tech-
nical architecture that supports integrating Hit-or-Wait into
on-the-go crowdsourcing systems.

As a reminder, there are several core challenges when attempt-
ing to coordinate on-the-go contributions: First, there is greater
uncertainty around worker participation because on-the-go
crowds consist of mobile community members and not ded-
icated workers. Second, task notifications need to be sensi-
tive to the opportunistic nature of participation and cannot be
overly burdensome or disruptive to potential helpers. Third,
the system needs to be able to predict future routes based
on current movement patterns, and make decisions while rea-
soning about the uncertainty of the predicted routes. Finally,
the overall uncertainty that surrounds participation and future
routes makes successful pre-defined task assignment implausi-
ble, and requires solutions to make decisions about when to
engage potential helpers in an online manner.

To address these challenges, we present opportunistic Hit-or-
Wait as a general decision-theoretic mechanism for coordinat-
ing on-the-go contributions. Hit-or-Wait aims to dynamically
coordinate contributions in a way that achieves effective global
outcomes by considering both current and future situations,
and to notify potential helpers of tasks that they can conve-
niently contribute to and that most need their help.

Opportunistic Hit-or-Wait
We consider an on-the-go crowdsourcing setting with a set
of tasks T = {7y, T, T3, ...} that are distributed across a

physical space. Tasks may be of varying values that denote
their priority, importance, or fit for a helper; task values are
assumed known or can be estimated by the system. For any
potential helper who may be able to contribute, we consider
the problem of deciding, on-the-fly, which task to notify the
helper of among the possibly many tasks the helper passes
by. To make these decisions, the system can make use of an
available movement model, which predicts a potential helper’s
future trajectories given historical data and the helper’s current
contexts. In order to not overly burden potential helpers, we
assume that each potential helper may be notified of at most
one task within a given time horizon. The goal is to notify
helpers of tasks that they reach that are most valued, but with
the caveat that given uncertainty in future routes it is possible
to notify too early and miss a higher valued task that is reached
later, or to pass on a valued task now, when in fact there are
no better future opportunities on the horizon (or none at all).

To approach this problem, we model a sequence of Hit-or-
Wait decisions with a Markov Decision Process (MDP) over
a finite time horizon. A MDP consists of a set of states s € S,
available actions a in each state s, a transition function P(s'|s)
representing the likelihood of reaching state s’ from state s,
and a reward function R(s,a) that defines the value of taking
action a at state s. In Hit-or-Wait, states in the MDP represent
possible situations the helper may reach. Each state s encodes
the location of the helper, the task that is at that location (if
any), and additionally, other contextual information about the
helper’s particular situational context (e.g., just left work). A
helper transitions from state to state probabilistically, based on
the movement model which provides the transition function
P(s'|s). Upon reaching a state that contains a task, the system
has two possible actions: hif or wait. Hitting in state s with a
task T notifies the helper of the task, and results in a reward
that denotes the expected value of the helper completing the
task. Waiting results in no reward and triggers a transition to
the next state, while hitting triggers a transition to a terminal
state to model only notifying a helper of at most one task.

In order to determine whether to notify the helper of a task
in a given situation, we compute using the MDP an optimal
policy 7 such that 7 (s) denotes the decision to hit or to wait
when the helper is at state s at time r. Computing this policy
compares the expected value of hitting now with the expected
value from making a decision later if we wait. Formally, we
can represent the value of the optimal policy as:

V(s) = max(R(s, hit),Z’P(s/|s)V’71 (s")

Which states that the expected value of the best decision V()
is the the maximum of the expected value of hitting now and
the expected value of the best future decisions. Using this
recurrence relation, we can solve for the optimal Hit-or-Wait
decisions using dynamic programming.

Example Scenario: Lost and Found. To better illustrate
how Hit-or-Wait can be used in an on-the-go crowdsourc-
ing setting, we describe the algorithm in the context of a
community-based lost-and-found scenario. Given a person

Context Location
Manager Manager

Back End l M

‘ ‘ Pretracker ‘

Front End

©)

Route Notification
Manager Manager

l @ .

Decision
Manager

Model

Generator

(3b)
‘

' I
loo | e |

! i
o) |

‘
‘

‘
} e }
‘

‘
‘

‘
=}
,

Strategic modules @

Hit-or-Wait

Figure 1. On-the-go crowdsourcing architecture.

who lost an item somewhere in a large region, the goal is to
coordinate helpers’ existing on-the-go mobility to effectively
search for the item. Helpers contribute to small tasks that
each request a search in a smaller subregion where the item
may have been lost. The system must decide for each potential
helper, whether to notify them to search in a subregion they are
in, or to wait for another opportunity. The goal is to maximize
the value of notifying by notifying a user in a less-searched
region and wait if they are in a well-searched region.

To model and solve this problem, we can construct a Hit-or-
Wait MDP for the lost-and-found scenario as follows: states
represent subregions in the large region where the person
might have lost an item that contain the search tasks, and the
reward models the likelihood that the item is in each subre-
gion. For instance, we may model the reward for searching in
a subregion as the likelihood that the item is there following
n (unsuccessful) searches, or P(item|n). Assuming the likeli-
hood of finding the item is conditionally independent given

the item is in the subregion, we can compute P(irem|n) us-
P(item)P(nlitem) o
P(item)P(n|item)+P(item)P(nlitem) ~

ing Bayes’ rule: P(item|n) =

P(item)P(1|item)"
P(item)P(1litem)"+P(item)
ability that the item is in the subregion, and P(n|ifem) denotes
the likelihood of n unsuccessful searches given that the item is
there. Given that an item is more likely to be there after fewer
searches, as a potential helper walks around the neighborhood
where the item may have been lost, Hit-or-Wait will tend to
notify them to search in a less-searched subregion than in other
subregions they might encounter.

, where P(item) denotes the prior prob-

On-the-go Crowdsourcing Architecture

Building on-the-go crowdsourcing applications powered by
Hit-or-Wait requires an architecture that can track location
data, sense user’s context, and make decisions of when and
which tasks to notify based on user location and context. The
architecture is described below and shown in Figure 1.

