
Orchestration Scripts: A System for Encoding an Organization’s
Ways of Working to Support Situated Work

Kapil Garg
Northwestern University

Evanston, IL, USA
kgarg@u.northwestern.edu

Darren Gergle
Northwestern University

Evanston, IL, USA
dgergle@northwestern.edu

Haoqi Zhang
Northwestern University

Evanston, IL, USA
hq@northwestern.edu

ABSTRACT
Ill-structured problems demand that people adopt sophisticated
strategies for planning, seeking support, and using available re-
sources along their work process. These practices involve a chal-
lenging monitoring and strategizing process that existing tools
cannot support since they largely lack an understanding of an orga-
nization’s processes, social structures, venues, and tools. We intro-
duce workplace programming for situationally-aware systems–an
approach for encoding work situations using computational abstrac-
tions of an organization’s ways of working and surfacing support
strategies at appropriate times and settings. With this approach, we
implement Orchestration Scripts, a system that supports various
situated work activities in a socio-technical organization. Through
a case study and field study, we show how our approach encodes
different aspects of working effectively and helps people identify
situations to enact effective strategies using the available support
opportunities. Our results show how a programmable technology
can provide situated support in today’s workplaces.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools.

KEYWORDS
Socio-Technical Ecosystems; Situated Work; Ill-Structured Prob-
lems; Orchestration Scripts; Organizational Objects

ACM Reference Format:
Kapil Garg, Darren Gergle, and Haoqi Zhang. 2023. Orchestration Scripts:
A System for Encoding an Organization’s Ways of Working to Support
Situated Work. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany.ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3544548.3581456

1 INTRODUCTION
Modern workplaces increasingly require their workers to solve
complex, ill-structured problems with vaguely structured goals
and constraints, and often multiple solutions [37]. Working on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581456

these problems involves continually assessing how needs and con-
straints are changing, and soliciting support from others in the
organization [36]. In response, workplaces have adopted Agile
work processes that encourage rapid iteration over waterfall mod-
els [19, 63, 65], social structures for collaboration [48] and dynamic
teaming across an organization [27, 59], and a shared suite of tools
that support collaboration activities [1, 5, 8]. Alongside, an in-
creased emphasis is placed on learning and promoting effective
ways of working (e.g., strategies for planning work; collaborating
with peers) in these workplaces [36] and also in learning commu-
nities teaching students how to do complex work (e.g., for under-
graduate research training [75] and design inquiry [42, 54]).

Being effective in these workplaces requires workers to be aware
of their changing work situations and needs and the situated strate-
gies they can enact themselves or with others across diverse venues
in the workplace. For example, new workers may meet weekly with
their onboarding mentor to ask questions about the organization’s
work practices as they onboard; team leaders can ask their team to
bring up issues on deliverable scoping during their weekly planning
meetings. However, workers struggle with monitoring for these
work situations, strategizing on how to resolve them, and enacting
those strategies across support opportunities in the workplace [31].
Coaching from experts can help, but it is infeasible as organizations
grow since the distributed nature of the work prevents coaches
from observing and scaffolding peoples’ situated interactions across
interactions in the ecosystem where they are not present.

Given the challenges in human-driven solutions for situated
work, we may consider technology that supports workers in iden-
tifying their current work needs and potential strategies they can
enact in a work ecosystem. However, existing systems for detecting
work situations and enacting follow-up actions [4, 7, 10, 55] cannot
encode situated work practices effectively because their program-
ming models lack the constructs to encode practices that span the
work processes, social relationships, and collaboration venues of a
workplace. For example, a worker wants to raise a planning-related
issue at their next team planning meeting but must currently en-
code this as a specific time (e.g., 3:00 PM this Wednesday) rather
than a relevant situation or venue where it should come up (e.g.,
the team’s planning meeting). Moreover, the automation-focused
nature of these approaches can be overly prescriptive on how to
resolve work situations when they lack a complete picture of the
work situation [50, 61]. For example, a team may not have tested
a prototype because users were unavailable or because they en-
countered programming bugs, each requiring different strategies to
resolve. In short, we need systems that support situated work since
it is too challenging to do with human-only approaches but require
them to be flexible to the uncertainty present in day-to-day work.

https://orcid.org/0000-0003-4593-4766
https://orcid.org/0000-0003-4052-0214
https://orcid.org/0000-0002-7640-0532
https://doi.org/10.1145/3544548.3581456
https://doi.org/10.1145/3544548.3581456

CHI ’23, April 23–28, 2023, Hamburg, Germany Kapil Garg, Darren Gergle, & Haoqi Zhang

The core conceptual idea in this paper is workplace programming
for situationally-aware systems, whereby providing systems with
computational abstractions of an organization’s ways of working
allows for encoding strategies that inform workers about emerging
work situations and specific work strategies to attempt along their
work process. Unlike fully automated approaches, our approach
provides workers with signals of emerging work situations and
suggested strategies they can attempt on their own or with others as
support opportunities become available in the broader work ecosys-
tem. For example, team leads can use these constructs to inform
them of when their team does not have planned deliverables during
their weekly planning meeting, enabling them to discuss what the
obstacles are (e.g., not knowing what to work on next; difficulty
scoping) and suggest strategies, resource guides, or peers that can
help. We hypothesize this form of human-machine orchestrated
support—as opposed to full machine automation—is effective for
ill-structured work because it lets workers complimentary use the
benefits of machines for tracking known signals of when particular
work needs require their attention and how to resolve them, but
ultimately gives them complete control over how to proceed rather
than having the machine automatically enact a follow-up action.

We implement this approach inOrchestration Scripts, a system for
encoding and enacting Situated Scripts that detects everyday work
situations in a workplace and recommends strategies to attempt dur-
ing workers’ interactions with each other. A key component of this
system is Organizational Objects that provide programming abstrac-
tions for the work processes, social relationships, venues, and tools
in a workplace. This allows us to encode strategies that reference
the particular people for and the situations in which they should be
enacted in a general manner (i.e., not encoding a specific person or
time). These include suggesting newcomers discuss effective work
processes with their onboarding mentor after weekly sprints, or
providing reflection activities on how to prevent overworking to
teams during planning meetings with a team lead. These objects are
made executable through a Studio API that provides programmatic
access to data for the abstractions. Finally, an Orchestration Execu-
tion Engine is responsible for executing general scripts for specific
people by monitoring for work situations to emerge and presenting
situated strategies at relevant venues for each person across the
ecosystem. Through studies in a research learning community [75],
we show how Orchestration Scripts can effectively encode situated
work practices in a general manner that is less brittle to changes in
people’s relationships and venues than workflow automation tools
while still being tailored to specific people and their circumstances;
and how it creates opportunities to discuss effective strategies for
emerging work situations across a work ecosystem. These findings
show how programmable technologies can flexibly provide situated
support in today’s socio-technical workplaces.

2 BACKGROUND
We are interested in developing systems that support workers in
enacting situated work practices in a socio-technical work ecosys-
tem. We first describe what these work environments and practices
look like, and then review the limitations of current technology in
facilitating situated work.

2.1 Ill-Structured Work and How
Socio-Technical Workplaces Support It

Modern work and learning communities require their members
to tackle complex, ill-structured problems, such as in research,
engineering, design, and entrepreneurship work. These problems
are challenging due to the uncertainty involved when working
on them, where work needs change as progress is made and re-
sources from around the organization must be coordinated to re-
solve them [37, 58]. Working effectively on these problems requires
developing situated work practices where workers determine a
course of action by assessing their work needs and what forms
of support are available, adapting their plans as their needs and the
availability of resources change over time [62].

Emerging needs often require support from others when work-
ers do not have the resources or skills to address them on their
own [30, 36]. In response, workplaces have focused on providing
increased access to support opportunities, including peers, collabo-
ration venues, and resources [35, 41]. This includes shifting away
from strict hierarchies and siloed teams towards more networked
models of organization [52, 59]; adopting more flexible work pro-
cesses (e.g., Agile practices that encourage rapid iteration versus
waterfall ones [19, 63, 65]); and work and collaboration tools (e.g.,
Asana [1]; Jira [5]; Trello [8]) that support identifying work needs
and collaborating across social structures in the organization [27].

Despite increased access to support, enacting effective situated
work practices remains challenging [31]. Workers must continually
monitor for emerging work situations; identify and plan relevant
work strategies; and enact those strategies across interactions along
the work process, re-planning and re-strategizing as progress is
made. However, they struggle with monitoring for their needs [30];
determining relevant strategies in those situations [17, 42]; and
knowing when and where support across the organization can be
found [11, 12]. Personalized coaching from mentors can help [20,
70], but it becomes infeasible since people’s work practices are
distributed across situated interactions throughout the ecosystem.
Given the challenges with human-only solutions, we must consider
how technology can support situated work by understanding the
work situations people encounter and surface situated strategies they
can attempt at relevant times along the work process.

2.2 Tools to Support CommonWork Activities
Unfortunately, many existing workplace tools leave the difficult task
of actually orchestrating situated work practices across an ecosys-
tem entirely to the user. While these tools support workers across
different work activities (e.g., planning [1, 5, 8], help-seeking [13,
14, 34, 44, 45], and reflection [53]) and in particular venues (e.g., col-
laboration activities in the classroom [25, 28, 38, 47, 72]) by helping
them strategize on how to resolve known work needs (e.g., guides
for assessing project risks when struggling with planning [42]),
they provide little support for monitoring emerging needs in the
first place. Further, they do not help enact relevant strategies in
the appropriate support opportunities across the work ecosystem
(e.g., at a venue dedicated to planning). Instead, our work aims to
develop systems that support these facets of orchestrating work
and provide relevant strategies to practice.

Orchestration Scripts CHI ’23, April 23–28, 2023, Hamburg, Germany

2.3 Automated Approaches That Detect Work
Needs and Facilitate Work Processes

Closer to this goal, significant work has studied workflow automa-
tion approaches for business processes in organizations [32, 46,
68, 73], and trigger-action programming systems where actions
are contextually triggered based on a monitored condition (e.g.,
for online governance [74], context-aware computing [56, 66, 69],
workplaces [7, 10, 55], and more [4, 67]). These approaches encode
data-driven workflows where a sequence of actions is initiated
across disparate systems when data is added, modified, or matches
a set condition. For example, when a worker has too many tasks
assigned to them on a Trello board during a work sprint, a workflow
can message the team over Slack to discuss how to triage tasks at
the start of their planning meeting stored in Google Calendar.

However, providing programming primitives at this level limits
our ability to encode situated work practices. A key challenge is a
difference in abstraction between what workers want to express
about effective work practices and the programming model work-
flow tools use. For example, we may want to say, “when a worker is
overcommitted based on the number of tasks, inform their team at
the next planning meeting.” Instead, we must express the specifics
of how to enact the script to the system (e.g., the worker’s rele-
vant board and tasks, their planning meeting time, and their team’s
communication channel) for each individual worker rather than
the general strategy that applies to all of them. Not only is this
level of encoding removed from how we think about situated work
practices, but it also makes the workflows brittle to changes (e.g.,
a different team manager or planning venue time) since a script
author must manually revise all workflows that reference these
data. Without technology that understands where and with whom
work activities are happening (e.g., a planning or collaboration
venue; teams and their leads), we will continue to struggle with
developing software that lets us express the kinds of engagement
with others that we want workers to have along their work process.