Architecture

The Location Manager and Context Manager collect user’s lo-
cation data and other contextual information and communicate
them to the back-end.

The Pretracker helps deliver precise, fine-grained notifications
by managing device’s location accuracy depending on user’s
current location. For example, if a user is far from a task
region, it decreases the location accuracy and increases it once
the user is nearby a task region. Since it dynamically manages
location accuracy, it can both save device battery and deliver
fine-grained notifications at or near a task location.

The Route Manager processes incoming user location data in
the back-end. It maps latitude and longitude pairs to states,
stores new trips, or updates the existing ones in the database.

The Model Generator computes models that are required for
strategic modules. For example, it produces the movement
model for state transitions using previous route histories.

The Decision Manager takes as input user profiles (including
routes, contexts), models, and tasks, and generates as output
decisions based on a strategic module (e.g. Hit-or-Wait).

The Notification Manager delivers notifications to the the front-
end based on the decisions made by the Decision Manager
when a user meets the notification criteria, which includes
but is not limited to conditions over the user location and the
frequency of notifications (e.g., to model disruption and to
avoid over-notifying users of tasks).

Flows

Figure 1 demonstrates how the various components interact
with each other. The Route Manager receives raw GPS coor-
dinates from the user device (1), preprocesses and stores the
data, sends them to the Decision Manager (2). The Decision
Manager first checks whether or not there exists decisions
computed for the given location (3a), if there exists decisions,
it sends the decisions to the Notification Manager (5). Oth-
erwise, the Decision Manager requests models from Model
Generator (3b). Together with the user location, the generated
models, user profile, and task needs, the Decision Manager
chooses a strategic module to compute decisions (4), and fi-
nally sends the decisions to the Notification Manager. The
Notification Manager considers notification criteria such as
the distance to a task location, user profiles, and delivers a task
notification if all the criteria are met (6).

STUDY 1: SIMULATION

We conducted a simulation study in a community-based lost-
and-found setting to understand (a) the performance of Hit-
or-Wait mechanism for indirectly coordinating contributions
towards global goals, and (b) the effect of movement model
accuracy on the performance of Hit-or-Wait.

Dataset and Modeling

To train a movement model and simulate the routes of on-the-
go helpers, we scraped running routes from publicly available
RunKeeper data in Chicago and its northern suburban area.
The dataset contains 5,983 running routes from 2,419 users. It
contains a total of 590,860 latitude and longitude pairs for an
average of 98.76 points per user.

We model each subregion where an item may have been lost
by representing individual road segments as states. We gather

road segment data from OpenStreetMap, which treats each seg-
ment as a connection between street intersections, represented
as sequence of latitude and longitude pairs that construct the
segment. We preprocessed our data following the steps from
[28] but adopted the following heuristic for converting GPS
traces into a sequence of adjacent road segments. For each
latitude and longitude pair in a runner’s GPS trace, we sought a
road segment within 40 meters in the OpenStreetMap dataset.
If we couldn’t find the nearest road segments, we marked
the road as Unnamed Road. We eliminated repeated road
segments to finish constructing the sequence of segments.

We used the processed data to generate a population-based
movement model where the transition probability from one
road segment to the next is trained using the frequencies ob-
served in the data. We consider a first-order Markov model
where predictions of next locations are conditioned only on
current locations. We used population-based model instead of
individual-based model because there were not enough individ-
ual route histories to train an accurate individual-based model.
For routes on which no training data exists, we used a simple
model trained across our dataset that assigns a probability
distribution over going straight, turning left or right.

Simulation I: The Efficiency of Hit-or-Wait

Study Procedure

We compare the performance of Hit-or-Wait with a simple
node counting algorithm and with a myopically optimal so-
lution given full knowledge of people’s routes. The node
counting algorithm notifies a person of a task in a subregion
if and only if the search count in that subregion is the lowest
among all subregions. This algorithm makes efficient use of
each helper’s effort, but in waiting for such opportunities may
fail to recruit helpers who do not approach areas with low
search count. The myopically optimal solution is omniscient
of a helper’s routes and notifies a helper in the subregion they
come across that has the lowest search count. This solution
serves as an upper bound on the performance of Hit-or-Wait
given perfect predictions of people’s future routes.'

To set up lost-and-found scenarios, we chose a road segment in
our dataset with the highest foot traffic and included 41 nearby
road segments to form the area for our study. Within this
area, we randomly selected 10 road segments to represent the
search subregions where the item may have been lost. We set
the reward for searching in each subregion to the likelihood
that the item is there after n people have (unsuccessfully)
searched in that subregion (i.e., P(item|n)). For each trial of
our simulation, we randomly sampled 100 routes from 428
running routes from 269 unique runners.

Measures and Analysis
We measure the performance of our algorithm against other
algorithms by considering the overall search quality and the

'To make the baseline comparison informative and compelling, we
refrained from (a) comparing to approaches that notify users of tasks
at non-nearby locations, which differs from our setting; and (b) com-
paring to directed approaches that pre-assign users tasks that may
never be on their actual routes, as their performance would be similar
to or worse than our chosen baseline.

o
@
S

=
o
v

o
@
=)

0.454

Quality of search

o
s
S

NODE HOwW OPT

Figure 2. Simulation results comparing the overall quality of search for
node counting, Hit-or-Wait, and myopic optimal. The results show that
Hit-or-Wait outperformed the node counting algorithm and approached
the performance of the myopic optimal solution.

number of missed opportunities. Overall search quality pro-
vides a measure of how likely a search effort (i.e., the number
of searches in each subregion) is to result in finding a lost item.
For simplicity, we assume that the item is equally likely to be
in each state,” and that searches are independent conditional
on the item being in the search region. We set the likelihood of
finding the item after the first search given that the item is in
the subregion as 0.67. We let V (s,n) denote the likelihood of
having found an item after n searches when the item is in state
s, and compute the quality of search as: QoS =Y.V (s,n)/|S|.

For the number of missed opportunities, we measure occur-
rences where a person, given their actual route, could have
been notified to search along their route but were not notified
(regardless of the value of contribution).