Finally, a general challenge with any trigger-action-based sys-
tem is its philosophy of execution. When the trigger condition
is realized, the desired system behavior is to execute any follow-
up actions assigned to the trigger. However, work processes in
practice–especially for the ill-structured problems found in the
workplace–are not easy to codify due to the day-to-day complexi-
ties and uncertainties of the work [36, 50, 60, 61]. As a result, these
approaches tend to be overly prescriptive in how to resolve work
needs and can fail if systems lack essential tacit knowledge workers
have about their needs [33].

In our work, we consider how to develop workplace systems
that use computational abstractions of an organization’s ways of
working to support situated work. We develop programming con-
structs that provide access to a workplace’s work processes, social
relationships, collaboration structures, and data from its produc-
tivity tools. Through these constructs, we can encode models of
situated work that inform us of when work situations arise and
potential strategies to resolve them along our work processes but
leave the locus of control on how to what strategies to enact to the
workers (rather than automated systems).

3 ORCHESTRATION SCRIPTS
We present Orchestration Scripts, a system that supports situated
work by enacting Situated Scriptswhich encode work situations and
strategies using computational abstractions of an organization’s
ways of working. We first present design goals for this system and
then detail how we realize these goals in its implementation.

3.1 Design Goals
For systems to orchestrate situated activities to resolve work needs,
they must model the work situations and relevant strategies to
practice, and where to attempt them [31]. These activities occur
along an organization’s work processes, across social structures
and collaboration venues, and are supported by various productiv-
ity tools. For example, a team may recognize a planning-related
issue during a work session and bring that into a weekly planning
meeting with their mentor later to address it. This suggests that
modeling these situated activities requires that systems understand
these ways of working. Therefore, our first design goal is to en-
able the encoding of situated strategies using computational
constructs of how work is done in an organization.

Moreover, organizations often have shared practices and tools
across people and teams, but the times and places where practices
are enacted may differ. For example, two project teams follow the
same planning practices where planning-related work situations
and strategies should be raised at planning venues, but these venues
occur with different team leads on different days. This suggests that
scripts modeling general work situations and strategies relevant to
the organization as a whole are useful but must be enacted specif-
ically for each worker’s individual context (i.e., present relevant
planning strategies at their planning session to their team and lead).
Therefore, our second design goal is to allow for the expression
of general situated work practices that become tailored to
different people’s specific situations.

Finally, enacting situated activities requires systems to continu-
ally monitor for work situations to occur and present situated strate-
gies at appropriate places and times (i.e., at specific venues along
the work process). However, the moments when work situations
arise and when situated strategies should be presented are often
different. For instance, a team may want to discuss planning-related
issues during their weekly planning session rather than at other
times during the week. Moreover, these venues occur at different
times for each worker or team in the organization. This suggests
that an engine for supporting situated work needs to track work
situations and enact support strategies at relevant points of
the work process separately for each worker or team.

3.2 Encoding Situated Strategies in Terms of an
Organization’s Ways of Working

To encode programs that support situated work, we introduce Or-
ganizational Objects that provide computational abstractions of
an organization’s ways of working. To create this object, we in-
cluded base-level constructs for work processes, social structures,
venues, and productivity tools. These constructs can be used to gen-
erally model how work is done in an organization and customized
to each specific organization. For example, an Agile workplace’s

CHI ’23, April 23–28, 2023, Hamburg, Germany Kapil Garg, Darren Gergle, & Haoqi Zhang

name start end

Sprint 1

Sprint 2

09-05-2022 09-11-2022

09-12-2022 09-19-2022

Sprints

Processes

name role

Jim

Bob Member

People

Social Structures

Member

Kayla

Paul

Luna

Carlos

Member

Member

Mentor

Mentor

name mentor members

Proj. Hubble

Proj. Webb

Luna Jim, Bob

Carlos Kayla, Paul

Projects

Venues

name kind attendees

Hubble Team
Meeting

Planning
Meeting

Proj. Hubble

Venues

Webb Team
Meeting

Planning
Meeting

Proj. Webb

Hubble Team
Office Hours

Office
Hours

Proj. Hubble

time

Mon.
10:00am

Thu.
03:00pm

Fri.
01:00pm

Tools

social structure ID/channel

#proj-hubble

Messaging Platform

Proj. Hubble

Proj. Webb

Luna

#proj-webb

@Luna

Studio API

Planning Tool
project tasks points

available

Proj. Hubble [collect data,
analyze data, …]

40

Proj. Webb [design
experiment…]

40

points
spent

50

45

IDs/channels cards points
available/spent

Figure 1: The Studio API provides programmatic access to data about an organization’s processes, social structures, venues, and
tools. It does this by storing information about their working processes, social relationships, and venues, and also collecting
traces of traces of data from the organization’s existing tools (e.g., Slack for communication; Trello for planning) that can be
mapped to other information about the workplace (e.g., Trello cards or Slack channels for a project). In this way, the Studio API
brings together all the data that corresponds to an organization’s ways of working into a single space.

Organizational Objects may include sprint cycles for their work pro-
cesses, teams and their leads for social structures, planning-specific
and general office hours venues, and tools for Agile planning (e.g.,
Trello) and asynchronous communication (e.g., Slack) [19, 63]. In
addition, we provide Helper Functions for common computations
on the Organizational Objects, such as presenting a strategy the
morning before a venue. Through these constructs, general situated
work practices tied to an organization’s ways of working can be
expressed to software and surfaced at relevant times.

To operationalize Organizational Objects, we created a Studio
API that provides a queryable instrumentation of the organization’s
ways of working; see Figure 1. It does this by collecting informa-
tion about the organization’s work processes, social relationships
between members, collaboration venues, and traces of data from
the organization’s existing tools (e.g., Trello for planning purposes;

Slack for asynchronous communication) into a single space. More-
over, these data can be mapped to each other (e.g., Trello board and
Slack channel for a team), allowing us to query for different aspects
of the relationships between people, their venues, and tools, such
as when a project lead has their next office hours. This allows the
general practices described using the Organizational Objects from
earlier to become executable in organizations, allowing systems to
coordinate situated work practices.

3.3 Expressing General Strategies That Become
Tailored for Specific People

Using the Organizational Objects, Situated Scripts can be composed
to externalize general work situations when support is needed and
suggested situated strategies to resolve them. A Situated Script is
defined by an object containing:

Orchestration Scripts CHI ’23, April 23–28, 2023, Hamburg, Germany

function () {
 // monitor script for all projects in the organization
 return projects;
};

applicable_set:

function () {
 // at the end of the sprint,
 // check to see if the team has overworked
 let isEndOfSprint = currentlyIs(process.sprint.endDay);

 // get the amount of points spent and points available
 let pointsSpent = project.tools.planningLog.totalPoints.spent;
 let pointsAvailable =
 project.tools.planningLog.totalPoints.available;

 // check if team overworked by 110%
 let didOverwork = pointsSpent >= 1.1 * pointsAvailable;

 // return true if at the end of a sprint, the team ended up
 // overworking during the prior sprint
 return isEndOfSprint && didOverwork;
};

work_situation_detector:

situated_strategies: [

]

function () {
 // compose message with context from triggered script
 let pointsSpent = project.tools.planningLog.totalPoints.spent;
 let pointsAvailable = project.tools.planningLog.totalPoints.available;

 let message = `It looks like ${ project.members } significantly
 overworked last week (${ pointsSpent } points spent out
 of ${ pointsAvailable } points available).

 During your Planning Meeting, try to reflect with them on
 why they overworked and strategies they can try next time.
 These include:`;

 // suggested strategies for how to not overwork
 let strategies = [
 "- Reaching out for help when you're spending too long on tasks",
 "- Scoping down a story mid-week if you're running out of time
 (e.g., implement one tech slice, instead of 2)",
 "- Defer stories you can't complete to the next sprint instead
 of overworking",
];

 // present strategies at the start of a Planning Meeting
 let opportunity = function () {
 return startOfVenue(
 venues.find(where("kind", "PlanningMeeting"))
);
 };

 // deliver strategy to mentor in a direct message
 return messagePeople({
 message: message + "\n" + strategies.join("\n"),
 people: [project.mentor],
 opportunity: opportunity
 },
 });
};

Jim and Bob meet with
Luna Monday Morning

Slack (Monday 10:00 AM)
@Luna: It looks like Jim and Bob
significantly overworked last week (50
points spent out of 40 points available).

1

2

3

4a 4b

Kayla and Paul meet with
Carlos Thursday Afternoon

Slack (Thursday 3:00 PM)
@Carlos: It looks like Kayla and Paul
significantly overworked last week (45
points spent out of 40 points available).

data from the Studio API

Figure 2: Situated Scripts externalize work situations and relevant situated strategies using Organizational Objects and Helper
Functions (highlighted in orange and magenta, respectively). The above script monitors for situations where any team (1)
has overworked on the previous sprint (2). If so, the script delivers a situated strategy to the mentor that suggests planning
strategies to discuss with their students at the start of the next Planning Meeting (3). When executed using the Studio API, we
see how one team’s mentor receives a message Monday morning (4a), whereas the other receives it Thursday afternoon (4b).

(1) an applicable_set that defines a list of people whom a
script should be monitored for;

(2) a boolean work_situation_detector to be monitored for
that may reveal an unmet need or ineffective practice; and

(3) a list of situated_strategies to enact, with each returning
an object that includes whom to send the strategy to (e.g.,
a team or a person), a message with possible strategies to
discuss, and the venue when it should be presented.

Unlike automated systems that enact follow-up interactions once
the work_situation_detector is met, a key idea behind Situated
Scripts is to surface relevant strategies to workers but ultimately
let them decide whether to enact those strategies. This allows for
situated support to be provided at relevant venues along the work

process while still being flexible to the uncertainty in work needs
and constraints present in ill-structured work.

As an illustrative example, consider a script that helps teams
form and enact feasible work plans; see Figure 2. For all teams
(1), this script encodes a work_situation_detector that checks
if significantly more time was spent on the prior sprint than al-
located, indicating that the time needed for the original plan was
underestimated (2). When detected, the team’s mentor is informed
of this situation at the start of their Planning Meeting, along with
some strategies they can discuss with their team (3). When exe-
cuted using data from the Studio API, this script triggers differently
for the team of Jim and Bob, who have their planning meeting on
Mondays (4a), versus for Kayla and Paul, who have their planning
meeting on Thursday (4b). This shows how we can express general

CHI ’23, April 23–28, 2023, Hamburg, Germany Kapil Garg, Darren Gergle, & Haoqi Zhang

work strategies using the Organizational Objects (e.g., connect with
your project mentor at the next planning session before the sprint
begins) but enacted in specific situations for different people using
the Studio API (e.g., Jim and Bob meet with Luna Monday morning).