Results of Simulation |

Figure 2 shows that Hit-or-Wait outperformed the node count-
ing algorithm and approached the performance of the myopic
optimal solution. It shows that Hit-or-Wait achieved 92.43%
of the value of the myopic optimal solution, whereas node
counting only achieved 74.5% of the value of the myopic opti-
mal. Compared to node counting, Hit-or-Wait makes use of
more of potential helpers’ efforts by drastically lowering the
percentage of missed opportunities compared to node counting
algorithm; see Figure 3. On average, Hit-or-Wait algorithm
missed 46.07% of opportunities (SD: 14.49) while node count-
ing missed 78.68% of opportunities (SD: 10.53) by waiting
for people to enter the least searched regions. While node
counting notified users of the highest valued tasks exclusively,
many users never reached such tasks; this led to a high per-
centage of missed opportunities that ultimately resulted in a
lower overall quality of search than Hit-or-Wait. The myopic
optimal solution has full knowledge of people’s future routes,
and thus misses no opportunities.

Simulation II: The Effect of Model Accuracy on Hit-or-Wait
Study Procedure

To understand the effect of movement model accuracy on the
performance of Hit-or-Wait, we compare the performance of
Hit-or-Wait using more and less accurate movement models

ZFor the simplicity of the measure we treat the likelihood that an item
is in a state as a constant, when in practice search counts contribute
information about where the lost item is.

Percentage of missed opportunities

NODE HOwW OPT

Figure 3. Percentage of missed opportunities for node counting, Hit-
or-Wait, and myopic optimal solution. Hit-or-Wait algorithm missed
46.07 % of opportunities (SD: 14.49) while node counting missed 78.68 %
of opportunities (SD: 10.53).

across two types of situations: uniform neighboring values
and varied neighboring values. In situations of uniform neigh-
boring values, tasks in neighboring states are uniform in value;
in such situations, we hypothesize that movement model ac-
curacy has less impact on the performance of Hit-or-Wait
because the value of future decisions is largely invariant. In
situations of varied neighboring values, neighboring tasks dif-
fer in value; incorrect predictions of future routes are thus
more likely to affect the quality of Hit-or-Wait decisions.

To set up an illustrative scenario, we chose a search region
that consisted of three road segments that are in the area we
had chosen in Simulation I for which the movement model is
strongly discriminative. This allows us to observe different
decisions when using Hit-or-Wait with our trained model and
a less accurate model that transitions to neighboring states
uniformly at random. We considered all 44 running routes
that passed by this region, and considered each route as an
instance of a potential search. We set the current road segment
with value 0.6, and set the mean value of the neighboring road
segments to 0.5. For uniform neighboring values, this should
result in hit decisions at the current road segment regardless
of the movement model. For varied neighboring values, we
uniformly sampled a value in a range of 0.8 to 1 and set it
as the value of the neighboring road segment more likely to
be reached (and 1 minus that value for the other neighbor to
preserve the mean of 0.5). This should allow a more accurate
movement model to make wait decisions when it has strong
predictions of reaching more valued states, whereas a less
accurate movement model may still decide to hit.

Measures and Analysis

To study how movement model accuracy affects the perfor-
mance of Hit-or-Wait with the trained model and a uniformly
at random model, we measure the percentage of value cap-
tured with respect to the myopic optimal solution in situations
of uniform neighboring values and varied neighboring values.
We chose this measure instead of overall search quality be-
cause we are only looking at specific moments where we vary
the task values, which means that there are no accumulated
searches across the regions to compute overall search quality.

Results of Simulation Il
Figure 4 shows the performance of Hit-or-Wait algorithm
with a uniformly at random movement model and our trained

B Uniformly at random
Trained model

0.84

0.6 1

0.4+

Percentage of OPT Value

0.24

0.0

Uniform neighboring values Varied neighboring values

Figure 4. Effect of model accuracy on Hit-or-Wait performance in situa-
tions of uniform neighboring values and varied neighboring values.

model in the situations of uniform neighboring values and
varied neighboring values. As we hypothesized, Hit-or-Wait
using the uniformly at random movement model still achieves
good performance in situations of uniform neighboring values,
but not in the case of varied neighboring values. In the varied
neighboring values case, Hit-or-Wait with our trained model
captured 95.08% of the values of what myopic optimal was
able to achieve, while Hit-or-Wait with the uniformly at ran-
dom movement model only captured 67.66% of the values of
myopic optimal. In this particular example, Hit-or-Wait made
the same decisions as OPT in the case of uniformly neigh-
boring values, as (a) incorrect predictions did not lead to any
missed opportunities (e.g., the user ends up in a region without
a task); and (b) the value gained for hitting in subsequent states
is identical regardless of next states.

STUDY 2: FIELD DEPLOYMENT

Following our simulation study, we conducted a 10-day long
field deployment of Hit-or-Wait in the lost-and-found domain
to understand (a) the performance of Hit-or-Wait in compari-
son to a myopic optimal solution—our upper bound—in the
real world, and (b) users’ perceived disruptions. In addition to
the simulations, this study allows us to explore the balance be-
tween hitting and waiting, the consequences of wait decisions,
and when and why wait decisions may fail.

Trouve: Lost-and-Found Application

We developed a prototype, Trouve, a lost-and-found mobile
application where users can request searches for lost items
and it notifies people who pass by possible lost item regions
to request that they look for the items. A user who lost an
item can post a request by providing a lost item description
and a possible region where they might have lost the item.
When a potential helper passes by a subregion in the potential
search region, they receive a notification (Figure 5a) asking if
they can help look for the lost item there and then. Once they
click the notification, the relevant information is shown to the
user (Figure 5b). If the user decides to help, they can click “I
am helping now!” to indicate their search attempt. After 30
seconds, a survey question about the perceived disruption of
the 30-second search is shown to the user (Figure 5c).

Study Procedure

We recruited 25 people who had an iPhone 5S or above with
iOS 10+ via flyers and local university mailing lists. 13 par-
ticipants were male and 12 were female; the average age was

- Carier T 12:26 AM 7 -

Hi user_24!