3.4 Enacting Situated Strategies at Relevant
Points of the Work Process

To execute Situated Scripts, we designed theOrchestration Execution
Engine that allows us to instantiate situated work practices for an
arbitrary number of people and teams in an organization at different
times; see Figure 3. It does this by maintaining two separate threads
that simultaneously monitor for work situations to arise and for
opportunities to present situated strategies. Monitoring for work
situations begins by computing the applicable_set from a situ-
ated script (1), and then checking the work_situation_detector
for each of the targets of the applicable_set using data from the
Studio API (2). If any evaluates to true, a new ActiveSituation
document is created (3), and monitoring for the rest of the targets
and scripts continues. Separately, monitoring for opportunities to
present situated_strategies begins by checking for the encoded
strategies for each ActiveSituation using data from the Studio
API (4). If the opportunity for any of these has arrived (5), the en-
gine sends the encoded strategy to the relevant social structure (6).
By monitoring these scripts and their executions, we can let the
strategies unfold and be enacted in different venues where they
are appropriate, rather than immediately when a work situation is
detected, across people in the organization.

3.5 Technical Implementation
Orchestration Scripts is implemented using Node.js, Express.js,
and MongoDB. Situated Scripts are written by defining an object
with an applicable_set, a work_situation_detector, and a list
of situated_strategies using the Organizational Objects and
Helper Functions. The Orchestration Engine stores these scripts and
any ActiveSituations generated from the monitoring process in
a MongoDB database. Every 15 minutes, it checks to see if new
work situations have emerged or if it is time to present a situated
strategy for an ActiveSituation. Evaluation and presentation of
the strategies are done using the Studio API, which has access to
data about the organization and ways to send messages through
communication tools (e.g., Slack). Our current implementation of
the Studio API integrates with APIs provided by Google Drive [3]
and Slack [6]; other workplace tools and their APIs can be similarly
integrated (e.g., Trello [9]; Github [2]). Strategies from triggered
scripts are currently sent to people using Slack; in the discussion,
we expand on alternative methods for surfacing situated strategies
that future work may explore.

4 CASE STUDY: HOW ORCHESTRATION
SCRIPTS CAN SUPPORT SITUATEDWORK

To demonstrate how Orchestration Scripts can support situated
work, we present an example of a situated work practice solicited
from an academic research community detailed below. Through
this example, we show how our approach allows for monitoring
work situations across an organization and strategizing how to
resolve them, while still being flexible to people’s changing needs.

4.1 Research Setting
We situate our study within the Design, Technology, and Research
(DTR)1 academic research community at Northwestern University,
which uses the Agile Research Studios (ARS) model to support stu-
dents learning to independently lead research projects [75]. Work in
DTR follows an Agile process [19, 63] where students plan research
sprints that progress their research understanding each week. Dur-
ing this process, students are supported by venues where they can
access peers and mentors from across the organization for help and
coaching on their work needs (e.g., related to planning, feedback
on research activities, prototyping or testing, and more), and work
and collaboration tools that facilitate those interactions. Working
effectively in this organization involves integrating these situated
support opportunities into one’s working process to progress work.
In these ways, the DTR community and the ARS model resemble
the kinds of socio-technical work ecosystems we want to develop
systems for since they offer multiple support opportunities along
established work processes in an organization.

In what follows, we show Orchestration Scripts can encode a
strategy for helping students form scoped research plans and en-
acting those places across DTR’s work ecosystem.

4.2 Encoding General Programs to Support
Situated Work

Orchestration Scripts allow for encoding programs to support situ-
ated work in a more natural and less brittle manner than workflow
tools due to the Organizational Object constructs our system pro-
vides. In Figure 4, we show a strategy where mentors want to know
if any of their undergraduate students are overcommitted on their
research plans, suggesting students strategies for re-scoping plans
during the planning meeting if so. On the left, we show how Organi-
zational Objects allow for a general representation of this strategy
to be encoded while letting the author stay at a level of abstraction
closer to how they think about situated work practices. In contrast,
the right shows how individual workflows in a tool like Zapier must
be authored for each team, along with hard-coded data about their
tools, venues, and social relationships. Not only does this require a
worker to focus on the details of the script implementation rather
than the strategy (e.g, specific time for a venue versus saying the
desired venue), any changes to these values (e.g., a planning venue
gets moved) means editing all scripts that use those values, not just
the one example shown here. Moreover, changes to the script, like
adding new strategies or resources, means that all script instances
would need to be revised. With our system, a worker only needs
to update data in the Studio API, which automatically propagates
to all active scripts since the Organizational Objects are evaluated
using that API. Similarly, a revision to a situated script means that
everyone the script is monitored for now receives the revised script.
In this way, our use of abstractions of an organization’s ways of
working allows Situated Scripts to bemore expressive, maintainable,
and extensible than existing workflow systems.

Orchestration Scripts CHI ’23, April 23–28, 2023, Hamburg, Germany

{
 applicable_set:
 function () {...},
 work_situation_detector:
 function () {...},
 situated_strategies: [
 function () {...},
 function () {...},
 ...
],
}

Situated Script

Compute
Applicable Set

Project
Hubble

Evaluate
Work Situation Detector

for each
project in
applicable
set

Active
Situations

true
Create

Situation

1 2

3

Monitoring Thread for Situated Strategies

4

Get Situated StrategiesWait Until Opportunity

5

for each
strategy

Deliver
Strategy

6

Monitoring Thread for Work Situations

applicable_set

work_situation_detector

Project
Webb Project

Hubble

Studio API

Active
Situation

situated_strategy

situated_strategy

true

situated_strategy

Project
Hubble

Figure 3: The Orchestration Execution Engine allows for real-time monitoring of work situations and opportunities to present
situated strategies as encoded in a Situated Script. Using data from the Studio API, the monitoring thread for work situations
(top) continually computes who the script applies to using the applicable_set (1) and checks if work situations encoded by
the work_situation_detector have occurred for each project (2), creating an ActiveSituation if so (3). Simultaneously, the
monitoring thread for situated strategies (bottom) checks each situated_strategy for an ActiveSituation (4) to see if an
opportunity to present strategies for a project has arrived (5), sending it to relevant project or person if so (6).

4.3 Tailoring General Strategies to Workers’
Specific Social Relationships and Venues

Even further, these constructs allow us to encode general strate-
gies that apply to different people and teams, but become tailored
based on their relationships with others and their specific collabora-
tion venues. In Figure 5, we extend the example from the previous
section to have conditional strategies that are delivered based on
which team the script was triggered for. The mentors are provided
with general strategies for all teams, but recommended supporting
teams with only one person to a greater extent since they do not
have a partner to re-plan with. Furthermore, when an individual
has an onboarding mentor, this strategy is also suggested to the
mentor since their student could get support on replanning from

1https://dtr.northwestern.edu/

them. Despite being specific to each project team when enacted,
the conditional strategies can be expressed in a general manner
with ease using our system, with the engine taking responsibility
for presenting the relevant information. In this way, Orchestration
Scripts can allow for even richer, general models of working and
strategies to be encoded that are applicable across the organization
but may execute in very different ways for each team.

4.4 Flexibly Supporting Work Activities Across
a Work Ecosystem

Finally, Orchestration Scripts allows us to create spaces to discuss
emerging work situations and some relevant strategies to attempt,
but leaves the decision of how to address issues to the workers. Even
though the higher-level work process might be well-structured, the

CHI ’23, April 23–28, 2023, Hamburg, Germany Kapil Garg, Darren Gergle, & Haoqi Zhang

function () {
 return projects.filter(whereAll("students", "role", "Undergrad"));
};

applicable_set:

function () {
 / get the amount of points spent and points available
 let pointsPlanned = project.tools.planningTool.totalPoints.planned;
 let pointsAvailable = project.tools.planningTool.totalPoints.available;

 // return true if team is overcommitted by 125%
 let isOvercommitted = pointsPlanned >= 1.25 * pointsAvailable;
 return isOvercommitted;
};

work_situation_detector:

Situated Script Using
Organizational Objects and Helper Functions

situated_strategies: [

]

Workflow Automation Tool (e.g., Zapier)
Without Organizational Objects

When John’s Trello board is updated

If points planned > 1.25 * points available

If it’s currently Tuesday at 3:00pm

Trigger

Filter

Filter

Action Send a message to John’s mentor Julie on Slack

Workflow for John

…for each project in the organization…

When Jane and Jill’s Trello board is updated

If points planned > 1.25 * points available

If it’s currently Thursday at 10:00am

Trigger

Filter

Filter

Action Send a message to Jane and Jill’s mentor Paul on Slack

Workflow for Jane and Jill

When Jack’s Trello board is updated

If points planned > 1.25 * points available

If it’s currently Monday at 4:00pm

Trigger

Filter

Filter

Action Send a message to Jack’s mentor Julie on Slack

Workflow for Jack

function () {
 // compose message with context from triggered script
 let pointsPlanned = project.tools.planningTool.totalPoints.planned;
 let pointsAvailable = project.tools.planningTool.totalPoints.available;

 let message = `It looks like ${ project.members } are overcommitted
 on their plans for the week (${ pointsPlanned } points planned out
 of ${ pointsAvailable } points available).

 During your Planning Meeting with them, try to discuss ways to
 scope their plans. These includes:`;

 // suggested strategies for scoping plans
 let strategies = [
 "- Slicing down on deliverables (e.g., 1 user test instead of 2)",
 "- Defer some stories and deliverables to the next sprint",
 "- Get help on things taking too long",
];

 // present strategies at the start of a Planning Meeting
 let opportunity = function () {
 return startOfVenue(
 venues.find(where("kind", "PlanningMeeting"))
);
 };

 // deliver strategy to project’s mentor
 return messagePeople({
 message: message + "\n" + strategies.join("\n"),
 people: [project.mentor],
 opportunity: opportunity
 },
 });
};

Figure 4: Organizational Objects allow people to express general Situated Scripts that are closer in abstraction to how they think
about situated work already, and are less brittle than workflow systems since they are encoded using Organizational Objects
that refer to organization-specific data in a general manner versus individual workflows with hardcoded data for each project.

day-to-day work remains ill-structured, often causing unexpected
needs to arise as progress is made. In Figure 6, we show how a
student’s mentor was notified that they were overcommitted for
the week since they were finishing up a prototype for an upcoming
study. While the mentor and system suggested that the student
come to Office Hours to pair program (based on their prior inter-
action and the student’s planned deliverables), the student raised
a new issue about not being able to recruit users for their study
that he and the mentor worked on instead. By leaving the locus of
control on how to use support opportunities surface by the system
to the people, Orchestration Scripts can flexibly provide situated
support that fully automated approaches would prohibit.