12:24

Tuesday, September 19

‘Thank you for looking for the item

How disruptive was the 30-second
search?
TROUVE now.

Alostitem s nearby! slightly disruptive

Can you help me look for ost item?
itis on Sheridan
Side tormore

Press home to open

(a) (b) (c)
Figure 5. Trouve, a prototype lost-and-found app for the study. (a) A
user receives a notification indicating a lost item is nearby; (b) the user
sees the details of the lost item; (c) after 30 seconds of clicking I am help-
ing now, the user is prompted with a survey question about perceived
disruptiveness of the 30-second search.

21.7 (SD: 2.79). Participants consented to enrollment and
then received the study instructions that asked participants to
look for lost items for approximately 30 seconds when noti-
fied while traveling along their existing routes, and noted that
searching was not mandatory for their participation. One of
the authors acted as the requester, using Trouve to post lost
items for participants to find.

We generated a movement model using the same procedure
as in our simulation study, but with the training data coming
from 51 routes from 11 recruited participants who used our
location tracking app for a week prior to the study. Throughout
the study we collected additional 1,490 routes and continually
updated our model each time new route data was collected.

We chose two search regions near the university campus: one
near the south side and another near the north side of the
campus. Each search region included 5 road segments as its
subregions; around 70-100 meters for each road segment. We
sought to have a mixture of both high traffic and low traffic
pedestrian streets within each search region, so we interviewed
students who frequently traverse the regions and used the pre-
study location data to help guide our choice of roads.

For each lost item request for a search region, one road seg-
ment was randomly selected as the lost item location. Based
on common requests on the university’s lost & found group,
a lost item region was described as “somewhere on street
name #1 and street name # 2.” Requested lost items included
a wallet, a coin purse, and trinkets. The interval between
task notifications (per user) was 4 hours to help minimize the
overall disruption caused to the participants. Following each
unsuccessful search in a subregion, we updated the search
count and reduced the reward for subsequent searches in that
subregion.? The search requests expired either when someone
found the item or if no one found the item after 3 days.

3Due to an error in Hit-or-Wait implementation, we encoded the

value of searching after n searches as (1 — P(1item))"+! in Study 2.
While this value is decreasing in the number of searches as we would
want, a more accurate estimate of the value of search should be based
on P(item|n) as shown earlier. Compared to using P(item|n) as the
reward function, our implementation overvalues states with more
(unsuccessful) searches. This can lead Hit-or-Wait to make more hit
decisions in well-searched regions when in actuality waiting for a
less searched region would have been more valuable. As a result, the
performance of Hit-or-Wait in our deployment may have been lower

5-point likert scale
w
o

2.0-
15- H
1.0- g g

EMA Post-study survey

Figure 6. Responses from EMA and post-study survey about perceived
disruption for 30-second searches on a 5-point Likert scale (1: not dis-
ruptive at all, S: very disruptive).

Since the primary focus of the study was coordinating searches
across road segments within a search region and not handing
off found items or delivering them to a lost-and-found center,
we asked the participants to simply take a picture of the found
item and send it via SMS or email to the researchers. This
way, we were able to verify whether or not the participants
actually found the item. In the discussion, we will discuss
more complex scenarios of Hit-or-Wait in which the helpers
have to travel with and then hand off the found items. The
participants received a $25 gift card as compensation.

Measures and Analysis

To understand the performance of Hit-or-Wait in the real-
world, we considered two new measures: the perceived cost of
disruption and the value of waiting. To measure the perceived
cost of disruption, we used both ecological momentary assess-
ments (EMA) and post-study survey, where the participants
were asked to rate their perceived disruption on a 5-point Lik-
ert scale (ranging from “1: not disruptive at all,” to “5: very
disruptive”). The EMA was delivered to the participant via
their smartphone (see Figure 5¢) 30 seconds after they clicked
“T am helping now!” We used both EMA and post-study survey
to complement each other’s strengths and weaknesses. On one
hand, while EMA allows us to collect user responses while
their memory is fresh, the responses were collected only when
the participants decided to help, and therefore we miss re-
sponses when they found the tasks disruptive and did not help.
This measure more effectively captures reflection on the dis-
ruption of the 30-second search task itself. On the other hand,
the post-study survey allows us to capture participants’ reflec-
tion on the amount of disruption they experienced throughout
the study both including times when they decided to help and
when they declined. One downside of this measure is that the
participants’ memory may not be as accurate after 10 days of
study and their reporting may exhibit recall or recency bias.

In addition to overall search quality measure from Study 1,
we added a measure that captures the value of waiting. We
considered the wait decisions Hit-or-Wait made and compared
the value of the eventual outcome (e.g., based on whether and
where a person eventually searched) to the value if we just
sent them the task then and there. To measure the real-world
performance, we made this comparison by using the actual

than if we had implemented the more accurate reward function. The
error did not otherwise affect our measures, analyses, or findings.

0.6 -

0.4-

0.2-

Quality of search

0.0 -

HOW

Figure 7. Overall quality of search between Hit-or-Wait and myopic
optimal solution. Hit-or-Wait was able to make near optimal decisions
in actual use, and make efficient use of people’s search efforts.

number of searches performed in the subregion thus far to
compute the likelihood that the item is still in that subregion
(i.e., P(item|n)), instead of using the expected value of waiting
as computed by Hit-or-Wait. As the system might make multi-
ple wait decisions until it makes a hit decision, we considered
only the first wait decisions for comparison.

Study Results

Searching with Low Disruption

Over the course of 10 days, the participants received 248
notifications and conducted 60 searches along their routes
(24.19% acceptance rate). We found that the 30-second on-the-
go searches were not disruptive to the users when they decided
to help. Figure 6 shows that both the EMA (N=60 from 23 out
of 25 participants) and post-study survey responses (N=24)
about the perceived cost of disruption were low; the average
rating from EMA is 1.39 (SD: 0.58) and the average rating
from post-study survey is 1.58 (SD: 0.72), values that fall
between “not disruptive at all” and “slightly disruptive.”* Our
interview findings also mirror the survey responses, as P2 said:
“So everyday I walk passed [street name] and [street name],
and usually I am on my phone when I am walking and I see
the alert. I usually just keep walking and look around my path
and look for the item...It’s not bad at all and really easy.”