5 FIELD STUDY: ORCHESTRATION SCRIPTS
IN A RESEARCH LEARNING COMMUNITY

To understand how Orchestration Scripts support situated work
within a work ecosystem, we ran a 1-week pilot study in a research

learning community where we deployed situated scripts to orches-
trate wrap-up activities for the term; see Table 1 for strategies. We
asked: how do situated orchestration scripts support people in enacting
situated work practices across a socio-technical ecosystem?

5.1 Participants
We situated our study in the DTR academic research community
detailed in Section 4.1, from which we recruited 17 people during
their Spring 2022 academic term. 12 people were undergraduate
or masters students, 4 were Ph.D. students, and 1 was a faculty
member. Undergraduate and masters students received situated
strategies to support them as students when work situations were
detected, while Ph.D. students received these as well as ones to
discuss with the students they mentored; the faculty member only
received strategies for the students they mentored. For privacy, we
gave all participants pseudonyms. Two of the paper’s authors are a
faculty member and a Ph.D. student in the community.

Orchestration Scripts CHI ’23, April 23–28, 2023, Hamburg, Germany

situated_strategies: [

]

function () {
 /**
 * Message composition omitted for brevity (see Figure 4).
 */

 // suggested strategies for scoping plans, tailored based on project team it triggered for
 let strategies = [
 // general strategies
 "- Discuss how to slice down on deliverables and defer stories",
 `- Point students to planning guide:
 ${ project.tools.resources.find(where("name", "Sprint Planning Guide")) }`,

 // teammates: work with each other to re-plan
 (project.members.length > 1) ? "- Have team re-plan sprint and send to you afterwards" : "",

 // individual: work through an example of re-planning with them
 (project.members.length === 1) ? "- Work through some of the re-planning with student" : "",

 // individual w/onboarding mentor: suggest they reach out to onboarding mentor
 (project.members.length === 1 && project.members[0].onboardingMentor !== "") ?
 `- Suggest student meet with onboarding mentor,
 ${ project.members[0].onboardingMentor }, if they need additional help` : "",
];

 /**
 * Script opportunity and delivery omitted for brevity (see Figure 4).
 */
};

For John’s Mentor (Tuesday at 3:00pm)
@Julie: Here are some strategies that might be helpful to
discuss:
- Discuss how to slice down on deliverables and defer stories
- Point students to planning guide: Link to Planning Guide
- Work through some of the re-planning with student

For Jane and Jill’s Mentor (Thursday at 10:00am)
@Paul: Here are some strategies that might be helpful to
discuss:
- Discuss how to slice down on deliverables and defer stories
- Point students to planning guide: Link to Planning Guide
- Have team re-plan sprint and send to you afterwards

For Jack’s Mentor (Monday at 4:00pm)
@Julie: Here are some strategies that might be helpful to
discuss:
- Discuss how to slice down on deliverables and defer stories
- Point students to planning guide: Link to Planning Guide
- Work through some of the re-planning with student
- Suggest student meet with onboarding mentor, Jake, if
they need additional help

Figure 5: Situated Scripts can encode strategies that are sent conditionally, depending on who the script was triggered for. For
example, this script suggests general replanning strategies to the mentor for all teams, but also specific strategies if the team
has multiple people, if they are a single person, and if they are a new student with an onboarding mentor.

Orchestration Bot (Tuesday at 3:00pm)
@Julie: John is overcommitted on their plans for the week.

Here are some strategies that could discuss:
- Discuss how to slice down on deliverables and defer stories
- Point students to planning guide: Link to Planning Guide
- Work through some of the re-planning with student

Office HoursPlanning Meeting

Orchestration Bot (Thursday at 11:00am)
@John: We have office hours today! If you’re attending, what
would be helpful to work on?

As a reminder, here are your planned deliverables:
- Finish implementing prototype
- Test prototype with peers before study

Need help with coding?

Julie
(mentor) Actually, I’m ok on that, but I’m having

trouble recruiting users for the study.
John
(student)Good to hear about the tech! Let’s talk about

recruiting strategies instead.

Anything you can re-scope?

Julie
(mentor) I have to finish the prototype development

before next week’s study.
John
(student)Work on the most critical features and come

by Office Hours if you need help.

Figure 6: While Orchestration Scripts may suggest strategies based on its understanding of support opportunities and students’
work needs, it leaves the decision of what and when to work on to the students and mentors. This provides them flexibility to
handle new needs as they arise during interactions across the ecosystem.

5.2 Procedure
We deployed a variety of Situated Scripts to the DTR community
modeled on existing effective work practices that students are
encouraged to practice, such as forming feasible research plans
and using support opportunities across the ecosystem to progress
work; Table 1 includes summaries of these scripts. We instructed
users to work as normal, interacting with the strategies surfaced by
Orchestration Scripts over Slack when they thought it was helpful.
Following the deployment, users participated in a 15-45 minutes

long semi-structured interview, with the length depending on how
many strategies were presented. During interviews, users were
shown the strategies Orchestration Scripts presented and asked
follow-up questions based on a semi-structured interview guide. For
students, we asked if and how the presented strategies influenced
their work practices, such as how they may have replanned, shared
artifacts, or discussed strategies with their mentor. For mentors, we
asked similar questions but focused on how the presented strategies
influenced their mentoring with their students. Finally, we closed

CHI ’23, April 23–28, 2023, Hamburg, Germany Kapil Garg, Darren Gergle, & Haoqi Zhang

the interview with general questions about what users liked and
disliked about the strategy prompts they had received.

Before the study, all users consented to participate and allowed
their data to be used anonymously for research purposes. Before in-
terviews, participants consented to audio, video, and screen record-
ings; audio recordingswere transcribed for analysis. The lead author
conducted all interviews over Zoom video calls.

5.3 Measures and Analysis
We used a thematic analysis approach [16] to analyze our interview
transcripts. Our goal when coding the data was to identify how
the Orchestration Scripts informed users about the work situations
they were in and the strategies they could attempt. We did this by
coding for moments where users said they became aware of these
situations and how the surfaced strategies influenced their work
practices. Once all data was coded, we reviewed the sub-themes
generated from the analysis by identifying instances where our
data supported or contradicted them. These sub-themes were then
iteratively refined by splitting or combining them until they were
distinct. We then reviewed all the themes and finalized the set
we present below. The lead author conducted the coding of the
interview transcripts and the generation and review of the initial
themes; all authors collectively refined and finalized the themes.

5.4 Results
Orchestration Scripts presented 36 situated scripts to students and
mentors during the study; see Table 1. Most strategies (22 out of
36) were delivered to project channels where students and mentors
could see them; the rest were direct messages to mentors (12 out of
36) or to a channel for Ph.D. students and their faculty mentor (2 of
36). Strategies were delivered at venues for planning, getting help
during office hours, and community-wide meetings, along with 1
presented mid-week. Most strategies were presented before the
start of these venues so students could prepare for them–such as by
sharing artifacts or progress–or to make mentors aware of potential
strategies to discuss for a work situation.

In the rest of this section, we discuss how Orchestration Scripts
supported situated work by: (1) monitoring for work situations that
often get overlooked; (2) helping people strategize how to resolve
work situations via suggested strategies; and (3) enacting check-ins
between students and mentors across venues throughout the week.

5.4.1 Promoting Awareness of Emergent Work Situations. Orches-
tration Scripts informed mentors about situations in which their
students were working ineffectively and raised those issues for
discussion at appropriate venues. In one example, mentors were
informed that their student’s research plans were infeasible for
the available time; see Figure 7. As Brady explained, it became an
agenda item to talk with his students about: “[Going into planning
meeting], I was almost ready as a talking point like, ‘hey it looks
like you’re over points,’ and that was a nice thing to point to already
have.” His student Melissa recalled how this led to them discussing
strategies for rescoping their paper deliverable so that it and their
user testing goals could both be accomplished: “we were planning
out how we can get the end-of-term deliverable in faster, looking at
different parts of the paper that we need to update [based on a prior
draft] instead of writing a new thing.”

Before using our tool, mentors primarily monitored for ineffec-
tive practices–like being overcommitted on research plans or how
widely students seek help from peers–by manually polling for any
relevant data. In reality, mentors often forgot or chose not to check
these things, focusing instead on issues they were already aware of
and thought were important to discuss. However, when brought
into focus by Orchestration Scripts, mentors, like Irene, made an
effort to do so: “I would [talk about planning] with new-ish students,
so I didn’t have the intention to do it with Amanda (her senior student),
but when I saw that she was overcommitted, then I was like, ‘Okay, we
should actually talk about this, and like how many hours it’s going
to take to do each thing.”’ This discussion helped Amanda shift her
goal from having a complete draft of findings and discussion for
her latest study towards a more feasible outline that showed her
new research understanding but involved substantially less work.
In other words, these scripts provided an expanded awareness of
work situations, particularly those that mentors may overlook due
to heuristics they apply and that students may not bring up on their
own (e.g., my experienced student knows how to plan within time
constraints and will ask if they need help).

Orchestration Scripts also promoted timely discussion of “sea-
sonal” situations that people have peripheral awareness of but only
attend to when they get closer. For example, Lawrence had an up-
coming Community-Wide presentation the following week, where
he would get feedback from the entire community on his research.
Lawrence shared that the prompt was, “a good reminder to get the
ball rolling on planning his [Community-Wide presentation],” and
to, “potentially bring it up to Clark (his mentor), whether it be in [the
planning meeting] or offline.” Clark also found prompt useful since
the presentation is, “one of the few times that [students] can get a
ton of feedback very quickly.” Another example was for students
preparing end-of-term deliverables during the final week of the
academic term. Crystal found it helpful to be prompted the day
before her last planning meeting of the term since she, “usually
preps for [planning] meetings like the day before. So it was nice to
have [the script] there to think about while I was planning what I
was going to say and talk about.” She also liked seeing what the
deliverables involved, saying: “[it was] nice to just make sure if I had
any questions about anything, especially with things like the video or
the write-up, that I could ask about that in [planning meeting] as well.”
In this way, we see how Orchestration Scripts can have an aware-
ness of situations–whether it be emergent ones based on people’s
working patterns or upcoming events–bubble up for discussion,
but only for the things that are currently relevant to discuss and at
the times where discussion is helpful (i.e., at a venue).