Among the searches, 4 different participants found 4 items out
of the 9 search requests that were made. While finding items
was not a primary focus of our study, this finding demonstrates
how effective coordination can make use of smaller contribu-
tions from many users to find lost items in large regions.

Maximizing User Contributions

The results show that Hit-or-Wait was effective in maximizing
the user contributions by notifying the tasks where they were
most needed. For 57 searches that took place in the study, the
average quality of search was 0.43 for Hit-or-Wait (SD: 0.21)
and 0.51 for myopic optimal (SD: 0.24), indicating that Hit-
or-Wait captured 84.31% of the value of what myopic optimal
is able to achieve (Figure 7).> Closer analysis shows that
Hit-or-Wait made hit decisions in subregions with a higher
search count than myopic optimal only 9.68% of the time

4One of the participants did not fill out the post-study survey and
never responded to the emails.

SWe excluded 3 searches from this analysis since they were missing
the GPS location data needed to compute the measure.

0.10 -

o) o
o o =)
I =3 @

Value gained

°
o
N}

0.00 -

Value gained if hit Value gained by waiting

Figure 8. Comparison between the value gained if hit at the wait decision
state vs. value gained from waiting and notifying at the later state.

(24 out of 248), and in 77.42% of the times (192 out of 248)
it made decisions identical to the myopic optimal. These
results suggest that even without explicit coordination or full
knowledge of people’s future routes, Hit-or-Wait is able to
make near optimal decisions in actual use, and make efficient
use of people’s search efforts.

We found that Hit-or-Wait also made effective wait decisions.
Figure 8 illustrates the value of waiting and shows that de-
ciding to wait led to future decisions with a 67.6% increase
in value compared to immediately notifying users. A paired
t-test shows that there is a significant difference in the value
of waiting versus not waiting (t = 3.98, df = 120, p < 0.0001).

When and Why Missed Opportunities Happen

Waiting for a better opportunity poses a risk of completely
missing the opportunity to notify. Our results show that the
variance for value gained from a wait decision is quite large
(M: 0.0776, SD: 0.0893), and it is mainly due to the fact that
there is zero value gained when missed opportunities occur.
Our results show that 45.16% (56 out of 124) of the wait
decisions resulted in missed opportunities.

From 52 instances, outside of situations where uncertainty in
future routes naturally led to users going outside of the task
region, we identified three other reasons that resulted in missed
opportunities (Figure 9). First, contrary to our model, people
sometimes took unexpected routes or did not move to adjacent
states (Figure 9a). For example, some people took shortcuts
or trespassed in ways that were unexpected by our model and
this led to missed opportunities where the system may have
notified them in other subregions. In the future we could have
models with more fine-grained state spaces, where the state is
more granular than a road segment.

Second, people sometimes stopped moving and stayed at the
location where the system made a wait decision (Figure 9b).
These instances occurred when the participants were on their
way to classes or home, and they only passed one of the
subregions since their trip was cut short. Our system did not
have the notion of terminal state, but in the future it could
predict whether or not the current state will be the terminal
state so that we can prevent such missed opportunities.

Third, inaccuracy or inconsistency in location tracking also
caused some missed opportunities (Figure 9c). There are
many reasons such technical failures can happen (e.g., turning

(a) (b) (c)

Figure 9. Examples of missed opportunities after wait decisions: (a)
taking shortcuts and did not go to adjacent states; (b) staying at the wait
state (e.g., taking classes); (c) missing GPS location data.

off Wi-Fi and thus lowering the location tracking accuracy;
switching between LTE and Wi-Fi while walking around the
campus; turning on low-power or airplane mode). For the rest
of 4 instances it did not notify due to technical failure.

FOLLOW-UP INTERVIEWS

In the follow-up interviews after the field deployment, we
sought to understand how helpers perceive the value of their
contributions toward the larger goal of finding the item in a
large search region. We also explored ways to represent and
visualize the value of contributions and use it as a tool to better
communicate seemingly opaque Hit-or-Wait decisions.

Interview Setup

We invited participants for an optional 30-min interview af-
ter the field deployment and interviewed 7 participants who
helped at least once during the study. Each interview lasted
around 30 minutes. We chose 4 different scenarios to highlight
a high-level idea of how Hit-or-Wait works: 1) A Hit decision
is made because a user is at a road with no searches; 2) a user
is at a road with some searches but the user is likely to go to
another road with no searches, so it makes a Wait decision at
the current road and makes a Hit decision if the user reaches
the subregion with no searches; 3) a user is at a road with
a few searches and the user is likely to go to a road with a
fewer searches, so it makes a Wait decision at the current road,
and a Hit decision if the user reaches the road with the fewer
searches; 4) a user is at a road with a few searches and the user
is likely to go to a road with more searches, so it makes a Hit
decision at the current road.

During the interviews, we first asked users to recall their
searches and tell us about the perceived value of them. We
chose different contribution scenarios from a user’s actual con-
tributions (when the user’s searches did not cover all four sce-
narios, we showed other users’ searches instead) and showed
the visualizations for those searches (some examples of the
visualizations are shown in Figure 10). We then asked the
participants to walk us through how they thought the system
worked based on the visualizations. After showing the partici-
pants all of the visualizations, we again asked them about the
perceived value of their searches, and we elicited their sugges-
tions about how the system could more clearly communicate
its goals and highlight the value of their contributions. The
interview participants received a $5 gift card as compensation.

= = = u m u u more likely route

---------- less likely route

(a)

(b)

Figure 10. Wait (top) and Hit (bottom) example visualizations.

Interview Findings

Some participants perceived the value of their contributions
solely on the basis of whether they found the item, and as
a result they did not regard their contributions as valuable if
they were unable to find the item. For example, P6 described
how she thought that her contribution was not valuable: “Well,
clearly wasn’t that valuable, because I never found anything.”