Finally, Orchestration Scripts surfaced opportune moments at
venues that could help progress one’s work; see Figure 8. While
routine venues are generally known to people, having the sys-
tem suggest them as support opportunities for this week’s work
needs prompted helpful discussions that would have otherwise
been missed. For example, Amanda shared how the strategy for an
upcoming Office Hour helped her reflect on what to work on with
her mentor: “I liked hearing more specifically about what Irene (her
mentor) wanted me to practice in [office hours] before I went in, so I
had more of a focus.” Similarly, Lawrence found it helpful to think
about how he could work on his research with coaching from men-
tors and seek help from peers during a Community-Wide meeting:

Orchestration Scripts CHI ’23, April 23–28, 2023, Hamburg, Germany

Goal of Situated Script Applicable Set Work Situation Detector Suggested Situated Strategy Strategy Sent To Times Sent
Planning end-of-term deliverables
that show research understanding

All students 1 day before the final
Planning Meeting

Planning end-of-term deliverables
before the final Planning Meeting

Project team 14

30 minutes before the final
Planning Meeting

Discuss end-of-term deliverable
plans during the final
Planning Meeting

Mentor direct
message

6

Using support venues throughout
the week to progress work

Undergrad and
Masters Students

Morning of a Planning
Meeting

Share deliverables and research
progress before today’s
Planning Meeting

Project team 2

End of a Planning Meeting Share takeaways from today’s
Planning Meeting discussion

Project team 2

Morning of a Office Hours Share plans for what you want to
discuss at Office Hours today

Project team 1

Morning of the
Community-Wide Meeting

Share what you will work on
during today’s Community-Wide
Meeting

Project team 2

Students form feasible plans
(i.e., not overcommitted on plans)

Undergrad and
Masters Students

Start of a Planning Meeting
and project 110% of points
committed than available

Scoping research sprint plans to be
within time constraints

Mentor direct
message

3

Students know project risks and
next steps (i.e., not under-committed
on plans)

Undergrad and
Masters Students

Start of a Planning Meeting
and project is 90% of points
committed than available

Strategies for discussing
planning-related obstacles

Mentor direct
message

2

Plan an upcoming Community-Wide
Presentation

Undergrad and
Masters Students

1 week before a project’s
Community-Wide Presentation
at the Community-Wide
Meeting

Begin planning Community-Wide
Presentation

Project Team 1

Reminder to discuss
Community-Wide Presentation
plans at Planning Meeting

Mentor direct
message

1

Support Ph.D. students in progressing
research throughout the week

Ph.D. students Afternoon 1 day before a
Planning Meeting

Share deliverables and research
progress before tomorrow’s
Planning Meeting

Ph.D. students
channel

1

Mid-week (2 days before
a Planning Meeting)

Mid-week check-in on research
progress

Ph.D. students
channel

1

Total 36
Table 1: Situated Strategies were delivered 36 times during the 1-week pilot study by the Orchestration Scripts system across
venues for planning, getting help at office hours, and community-wide interactions, along with 1 being presented mid-week.

@Brady project name (Pedro and Melissa)
Planning Log

Planning Meeting
^

information referring to individuals, projects, groups, venues, and tools has been anonymized
blue text indicates a link to a tool in the message

Figure 7: Mentors were informed when their students had made infeasible research plans–a planning-related issue that they
normally do not remember to discuss or check–when their students had planned more hours for an upcoming research sprint
than they were allocated, and suggestions for how to help the students re-scope.

“I thought about what I wanted to do for [the peer help session]...I
definitely tried to look at the [research activity scaffolds] spreadsheet
[before the Community-Wide meeting], working out which one would

fit and what I wanted to do.” This shows how people benefit from
being aware of even routine venues so they can strategize how
those venues can help progress their work.

CHI ’23, April 23–28, 2023, Hamburg, Germany Kapil Garg, Darren Gergle, & Haoqi Zhang

information referring to individuals, projects, groups, venues, and tools has been anonymized
blue text indicates a link to a tool in the message

Irene (mentor)

Amanda

@Irene

@Amanda

Planning Meeting
^

Office Hours

Irene (mentor)

Office Hours

Community-Wide Meeting

Figure 8: Students and mentors were prompted when support opportunities in the ecosystem were approaching, creating a
space for them to strategize how to use the opportunities if students were attending,

5.4.2 Suggesting Relevant Strategies for Work Needs at Appropri-
ate Times. Orchestration Scripts surfaced situated strategies for
detected work situations at opportune times to discuss them. Men-
tors found that the suggested strategies provided a useful scaffold
when discussing the situation with their student. With the earlier
sprint re-scoping example (see Figure 7), mentor Brady shared how
he, “really liked [how the system showed] the different ways [his stu-
dents] can re-scope their sprint because they were all good strategies
[for re-scoping research plans].” As another example for deliverable
planning (see Figure 9), Brady shared how the suggested strategies
in the script became agenda items to discuss during the meeting,
stating that “I’ve been a mentor for a while, but it is quite helpful to
have the explicit intentions for [discussing end-of-term deliverables].”
Robbie, a novice mentor, found the strategies targeted to the current
situation, like the final planning meeting with students, particularly
useful, stating: “If this advice had been in some generic document,
it wouldn’t be as helpful as getting exactly the relevant thing right
before that particular [planning] meeting.” Students similarly found
the suggested strategies useful. Ellen shared that seeing the strate-
gies helped her plan how she would accomplish her research work
and deliverables for the end of the term: “I kind of structured my
Planning Log for the last week around what I need to get done for the
end-of-term checklist.” In this way, Orchestration Scripts supported
mentors and students in recognizing what strategies they could
discuss or attempt at the relevant times and places.

5.4.3 Orchestrating Interactions Throughout an Ecosystem. Orches-
tration Scripts helped students adopt effective strategies to work
towards their goals by providing a space for them and mentors to
discuss work needs across ecosystem interactions during the week.
For example, recall Amanda and her mentor Irene’s interaction
before their Office Hours; see Figure 8. Irene shared how this inter-
action helped her push Amanda to practice independent thinking

rather than leaning on Irene to provide direction: “I had a hunch
that she wanted to check in because she was short on time, and this
is the first time she can think about the structure [of the draft]. But
rather than think about it with me, I’d rather she start thinking about
it herself. So, I was glad we had that conversation because I think it
reinforces this tone of trying [to get her] to do things independently.”

As another example, Orchestration Scripts enabled “course cor-
recting” interactions between Steven, the faculty member, and his
Ph.D. students when they felt stuck; see Figure 10. For example,
Brady reflected on the feedback he got from his mid-week up-
date, sharing how it helped him rethink the scope of his goals and
progress his deliverables: “...it gave me a way to think about the
user study [that I was unsure about]. I was confused about whether
that was a case study versus a user study, and this showed me that I
could have a way to write a study that’s pretty clear [regardless of
the type].” From Steven’s perspective, this interaction was helpful
because it created a check-in opportunity with Brady before the
next planning meeting, allowing him to progress more effectively
towards his goals: “[Brady] was able to share how they didn’t think
there was a path forward and they were starting to like taking steps
backward. And then I was basically like, couldn’t you just do this and
this? So it was me kind of holding them to a path or showing them a
little bit more of a path which they probably had, but in their fear they
couldn’t see.” By facilitating check-ins across support opportunities
in the ecosystem, practices discussed at earlier meetings can be
re-emphasized at future working sessions people have, allowing
for better practices to build up over time. In this way, we see how
orchestration scripts can provide a sort of “continuity” of discus-
sion that goes beyond the venues they originally happened in and
potentially much further into the future.

Orchestration Scripts CHI ’23, April 23–28, 2023, Hamburg, Germany

@Ellen Planning Meeting of the term

end-of-termterm

self-reflection tool (Ellen’s Self-Reflection Tool)

Ellen’s End-of-Term Checklist

research log (Ellen’s Research Log)

term

@Brady Planning Meeting of the term it

end-of-term

term

research understanding has term

information referring to individuals, projects, groups, venues, and tools has been anonymized
blue text indicates a link to a tool in the message

Figure 9: Suggested strategies for preparing end-of-term deliverables as show to a student (top) so they can account for them in
their planning the day before their final Planning Meeting, and to a mentor (bottom) shortly before the Planning Meeting so
they are aware of strategies to discuss during the meeting.

6 DISCUSSION AND FUTUREWORK
In summary, we demonstrate howOrchestration Scripts can support
situated work by providing people with in-the-moment awareness
of work situations that they may overlook, the appropriate strate-
gies for work needs in situations where they can attempt or discuss
them, and support for adopting effective work practices that extend
across interactions in the ecosystem. We now revisit Orchestra-
tion Script’s design elements and discuss how they may inform the
design of future systems that support situated work.

6.1 Providing Programming Abstractions for an
Organization’s Ways of Working

Programming abstractions for an organization’s ways of working
allows us to tie effective practices to work situations along an
established work process. Through our case study, we showed how
Organizational Objects could model situated work practices that
generalize across people and projects in an organization. Moreover,
these general scripts can easily embed conditional strategies using
our programming constructs, providing people and teams with
tailored support at appropriate times. Not only are these scripts less
brittle than existing workflow automation approaches to changes
in people’s relationships with each other or when venues occur,
but also more closely resemble how we think about and discuss
situated work practices in the workplace.

While the relationships captured by Organizational Objects are
already useful for modeling situated work practices, they could be
extended with additional relational ideas on where and with whom
strategies should be attempted. When work needs arise, multiple
venues can sometimes be appropriate to resolve them, and the best

strategy is to attend the next venue that can provide support. For
example, a programmer needing debugging support for ReactJS
could go to a team lead’s 1-1 venue or a pair programming session
with a peer, whichever comes first and has expertise in ReactJS.
Another extension could be adding constructs that sit at even higher
levels of abstraction than what we provide. For example, instead
of having to check data for how many people are on a project to
determine if the project has teammates that can support each other
(like in Figure 5), we could include a hasTeammates construct that
is more natural and expressive for script writers to use to encode the
same idea [49]. In this way, Organizational Objects can be expanded
in the future to capture even more of the relational knowledge that
workers already apply when working (e.g., attending the “next”
relevant support opportunity; whether a person has a teammate
or onboarding mentor; expertise of others [13, 45]), allowing for
richer strategies based on these constructs to be encoded.

Organizational Objects are also helpful for work activities be-
yond supporting situated work. Because they capture people’s re-
lationships with each other (e.g., a person’s mentor) and venues
in an organization (e.g., their planning meeting), any tasks that
are also relational in this way may benefit from using Organiza-
tional Objects. For example, this could be valuable for a human
resources department doing quarterly performance reviews where
each worker meets with their managers to discuss their growth and
contributions; or to an administrator in an academic department
for creating template emails for general tasks that would be routed
to the appropriate people, such as confirming a student’s funding
source with their advisor each term [39, 51]. In short, having our

CHI ’23, April 23–28, 2023, Hamburg, Germany Kapil Garg, Darren Gergle, & Haoqi Zhang

Brady

anonymized url
anonymized url

project name

project name

project name
project name

project name

project name and project name

Steven (faculty)

@Brady:

project name:
project information

project name project information
project

info.

project information

project name, project name, and project name

information referring to individuals, projects, groups, venues, and tools has been anonymized
blue text indicates a link to a tool in the message

Figure 10: Orchestration Scripts provided touchpoints between students and mentors to check in on work progress throughout
the week and created discussion space on how to course-correct when students were working ineffectively towards their goals.

constructs in future software may allow for various systems that
benefit from relational knowledge in the workplace to be created.

6.2 Authoring Situated Scripts to Support
Situated Work Practices

Situated Scripts enacted by Orchestration Scripts helped people
practice effective situated work practices. Users in our field study
found that having these strategies delivered at venues along their
work process helped them realize effective ways of working and
coaching at opportune moments. Because these strategies were
suggested to users (rather than an automatically enacted work-
flow), students and mentors could choose to use the strategies they
felt were relevant. In short, our approach provides the necessary
flexibility for ill-structured work, while still surfacing the neces-
sary context (i.e., work situation and strategies) to workers at the
opportune times to support situated work practices.

More broadly, the usefulness of Situated Scripts likely depends
on the kinds of situations raised and peoples’ familiarity with the
suggested strategies. While we would expect scripts that surface
emergent situations that are easy to miss but straightforward to

detect to be the most valuable (e.g., from our study, when stu-
dents were overcommitted on research plans), scripts surfacing
routine collaboration opportunities were well-liked for the discus-
sion space they created. Similarly, while those less familiar with
effective strategies benefited the most from our system’s prompts,
more experienced mentors still found value in being reminded of
strategies to discuss with their students. Put another way, support-
ing situated work ultimately means that everyone–mentors and
students (or managers and employees)–know what work situations
they are in and the strategies they can use. As long as Situated
Scripts continue to provide this awareness, we argue that they will
be helpful for many use cases and experience levels.

When encoding Situated Scripts, we expect most scripts to be
written based on authors’ prior experience with situated work prac-
tices. While not a prerequisite, it is easier to encode programs for
common challenges people encounter and the general approaches
to resolve them (e.g., re-planning strategies when someone is over-
working), or for activities along the existingwork process that script
authors are familiar with (e.g., planning weekly deliverables; on-
boarding newcomers; how to use collaboration opportunities). We
can also consider a community-based approach to script authoring
where people from across the organization can create customized

Orchestration Scripts CHI ’23, April 23–28, 2023, Hamburg, Germany

forks of scripts others have written that can be applied to them-
selves or teams they manage [15, 40]. This would be possible and
easy to do since the scripts are all written using the Organizational
Object constructs, meaning that strategies can apply to people other
than those whom the script author originally intended.

Related is how we can support the end-user authoring process
of Situated Scripts. Our work focused on developing the necessary
computational tools for supporting situated work, with the authors
handling writing scripts based on practices used by the community.
For systems to be usable by programmers and non-programmers
alike, future work should consider developing authoring tools built
on prior work for end-user programming tools for trigger-action
programming [21–24, 43, 71, 76]. Moreover, future work can con-
sider studying how to support potential challenges in the authoring
process, including: debugging work detectors triggering incorrectly,
when it is unclear what strategies to suggest for a work situation, or
when the situation authors want to model is several steps removed
from the available programming constructs (e.g., when someone is
struggling to make progress) [43]. Through this work, we can help
people express the kinds of situated support they want a system
like Orchestration Scripts to facilitate in their workplaces.

6.3 Towards Systems That Integrate With Our
Ways of Working

Our work shows that supporting situated work requires our sys-
tems to be embedded with ecosystem-level intelligence about where
and how people work. As workplaces grow in complexity, it is in-
creasingly crucial for tools to support us in taking effective situated
action [62], which will be challenging for tools to do if they do not
understand our situated ways of working. Orchestration Scripts
moves towards realizing this vision by explicitly modeling the ways
of working that underpin a workplace and allowing people to write
scripts that facilitate situated work using those constructs.

To fully realize this vision, future work will need to consider
how organizations develop and maintain the Studio APIs and Orga-
nizational Objects that underpin systems like Orchestration Scripts.
These components are necessary for any system that supports situ-
ated work since these constructs are what provide the necessary
ecosystem-level intelligence to orchestrate situated work practices.
As a first step, we can consider how Studio APIs–which are simpli-
fied knowledge bases of how people work in an organization–can
be developed and maintained using inspiration from prior work
that studied organizational knowledge bases in workplaces [12, 44].

With the newly available ecosystem-level intelligence our work
provides, we can consider how to imbue our existing tools with this
understanding. For example, we could extend Slack’s standardwork-
flow and reminder system to use our constructs, allowing the team
lead to ask things like, “remind my project team to discuss progress
on their study design deliverable during Office Hours,” rather than
specifically saying who and what time a reminder should be sent.
This would allow for us to continue using the tools we find effective
for our work needs, but add in an additional layer of intelligence
for how we want them to support us in doing situated work.

Crucially, we can start moving workplace systems towards ones
that support us in communicating and strategizing about work
activities in a way that considers interactions across an ecosystem

as part of their designs. For example, consider routine meetings
between teams and their leads. Prior to these meetings teams may
generate meeting agendas to surface work needs they want to
address, and then generate follow-up tasks during the meeting
based on their discussions [18, 57]. However, these tools lack the
ability to pull in relevant context about how work is progressing
across the broader work ecosystems (e.g., whether people are get-
ting help from each other), relying solely on workers’ self-report
for what to discuss. Moreover, the action items generated from the
meetings cannot be contextualized to the venues or situations in
which they should be enacted (e.g., introduce potential helpers to a
person at the next inter-team meeting). To that end, we envision fu-
ture ecosystem-wide meeting support tools built upon Orchestration
Scripts that can provide awareness of tracked work situations and
any relevant context, a collaborative space to discuss them along
with any other work needs a team identifies, and encode situated
follow-ups at other venues that Orchestration Scripts would enact.
In short, for future workplace tools to effectively support situated
work, we need them to understand and surface the relevant context
for the situations that the tools are designed for and help us enact
any follow-up actions throughout our work process.

6.4 Limitations
Our work has two limitations that future work should consider.
First, our user study focused on understanding how Orchestration
Scripts can support situated work practices by using a Slack bot
interface to surface strategies since the studied community used
Slack across venues. Given the study’s short length, we do not
know how behaviors may change over an extended period or what
potential issues are with this kind of intervention. For example,
people may suffer from alert fatigue from being over-notified as
time goes on. As a result, they may ignore helpful prompts about
routine situations like collaboration venues or–more critically–
ignore important prompts for emergent work situations that they
are less aware of. As such, future work should conduct longer-
term studies to understand how usage patterns with Orchestration
Scripts change when using a bot-based interface [26, 29, 64].

Second, Orchestration Scripts was studied in the context of the
ARS academic organization where goals and motivations for using
the system may differ from a workplace. While ARS provides stu-
dents and mentors with work processes and socio-technical support
similar to those in a workplace, its primary goal is helping students
learn effective work practices for conducting research. Learning
effective work practices is also of emphasis in the workplace, but so
is the increased importance of meeting work outcomes. While these
motivations might differ, we expect that the kind of situated sup-
port our approach provides will still be valuable in the workplace.
Given these differences, future work should consider studying our
approach in workplaces to understand what aspects still work well
and potential changes to make due to domain differences between
workplaces and academic institutions.

7 CONCLUSION
This paper introduces workplace programming for situationally-
aware systems, an approach to building workplace systems using
computational abstractions of an organization’s ways of working

CHI ’23, April 23–28, 2023, Hamburg, Germany Kapil Garg, Darren Gergle, & Haoqi Zhang

(i.e., its processes, social structures, and venues). We implemented
this approach in Orchestration Scripts, a system for encoding effec-
tive work practices in terms of these abstractions. Through a case
study and field study, we showed how our approach can encode
different aspects of working effectively, and help people identify
situations and enact effective strategies using support opportunities
available across a work environment. These results show promise
for how future technologies that use computational abstractions of
how workplaces are organized can be developed to support situated
work, for which technological supports are critically important.

ACKNOWLEDGMENTS
We thank the Design, Technology, and Research program at North-
western University for accommodating our study; Neha Sharma
and Fardeem Munir for advice on technical implementations; Mike
Massimi, Christina Janzer, and Lucas Puente of Slack and the Future
Forum for helpful discussions; and Ryan Louie, Noshir Contrac-
tor, members of the Delta Lab, and members of the CollabLab for
feedback. Funding for this research was provided by the National
Science Foundation under Grant No. IIS-1623635.

REFERENCES
[1] 2022. Asana. https://asana.com/product.
[2] 2022. GitHub REST API. https://ghdocs-prod.azurewebsites.net/en/rest.
[3] 2022. Google Drive API. https://developers.google.com/drive.
[4] 2022. IFTTT. https://ifttt.com/.
[5] 2022. Jira. https://www.atlassian.com/software/jira.
[6] 2022. Slack API. https://slack.com/.
[7] 2022. Slack Workflow Builder. https://slack.com/features/workflow-automation.
[8] 2022. Trello. https://trello.com/.
[9] 2022. The Trello REST API. https://developer.atlassian.com/cloud/trello/.
[10] 2022. Zapier. https://zapier.com/.
[11] Mark S. Ackerman, Juri Dachtera, Volkmar Pipek, and Volker Wulf. 2013.

Sharing Knowledge and Expertise: The CSCW View of Knowledge Manage-
ment. Computer Supported Cooperative Work (CSCW) 22, 4 (Aug. 2013), 531–573.
https://doi.org/10.1007/s10606-013-9192-8

[12] Mark S. Ackerman and Christine Halverson. 2003. Sharing Expertise: The next
Step for Knowledge Management. In In Social Capital and Information. MIT Press,
273–300. https://doi.org/10.7551/mitpress/6289.003.0015

[13] Mark S. Ackerman and Thomas W. Malone. 1990. Answer Garden: A Tool for
Growing Organizational Memory. In Proceedings of the ACM SIGOIS and IEEE
CS TC-OA Conference on Office Information Systems (COCS ’90). ACM, New York,
NY, USA, 31–39. https://doi.org/10.1145/91474.91485

[14] Mark S. Ackerman and David W. McDonald. 1996. Answer Garden 2: Merging
Organizational Memory with Collaborative Help. In Proceedings of the 1996 ACM
Conference on Computer Supported Cooperative Work - CSCW ’96. ACM Press,
Boston, Massachusetts, United States, 97–105. https://doi.org/10.1145/240080.
240203

[15] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-Centric Programming: Integrating Web Search into the Development
Environment. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (CHI ’10). Association for Computing Machinery, New York, NY,
USA, 513–522. https://doi.org/10.1145/1753326.1753402

[16] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology.
Qualitative Research in Psychology 3, 2 (Jan. 2006), 77–101. https://doi.org/10.
1191/1478088706qp063oa

[17] Spencer Evan Carlson, Leesha V. Maliakal, Daniel Rees Lewis, Jamie Gorson,
Elizabeth Gerber, and Matthew Easterday. 2018. Defining and Assessing Risk
Analysis: The Key to Strategic Iteration in Real-World Problem Solving. (July
2018).