Some participants also assumed that the system did not take
into consideration other people’s searches, and perceived their
contributions either as redundant or too miniscule to be valu-
able. One participant (P6) explained how she thought that the
system was notifying everyone who passed by and as a result
many people would have searched in a same region: “there
was nothing to stop someone else from doing the exact same
search that I did even if I already searched that area, right?”
On the contrary, another participant assumed that she was the
only one searching in a large search region and did not feel
her search was ever going to be useful (P2).

However, when the participants understood the high-level idea
of the mechanism of Hit-or-Wait—predicting likely routes
and considering other people’s searches—either through the
visualizations or verbal description from the interviewer, they
stated that their contributions were more valuable. P7 said:
“Oh, definitely valuable because it carefully calculates who has
already [searched], so I don’t feel like I am just another person
who’s like useless.” Another participant P2 said: “I guess it is
a lot more valuable. Because I guess I've never thought the
computer was taking in how other people are doing it.”

The participants also mentioned that highlighting an individ-
ual’s contribution as part of the global goal may help them
value their contributions more. As P7 stated: “Maybe also
having information like if someone does find the item, then I
would know I was just being helpful...So I was helping part of
that even if wasn’t the exact person to find it.” The participant
also said that emphasizing the uniqueness of her contributions
could have helped her feel the contributions to be more valu-
able: “It’s nice to know that I am the first person to search like
there...If I saw this while I was searching, that would’ve made
sense and I may have felt like it’s valuable.”

To summarize, our interview results show that it’s important
to communicate the global goal of the system and highlight
the parts of the goal that the users are contributing to so as to
help them to be cognizant of the value of their contributions.

DISCUSSION AND FUTURE WORK

In this paper, we introduced Hit-or-Wait, a general decision-
theoretic mechanism for coordinating opportunistic contri-
butions to achieve effective global outcomes with on-the-go
crowdsourcing. We demonstrated the effectiveness of Hit-
or-Wait through simulations and a field deployment, which
highlighted Hit-or-Wait’s ability to minimize user disruptions
and maximize the value of user contributions via implicit co-
ordination by deciding on-the-fly whether to notify or wait for
better opportunities. In the rest of the section, we discuss the
applicability of Hit-or-Wait to more complex scenarios and
other domains; tractability and scalability; limitations of my-
opic Hit-or-Wait; and lastly, the general need for system-level
coordination in on-the-go crowdsourcing systems.

Complex Scenarios and Applicability to Other Domains
As the goal of this paper is to explore ways to implicitly
coordinate user contributions towards global outcomes, we
excluded subsequent scenarios where helpers have to hand
off found items or factors that could affect the willingness
and convenience besides user’s current location in the field
deployment. To make applications like Trouve a full-fledged
system with Hit-or-Wait, we could take into consideration
the cost of diversion [20, 33] from a user’s existing route or
predicted destination [29, 42] to a hand-off location when
computing the value of notifying the user. We could also
include parameters that capture busyness, schedules, existence
of companions, and other situational factors that are known to
affect task acceptance rate [21, 27].

While we studied Hit-or-Wait in the context of a community-
based lost-and-found, the general mechanism can be applied
to other domains such as community sensing or for other
community-based peer-to-peer services. In community sens-
ing, Hit-or-Wait can be used to support the global goal of en-
suring data coverage and fidelity, even when using low-effort
contributions [37, 36]. Depending on where and how much
data has been collected at different locations, Hit-or-Wait can
decide when to ask for additional pieces of information, for
example by making the decision to wait should the user be
likely to reach other locations where data coverage is low. In
community-based peer-to-peer services such as timebanking,
Hit-or-Wait can be used to achieve the community goal of
effectively providing help for each other by accounting for
different skills, abilities, and preferences [14, 23]. Hit-or-Wait
can encode the value of contributions based on required skills,
priority, as well as helper preferences. For example, depend-
ing on a task’s urgency, Hit-or-Wait can effectively coordinate
opportunistic contributions to prioritize high-valued, urgent
tasks that a user may encounter on their route.

Tractability and Scalability
Our MDP model for Hit-or-Wait scales well for reasonable
state spaces; there are no immediate tractability concerns at

the community- or neighborhood-scale that on-the-go crowd-
sourcing systems are intended to be deployed in. In cases
where the state space becomes large, either in larger scale
systems or by including other contextual information, we can
scale further by employing standard techniques such as using
coarser or factored state representations [16].

Limitations of Myopic Hit-or-Wait

One of the limitations of the current Hit-or-Wait implementa-
tion is that it makes decisions myopically without regard to
the possible future routes and decisions of other helpers who
may arrive. By taking into consideration others’ future routes
and decisions, futuristic Hit-or-Wait can potentially coordinate
contributions more effectively, especially in cases where the
contributions are contingent on differentiating factors among
helpers. For instance, if only certain people have access to
locations (e.g., returning a book to university library), then by
predicting who will come across which locations we can more
effectively coordinate these scarce resources where they are
most needed. Realizing the benefits of futuristic Hit-or-Wait
will require overcoming the computational challenges imposed
by (a) reasoning about the potential routes and decisions of fu-
ture helpers; and (b) considering the interdependencies of how
current decisions can affect future decisions. Resolving these
challenges to provide globally optimal solutions through op-
portunistic coordination will require applying and advancing
existing decision-theoretic methods.

Towards System-level Coordination

Hit-or-Wait’s ability to minimize disruptions and eliminate
coordination costs [30] increases the ability for people to con-
veniently and effectively contribute to local, communal prob-
lems. In this way, Hit-or-Wait can potentially help encourage
and sustain more contributions over time. We hope that such
new ways of contributing to local, communal problems can
provide social benefits, and create new ways of interacting
with, supporting, and becoming a part of a community.

Future work on developing system-level mechanisms for co-
ordinating on-the-go contributions may look beyond making
effective use of individual contributions to considering how
to engage the community of helpers as a whole. For example,
a supply management framework may be able to balance the
demands from requesters with disruption to potential helpers,
considering both system goals such as the quality of service
but also community values such as not overburdening helpers,
S0 as to maintain a healthy pool of future helpers [27]. As
some of our participants from the interviews indicated that
they may be willing to deviate from their routes, there may
also be opportunities to coordinate mixed models of contribut-
ing that engage both on-the-go helpers and more dedicated
helpers to collectively respond to local, communal needs.