[18] Patrick Chiu, John Boreczky, Andreas Girgensohn, and Don Kimber. 2001.
LiteMinutes: An Internet-based System for Multimedia Meeting Minutes. In
Proceedings of the 10th International Conference on World Wide Web (WWW
’01). Association for Computing Machinery, New York, NY, USA, 140–149.
https://doi.org/10.1145/371920.371971

[19] Alistair Cockburn. 2002. Agile Software Development. Addison-Wesley.
[20] Allan Collins, John Seely Brown, and Susan E. Newman. 2018. Cognitive Appren-

ticeship: Teaching the Crafts of Reading, Writing, and Mathematics. Routledge.
453–494 pages. https://doi.org/10.4324/9781315044408-14

[21] Luca Corcella, Marco Manca, Fabio Paternò, and Carmen Santoro. 2019. A
Visual Tool for Analysing IoT Trigger/Action Programming. In Human-Centered
Software Engineering (Lecture Notes in Computer Science), Cristian Bogdan, Kati
Kuusinen, Marta Kristín Lárusdóttir, Philippe Palanque, and Marco Winckler
(Eds.). Springer International Publishing, Cham, 189–206. https://doi.org/10.
1007/978-3-030-05909-5_11

[22] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. 2019. Empowering
End Users in Debugging Trigger-Action Rules. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (CHI ’19). Association for
Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3290605.3300618

[23] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. 2004. A
CAPpella: Programming by Demonstration of Context-Aware Applications. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’04). Association for Computing Machinery, New York, NY, USA, 33–40.
https://doi.org/10.1145/985692.985697

[24] Anind K. Dey, Timothy Sohn, Sara Streng, and Justin Kodama. 2006. iCAP:
Interactive Prototyping of Context-Aware Applications. In Pervasive Computing
(Lecture Notes in Computer Science), Kenneth P. Fishkin, Bernt Schiele, Paddy
Nixon, and Aaron Quigley (Eds.). Springer, Berlin, Heidelberg, 254–271. https:
//doi.org/10.1007/11748625_16

[25] P. Dillenbourg and P. Tchounikine. 2007. Flexibility in Macro-Scripts for
Computer-Supported Collaborative Learning. Journal of Computer Assisted Learn-
ing 23, 1 (Feb. 2007), 1–13. https://doi.org/10.1111/j.1365-2729.2007.00191.x

[26] Hyo Jin Do, Ha-Kyung Kong, Jaewook Lee, and Brian P. Bailey. 2022. How
Should the Agent Communicate to the Group? Communication Strategies of
a Conversational Agent in Group Chat Discussions. Proceedings of the ACM
on Human-Computer Interaction 6, CSCW2 (Nov. 2022), 387:1–387:23. https:
//doi.org/10.1145/3555112

[27] Amy C. Edmondson. 2012. Teaming: How Organizations Learn, Innovate, and
Compete in the Knowledge Economy. John Wiley & Sons.

[28] Frank Fischer, Ingo Kollar, Heinz Mandl, and Jörg M. Haake (Eds.). 2007. Script-
ing Computer-Supported Collaborative Learning: Cognitive, Computational and
Educational Perspectives. Springer US. https://doi.org/10.1007/978-0-387-36949-5

[29] Asbjørn Følstad, Theo Araujo, Effie Lai-Chong Law, Petter Bae Brandtzaeg,
Symeon Papadopoulos, Lea Reis, Marcos Baez, Guy Laban, Patrick McAllister,
Carolin Ischen, Rebecca Wald, Fabio Catania, Raphael Meyer von Wolff, Sebas-
tian Hobert, and Ewa Luger. 2021. Future Directions for Chatbot Research: An
Interdisciplinary Research Agenda. Computing 103, 12 (Dec. 2021), 2915–2942.
https://doi.org/10.1007/s00607-021-01016-7

[30] Sharon Nelson-Le Gall. 1981. Help-Seeking: An Understudied Problem-Solving
Skill in Children. Developmental Review 1, 3 (Sept. 1981), 224–246. https://doi.
org/10.1016/0273-2297(81)90019-8

[31] Kapil Garg, Darren Gergle, and Haoqi Zhang. 2022. Understanding the Practices
and Challenges of Networked Orchestration in Research Communities of Practice.
Proceedings of the ACM on Human-Computer Interaction 6, CSCW (Nov. 2022),
344:2–344–28. https://doi.org/10.1145/3555764

[32] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. 1995. An Overview
of Workflow Management: From Process Modeling to Workflow Automation
Infrastructure. Distributed and Parallel Databases 3, 2 (April 1995), 119–153.
https://doi.org/10.1007/BF01277643

[33] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’99).
Association for Computing Machinery, New York, NY, USA, 159–166. https:
//doi.org/10.1145/302979.303030

[34] Julie S. Hui, Darren Gergle, and Elizabeth M. Gerber. 2018. IntroAssist: A Tool
to Support Writing Introductory Help Requests. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. ACM, 22. https://doi.org/
10.1145/3173574.3173596

[35] Christopher M Johnson. 2001. A Survey of Current Research on Online Com-
munities of Practice. The Internet and Higher Education 4, 1 (Jan. 2001), 45–60.
https://doi.org/10.1016/S1096-7516(01)00047-1

[36] David Jonassen, Johannes Strobel, and Chwee Beng Lee. 2006. Everyday Problem
Solving in Engineering: Lessons for Engineering Educators. Journal of Engineering
Education 95, 2 (2006), 139–151. https://doi.org/10.1002/j.2168-9830.2006.tb00885.
x

[37] David H. Jonassen. 1997. Instructional Design Models for Well-Structured and III-
structured Problem-Solving Learning Outcomes. Educational Technology Research
and Development 45, 1 (March 1997), 65–94. https://doi.org/10.1007/BF02299613

[38] Lars Kobbe, Armin Weinberger, Pierre Dillenbourg, Andreas Harrer, Raija
Hämäläinen, Päivi Häkkinen, and Frank Fischer. 2007. Specifying Computer-
Supported Collaboration Scripts. International Journal of Computer-Supported
Collaborative Learning 2, 2 (Sept. 2007), 211–224. https://doi.org/10.1007/s11412-
007-9014-4

[39] Nicolas Kokkalis, Chengdiao Fan, Johannes Roith, Michael S. Bernstein, and Scott
Klemmer. 2017. MyriadHub: Efficiently Scaling Personalized Email Conversations
with Valet Crowdsourcing. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). Association for Computing Machinery,
New York, NY, USA, 73–84. https://doi.org/10.1145/3025453.3025954

https://doi.org/10.1007/s10606-013-9192-8
https://doi.org/10.7551/mitpress/6289.003.0015
https://doi.org/10.1145/91474.91485
https://doi.org/10.1145/240080.240203
https://doi.org/10.1145/240080.240203
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1145/371920.371971
https://doi.org/10.4324/9781315044408-14
https://doi.org/10.1007/978-3-030-05909-5_11
https://doi.org/10.1007/978-3-030-05909-5_11
https://doi.org/10.1145/3290605.3300618
https://doi.org/10.1145/3290605.3300618
https://doi.org/10.1145/985692.985697
https://doi.org/10.1007/11748625_16
https://doi.org/10.1007/11748625_16
https://doi.org/10.1111/j.1365-2729.2007.00191.x
https://doi.org/10.1145/3555112
https://doi.org/10.1145/3555112
https://doi.org/10.1007/978-0-387-36949-5
https://doi.org/10.1007/s00607-021-01016-7
https://doi.org/10.1016/0273-2297(81)90019-8
https://doi.org/10.1016/0273-2297(81)90019-8
https://doi.org/10.1145/3555764
https://doi.org/10.1007/BF01277643
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/302979.303030
https://doi.org/10.1145/3173574.3173596
https://doi.org/10.1145/3173574.3173596
https://doi.org/10.1016/S1096-7516(01)00047-1
https://doi.org/10.1002/j.2168-9830.2006.tb00885.x
https://doi.org/10.1002/j.2168-9830.2006.tb00885.x
https://doi.org/10.1007/BF02299613
https://doi.org/10.1007/s11412-007-9014-4
https://doi.org/10.1007/s11412-007-9014-4
https://doi.org/10.1145/3025453.3025954

Orchestration Scripts CHI ’23, April 23–28, 2023, Hamburg, Germany

[40] Sam Lau, Sruti Srinivasa Srinivasa Ragavan, Ken Milne, Titus Barik, and Advait
Sarkar. 2021. TweakIt: Supporting End-User Programmers Who Transmogrify
Code. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (CHI ’21). Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/3411764.3445265

[41] Jean Lave and Etienne Wenger. 1991. Situated Learning: Legitimate Peripheral
Participation. Cambridge University Press.

[42] Daniel G. Rees Lewis, Jamie Gorson, Leesha V. Maliakal, Spencer E. Carlson, Eliz-
abeth M. Gerber, Christopher K. Riesbeck, and Matthew Wayne Easterday. 2018.
Planning to iterate: Supporting iterative practices for real-world ill-structured
problem-solving. In Proceedings of International Conference of the Learning Sci-
ences, ICLS, Vol. 1. International Society of the Learning Sciences, 9–16.

[43] Ryan Louie, Darren Gergle, and Haoqi Zhang. 2022. Affinder: Expressing Con-
cepts of Situations That Afford Activities Using Context-Detectors. In CHI Confer-
ence on Human Factors in Computing Systems (CHI ’22). Association for Computing
Machinery, New York, NY, USA, 1–18. https://doi.org/10.1145/3491102.3501902

[44] Wayne Lutters, Mark Ackerman, James Boster, and David McDonald. 2000. Map-
ping Knowledge Networks in Organizations: Creating a Knowledge Mapping
Instrument. AMCIS 2000 Proceedings (Jan. 2000).

[45] David W. McDonald and Mark S. Ackerman. 2000. Expertise Recommender:
A Flexible Recommendation System and Architecture. In Proceedings of the
2000 ACM Conference on Computer Supported Cooperative Work. ACM Press,
Philadelphia, Pennsylvania, United States, 231–240. https://doi.org/10.1145/
358916.358994

[46] Raul Medina-Mora, Terry Winograd, Rodrigo Flores, and Fernando Flores. 1992.
The Action Workflow Approach to Workflow Management Technology. In Pro-
ceedings of the 1992 ACM Conference on Computer-supported Cooperative Work
(CSCW ’92). Association for Computing Machinery, New York, NY, USA, 281–288.
https://doi.org/10.1145/143457.143530

[47] Mariel Miller and Allyson Hadwin. 2015. Scripting and Awareness Tools for
Regulating Collaborative Learning: Changing the Landscape of Support in CSCL.
Computers in Human Behavior 52 (Nov. 2015), 573–588. https://doi.org/10.1016/j.
chb.2015.01.050

[48] Robert C. Miller, Haoqi Zhang, Eric Gilbert, and Elizabeth Gerber. 2014. Pair
Research: Matching People for Collaboration, Learning, and Productivity. In
Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work
& Social Computing (CSCW ’14). ACM, New York, NY, USA, 1043–1048. https:
//doi.org/10.1145/2531602.2531703

[49] Brad A. Myers, John F. Pane, and Amy J. Ko. 2004. Natural Programming Lan-
guages and Environments. Commun. ACM 47, 9 (Sept. 2004), 47–52. https:
//doi.org/10.1145/1015864.1015888

[50] Gary J. Nutt. 1996. The Evolution towards FlexibleWorkflow Systems. Distributed
Systems Engineering 3, 4 (Dec. 1996), 276. https://doi.org/10.1088/0967-1846/3/4/
007

[51] Soya Park, Amy X. Zhang, Luke S. Murray, and David R. Karger. 2019. Opportu-
nities for Automating Email Processing: A Need-Finding Study. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19. ACM
Press, Glasgow, Scotland Uk, 1–12. https://doi.org/10.1145/3290605.3300604

[52] Walter Powell. 1990. Neither Market Nor Hierarchy: Network Forms of Organi-
zation. Research in Organizational Behaviour 12 (Jan. 1990), 295–336.