ACKNOWLEDGEMENT

We thank members of the Design, Technology, and Research
program and the Delta Lab for their valuable feedback and
helpful discussions. We thank Kotaro Hara for helping with
collecting road segment data from OpenStreetMap dataset.
This work was funded by the National Science Foundation
under Grant No. 1618096.

REFERENCES

1.
2.
3.

10.

11.

TaskRabbit. http://www.taskrabbit.com.
Uber. http://www.uber.com.

Florian Alt, Alireza Sahami Shirazi, Albrecht Schmidt,
Urs Kramer, and Zahid Nawaz. 2010. Location-based
crowdsourcing: extending crowdsourcing to the real
world. In Proceedings of the 6th Nordic Conference on
Human-Computer Interaction: Extending Boundaries.
ACM, 13-22.

. Gerard Beenen, Kimberly Ling, Xiaoqing Wang, Klarissa

Chang, Dan Frankowski, Paul Resnick, and Robert E.
Kraut. 2004. Using Social Psychology to Motivate
Contributions to Online Communities. In Proceedings of
the 2004 ACM Conference on Computer Supported
Cooperative Work (CSCW ’04). ACM, New York, NY,
USA, 212-221.

. Victoria ME Bellotti, Sara Cambridge, Karen Hoy,

Patrick C Shih, Lisa Renery Handalian, Kyungsik Han,
and John M Carroll. 2014. Towards community-centered
support for peer-to-peer service exchange: rethinking the
timebanking metaphor. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 2975-2984.

. Michael S Bernstein, Joel Brandt, Robert C Miller, and

David R Karger. 2011. Crowds in two seconds: Enabling
realtime crowd-powered interfaces. In Proceedings of the
24th annual ACM symposium on User interface software
and technology. ACM, 33-42.

. Michael S. Bernstein, Greg Little, Robert C. Miller,

Bjorn Hartmann, Mark S. Ackerman, David R. Karger,
David Crowell, and Katrina Panovich. 2010. Soylent: A
Word Processor with a Crowd Inside. In Proceedings of
the 23Nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). ACM, New York,
NY, USA, 313-322.

. Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg

Little, Andrew Miller, Robert C Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White, and
others. 2010. VizWiz: nearly real-time answers to visual
questions. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology.
ACM, 333-342.

. Cen Chen, Shih-Fen Cheng, Aldy Gunawan, Archan

Misra, Koustuv Dasgupta, and Deepthi Chander. 2014.
TRACCS: A Framework for Trajectory-Aware
Coordinated Urban Crowd-Sourcing. In HCOMP.

Yueyue Chen, Pin Lv, Deke Guo, Tongqing Zhou, and
Ming Xu. 2017. Trajectory segment selection with
limited budget in mobile crowd sensing. Pervasive and
Mobile Computing 40 (2017), 123—138.

Shih-Fen CHENG, CHEN CEN, Thivya KANDAPPU,
Hoong Chuin LAU, Archan MISRA, Nikita JAIMAN,
Randy Tandriansyah DARATAN, Ming Hui KOH, and
others. 2017. Scalable urban mobile crowdsourcing:

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

Handling uncertainty in worker movement. ACM
Transactions on Intelligent Systems and Technology 9, 3
(2017), 1.

Lydia B Chilton, Juho Kim, Paul André, Felicia Cordeiro,
James A Landay, Daniel S Weld, Steven P Dow, Robert C
Miller, and Haoqi Zhang. 2014. Frenzy: collaborative
data organization for creating conference sessions. In
Proceedings of the 32nd annual ACM conference on
Human factors in computing systems. ACM, 1255-1264.

Peng Dai, Mausam, and Daniel S. Weld. 2010.
Decision-theoretic Control of Crowd-sourced Workflows.
In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI’10). AAAI Press,
1168-1174.

Afsaneh Doryab, Victoria Bellotti, Alaaeddine Yousfi,
Shuobi Wu, John M. Carroll, and Anind K. Dey. 2017. If
It’s Convenient: Leveraging Context in Peer-to-Peer
Variable Service Transaction Recommendations. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3,
Article 48 (Sept. 2017), 28 pages.

Nathan Eagle. 2009. txteagle: Mobile crowdsourcing.
Internationalization, design and global development
(2009), 447-456.

Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha
Venkataraman. 2003. Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence
Research 19 (2003), 399-468.

Aakar Gupta, William Thies, Edward Cutrell, and Ravin
Balakrishnan. 2012. mClerk: enabling mobile
crowdsourcing in developing regions. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 1843-1852.

Kyungsik Han, Patrick C. Shih, Victoria Bellotti, and
John M. Carroll. 2015. It’s Time There Was an App for
That Too:: A Usability Study of Mobile Timebanking.
International Journal of Mobile Human Computer
Interaction 7, 2 (2015), 1-22.

. Eric Horvitz, Paul Koch, and Muru Subramani. 2007.

Mobile opportunistic planning: methods and models. In
User Modeling, Vol. 4511. Springer, 228-237.

Eric Horvitz and John Krumm. 2012. Some help on the
way: Opportunistic routing under uncertainty. In
Proceedings of the 2012 ACM conference on Ubiquitous
Computing. ACM, 371-380.

Kazushi Ikeda and Keiichiro Hoashi. 2017.
Crowdsourcing GO: Effect of Worker Situation on
Mobile Crowdsourcing Performance. In Proceedings of
the 2017 CHI Conference on Human Factors in
Computing Systems. ACM, 1142—1153.

Shenggong Ji, Yu Zheng, and Tianrui Li. 2016. Urban
sensing based on human mobility. In Proceedings of the
2016 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. ACM, 1040-1051.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Hyunggu Jung, Victoria Bellotti, Afsaneh Doryab, Dean
Leitersdorf, Jiawei Chen, Benjamin V Hanrahan,
Sooyeon Lee, Dan Turner, Anind K Dey, and John M
Carroll. 2016. "M ASTerful’ Matchmaking in Service
Transactions: Inferred Abilities, Needs and Interests
versus Activity Histories. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
ACM, 1644-1655.

Ece Kamar, Eric Horvitz, and Chris Meek. 2008. Mobile
opportunistic commerce: mechanisms, architecture, and
application. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent
systems-Volume 2. International Foundation for
Autonomous Agents and Multiagent Systems,
1087-1094.

Thivya Kandappu, Nikita Jaiman, Randy Tandriansyah,
Archan Misra, Shih-Fen Cheng, Cen Chen, Hoong Chuin
Lau, Deepthi Chander, and Koustuv Dasgupta. 2016a.
Tasker: Behavioral insights via campus-based
experimental mobile crowd-sourcing. In Proceedings of
the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing. ACM, 392—402.

Thivya Kandappu, Archan Misra, Shih-Fen Cheng,
Nikita Jaiman, Randy Tandriansyah, Cen Chen,

Hoong Chuin Lau, Deepthi Chander, and Koustuv
Dasgupta. 2016b. Campus-Scale Mobile Crowd-Tasking:
Deployment & Behavioral Insights. In Proceedings of the
19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing (CSCW ’16).
ACM, New York, NY, USA, 800-812.

Yongsung Kim, Emily Harburg, Shana Azria, Aaron
Shaw, Elizabeth Gerber, Darren Gergle, and Haoqi
Zhang. 2016. Studying the Effects of Task Notification
Policies on Participation and Outcomes in On-the-go
Crowdsourcing. In HCOMP. AAAL

John Krumm. 2008. A Markov Model for Driver Turn
Prediction. In SAE World Congress & Exhibition. SAE
International.

John Krumm and Eric Horvitz. 2006. Predestination:
Inferring destinations from partial trajectories. Ubicomp
(2006), 243-260.

Thomas W Malone and Kevin Crowston. 1994. The
interdisciplinary study of coordination. ACM Computing
Surveys (CSUR) 26, 1 (1994), 87-119.

Jon Noronha, Eric Hysen, Haoqi Zhang, and Krzysztof Z
Gajos. 2011. Platemate: crowdsourcing nutritional
analysis from food photographs. In Proceedings of the
24th annual ACM symposium on User interface software
and technology. ACM, 1-12.

Al M. Rashid, Kimberly Ling, Regina D. Tassone, Paul
Resnick, Robert Kraut, and John Riedl. 2006. Motivating
Participation by Displaying the Value of Contribution. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’06). ACM, New
York, NY, USA, 955-958.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Adam Sadilek, John Krumm, and Eric Horvitz. 2013.
Crowdphysics: Planned and Opportunistic
Crowdsourcing for Physical Tasks. In Seventh
International AAAI Conference on Weblogs and Social
Media.

Rannie Teodoro, Pinar Ozturk, Mor Naaman, Winter
Mason, and Janne Lindqvist. 2014. The motivations and
experiences of the on-demand mobile workforce. In
Proceedings of the 17th ACM conference on Computer
supported cooperative work & social computing. ACM,
236-247.

Jacob Thebault-Spieker, Loren G. Terveen, and Brent
Hecht. 2015. Avoiding the South Side and the Suburbs:
The Geography of Mobile Crowdsourcing Markets. In
CSCW. ACM, New York, NY, USA, 265-275.

Khai N Truong, Thariq Shihipar, and Daniel J Wigdor.
2014. Slide to X: unlocking the potential of smartphone
unlocking. In Proceedings of the 32nd annual ACM
conference on Human factors in computing systems.

ACM, 3635-3644.

Rajan Vaish, Keith Wyngarden, Jingshu Chen, Brandon
Cheung, and Michael S Bernstein. 2014. Twitch
crowdsourcing: crowd contributions in short bursts of
time. In Proceedings of the 32nd annual ACM conference
on Human factors in computing systems. ACM,
3645-3654.

Luis Von Ahn and Laura Dabbish. 2004. Labeling images
with a computer game. In Proceedings of the SIGCHI

conference on Human factors in computing systems.
ACM, 319-326.

Luis Von Ahn, Benjamin Maurer, Colin McMillen, David
Abraham, and Manuel Blum. 2008. recaptcha:
Human-based character recognition via web security
measures. Science 321, 5895 (2008), 1465-1468.

Jiangtao Wang, Yasha Wang, Daqing Zhang, Feng Wang,
Yuanduo He, and Liantao Ma. 2017. PSAllocator:
multi-task allocation for participatory sensing with
sensing capability constraints. In Proceedings of the 2017
ACM Conference on Computer Supported Cooperative
Work and Social Computing. ACM, 1139-1151.

Haoqi Zhang, Edith Law, Rob Miller, Krzysztof Gajos,
David Parkes, and Eric Horvitz. 2012. Human
computation tasks with global constraints. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 217-226.

Brian D Ziebart, Andrew L Maas, Anind K Dey, and
J Andrew Bagnell. 2008. Navigate like a cabbie:
Probabilistic reasoning from observed context-aware
behavior. In Proceedings of the 10th international
conference on Ubiquitous computing. ACM, 322-331.

	Introduction
	Background
	Coordinate On-the-go Crowds with Hit-or-Wait
	Opportunistic Hit-or-Wait
	On-the-go Crowdsourcing Architecture
	Architecture
	Flows

	Study 1: Simulation
	Dataset and Modeling
	Simulation I: The Efficiency of Hit-or-Wait
	Study Procedure
	Measures and Analysis
	Results of Simulation I

	Simulation II: The Effect of Model Accuracy on Hit-or-Wait
	Study Procedure
	Measures and Analysis
	Results of Simulation II

	Study 2: Field Deployment
	Trouve: Lost-and-Found Application
	Study Procedure
	Measures and Analysis
	Study Results
	Searching with Low Disruption
	Maximizing User Contributions
	When and Why Missed Opportunities Happen

	Follow-up Interviews
	Interview Setup
	Interview Findings

	Discussion and Future Work
	Complex Scenarios and Applicability to Other Domains
	Tractability and Scalability
	Limitations of Myopic Hit-or-Wait
	Towards System-level Coordination

	Acknowledgement
	References