[53] Molly Pribble, Neha Sharma, Haoqi Zhang, and Leesha Maliakal Shah. 2022.
MindYoga: Scaffolding the Metacognitive Reflection Process within Learning
Ecosystems. In CHI Conference on Human Factors in Computing Systems Extended
Abstracts (CHI EA ’22). Association for Computing Machinery, New York, NY,
USA, 1–8. https://doi.org/10.1145/3491101.3519751

[54] Sadhana Puntambekar and Janet L. Kolodner. 2005. Toward Implementing Dis-
tributed Scaffolding: Helping Students Learn Science from Design. Journal of Re-
search in Science Teaching 42, 2 (2005), 185–217. https://doi.org/10.1002/tea.20048

[55] Fazle Rabbi and Wendy MacCaull. 2012. T-Square: A Domain Specific Language
for Rapid Workflow Development. In Proceedings of the 15th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS’12). Springer-
Verlag, Berlin, Heidelberg, 36–52. https://doi.org/10.1007/978-3-642-33666-9_4

[56] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. 1999. The Context Toolkit:
Aiding the Development of Context-Enabled Applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’99). Association
for Computing Machinery, New York, NY, USA, 434–441. https://doi.org/10.
1145/302979.303126

[57] Till Schümmer, Hilda Tellioglu, and JörgM. Haake. 2009. Towards Living Agendas
— Shaping the next Generation of Business Meetings. In ECSCW 2009, InaWagner,
Hilda Tellioğlu, Ellen Balka, Carla Simone, and Luigina Ciolfi (Eds.). Springer,
London, 263–282. https://doi.org/10.1007/978-1-84882-854-4_16

[58] Herbert A. Simon. 1973. The Structure of Ill Structured Problems. Artificial
Intelligence 4, 3 (Dec. 1973), 181–201. https://doi.org/10.1016/0004-3702(73)90011-
8

[59] Linn C. Stuckenbruck. 1979. The Matrix Organization. Project Management
Quarterly 10, 3 (1979), 21–33.

[60] Lucy Suchman. 1993. Do Categories Have Politics? The Language/Action Perspec-
tive Reconsidered. In Proceedings of the Third European Conference on Computer-
Supported Cooperative Work 13–17 September 1993, Milan, Italy ECSCW ’93, Gior-
gio de Michelis, Carla Simone, and Kjeld Schmidt (Eds.). Springer Netherlands,
Dordrecht, 1–14. https://doi.org/10.1007/978-94-011-2094-4_1

[61] Lucy A. Suchman. 1983. Office Procedure as Practical Action: Models of Work
and System Design. ACM Transactions on Information Systems 1, 4 (Oct. 1983),
320–328. https://doi.org/10.1145/357442.357445

[62] Lucy A. Suchman. 1987. Plans and Situated Actions: The Problem of Human-
Machine Communication. Cambridge University Press.

[63] Jeff Sutherland. 2014. Scrum: A Revolutionary Approach to Building Teams, Beating
Deadlines, and Boosting Productivity. Penguin Random House.

[64] Carlos Toxtli, Andrés Monroy-Hernández, and Justin Cranshaw. 2018. Under-
standing Chatbot-mediated TaskManagement. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (CHI ’18). Association for Comput-
ingMachinery, NewYork, NY, USA, 1–6. https://doi.org/10.1145/3173574.3173632

[65] Duane P. Truex, Richard Baskerville, and Heinz Klein. 1999. Growing Systems
in Emergent Organizations. Commun. ACM 42, 8 (Aug. 1999), 117–123. https:
//doi.org/10.1145/310930.310984

[66] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. 2014.
Practical Trigger-Action Programming in the Smart Home. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). Association
for Computing Machinery, New York, NY, USA, 803–812. https://doi.org/10.
1145/2556288.2557420

[67] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L. Littman. 2016. Trigger-Action
Programming in the Wild: An Analysis of 200,000 IFTTT Recipes. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (CHI ’16).
Association for Computing Machinery, New York, NY, USA, 3227–3231. https:
//doi.org/10.1145/2858036.2858556

[68] Wil MP Van der Aalst. 2013. Business Process Management: A Comprehensive
Survey. International Scholarly Research Notices 2013 (2013).

[69] Max Van Kleek, Brennan Moore, David R. Karger, Paul André, and m.c. schraefel.
2010. Atomate It! End-user Context-Sensitive Automation Using Heterogeneous
Information Sources on the Web. In Proceedings of the 19th International Con-
ference on World Wide Web (WWW ’10). Association for Computing Machinery,
New York, NY, USA, 951–960. https://doi.org/10.1145/1772690.1772787

[70] Simone E. Volet. 1991. Modelling and Coaching of Relevant Metacognitive
Strategies for Enhancing University Students’ Learning. Learning and Instruction
1, 4 (Jan. 1991), 319–336. https://doi.org/10.1016/0959-4752(91)90012-W

[71] Marcel Walch, Michael Rietzler, Julia Greim, Florian Schaub, Björn Wiedersheim,
and Michael Weber. 2013. homeBLOX: Making Home Automation Usable. In
Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing
Adjunct Publication (UbiComp ’13 Adjunct). Association for Computing Machin-
ery, New York, NY, USA, 295–298. https://doi.org/10.1145/2494091.2494182

[72] Armin Weinberger, Ingo Kollar, Yannis Dimitriadis, Kati Mäkitalo-Siegl, and
Frank Fischer. 2009. Computer-Supported Collaboration Scripts. In Technology-
Enhanced Learning: Principles and Products, Nicolas Balacheff, Sten Ludvigsen, Ton
de Jong, Ard Lazonder, and Sally Barnes (Eds.). Springer Netherlands, Dordrecht,
155–173. https://doi.org/10.1007/978-1-4020-9827-7_10

[73] Terry Winograd. 1987. A Language/Action Perspective on the Design of Co-
operative Work. Human-Computer Interaction 3, 1 (March 1987), 3–30. https:
//doi.org/10.1207/s15327051hci0301_2

[74] Amy X. Zhang, Grant Hugh, and Michael S. Bernstein. 2020. PolicyKit: Building
Governance in Online Communities. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology (UIST ’20). Association for
Computing Machinery, New York, NY, USA, 365–378. https://doi.org/10.1145/
3379337.3415858

[75] Haoqi Zhang, MatthewW. Easterday, Elizabeth M. Gerber, Daniel Rees Lewis, and
Leesha Maliakal. 2017. Agile Research Studios: Orchestrating Communities of
Practice to Advance Research Training. In Proceedings of the 2017 ACM Conference
on Computer Supported Cooperative Work and Social Computing (CSCW ’17). ACM,
New York, NY, USA, 220–232. https://doi.org/10.1145/2998181.2998199

[76] Valerie Zhao, Lefan Zhang, Bo Wang, Michael L. Littman, Shan Lu, and Blase Ur.
2021. Understanding Trigger-Action Programs Through Novel Visualizations of
Program Differences. In Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems (CHI ’21). Association for Computing Machinery, New
York, NY, USA, 1–17. https://doi.org/10.1145/3411764.3445567

https://doi.org/10.1145/3411764.3445265
https://doi.org/10.1145/3491102.3501902
https://doi.org/10.1145/358916.358994
https://doi.org/10.1145/358916.358994
https://doi.org/10.1145/143457.143530
https://doi.org/10.1016/j.chb.2015.01.050
https://doi.org/10.1016/j.chb.2015.01.050
https://doi.org/10.1145/2531602.2531703
https://doi.org/10.1145/2531602.2531703
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1145/1015864.1015888
https://doi.org/10.1088/0967-1846/3/4/007
https://doi.org/10.1088/0967-1846/3/4/007
https://doi.org/10.1145/3290605.3300604
https://doi.org/10.1145/3491101.3519751
https://doi.org/10.1002/tea.20048
https://doi.org/10.1007/978-3-642-33666-9_4
https://doi.org/10.1145/302979.303126
https://doi.org/10.1145/302979.303126
https://doi.org/10.1007/978-1-84882-854-4_16
https://doi.org/10.1016/0004-3702(73)90011-8
https://doi.org/10.1016/0004-3702(73)90011-8
https://doi.org/10.1007/978-94-011-2094-4_1
https://doi.org/10.1145/357442.357445
https://doi.org/10.1145/3173574.3173632
https://doi.org/10.1145/310930.310984
https://doi.org/10.1145/310930.310984
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1145/2858036.2858556
https://doi.org/10.1145/1772690.1772787
https://doi.org/10.1016/0959-4752(91)90012-W
https://doi.org/10.1145/2494091.2494182
https://doi.org/10.1007/978-1-4020-9827-7_10
https://doi.org/10.1207/s15327051hci0301_2
https://doi.org/10.1207/s15327051hci0301_2
https://doi.org/10.1145/3379337.3415858
https://doi.org/10.1145/3379337.3415858
https://doi.org/10.1145/2998181.2998199
https://doi.org/10.1145/3411764.3445567

	Abstract
	1 Introduction
	2 Background
	2.1 Ill-Structured Work and How Socio-Technical Workplaces Support It
	2.2 Tools to Support Common Work Activities
	2.3 Automated Approaches That Detect Work Needs and Facilitate Work Processes

	3 Orchestration Scripts
	3.1 Design Goals
	3.2 Encoding Situated Strategies in Terms of an Organization's Ways of Working
	3.3 Expressing General Strategies That Become Tailored for Specific People
	3.4 Enacting Situated Strategies at Relevant Points of the Work Process
	3.5 Technical Implementation

	4 Case Study: How Orchestration Scripts Can Support Situated Work
	4.1 Research Setting
	4.2 Encoding General Programs to Support Situated Work
	4.3 Tailoring General Strategies to Workers' Specific Social Relationships and Venues
	4.4 Flexibly Supporting Work Activities Across a Work Ecosystem

	5 Field Study: Orchestration Scripts in a Research Learning Community
	5.1 Participants
	5.2 Procedure
	5.3 Measures and Analysis
	5.4 Results

	6 Discussion and Future Work
	6.1 Providing Programming Abstractions for an Organization's Ways of Working
	6.2 Authoring Situated Scripts to Support Situated Work Practices
	6.3 Towards Systems That Integrate With Our Ways of Working
	6.4 Limitations

	7 Conclusion
	Acknowledgments
	References

