
Policy Teaching Through Reward Function Learning
∗

Haoqi Zhang
School of Engineering and

Applied Sciences
Harvard University

Cambridge, MA 02138 USA

hq@eecs.harvard.edu

David C. Parkes
School of Engineering and

Applied Sciences
Harvard University

Cambridge, MA 02138 USA

parkes@eecs.harvard.edu

Yiling Chen
School of Engineering and

Applied Sciences
Harvard University

Cambridge, MA 02138 USA

yiling@eecs.harvard.edu

ABSTRACT

Policy teaching considers a Markov Decision Process setting
in which an interested party aims to influence an agent’s
decisions by providing limited incentives. In this paper, we
consider the specific objective of inducing a pre-specified de-
sired policy. We examine both the case in which the agent’s
reward function is known and unknown to the interested
party, presenting a linear program for the former case and
formulating an active, indirect elicitation method for the lat-
ter. We provide conditions for logarithmic convergence, and
present a polynomial time algorithm that ensures logarith-
mic convergence with arbitrarily high probability. We also
offer practical elicitation heuristics that can be formulated
as linear programs, and demonstrate their effectiveness on a
policy teaching problem in a simulated ad network setting.
We extend our methods to handle partial observations and
partial target policies, and provide a game-theoretic inter-
pretation of our methods for handling strategic agents.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Economics

General Terms

Algorithms, Economics, Theory

1. INTRODUCTION
Many situations arise in which an interested party wishes

for an agent to follow desired behaviors. A retailer such as
Amazon wants customers to make frequent purchases and
write product reviews. Web 2.0 sites such as Facebook and
YouTube want users to contribute content, show interest in

∗An early version of this paper appeared at the AAAI 4th
Multidisciplinary Workshop on Advances in Preference Han-
dling, Chicago IL, July 2008.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’09, July 6–10, 2009, Stanford, California, USA.
Copyright 2009 ACM 978-1-60558-458-4/09/07 ...$5.00.

advertisements, and generally spend time on the site. ad
networks such as Google AdSense, Yahoo! Publisher Net-
work, and Microsoft pubCenter want publishers to design
their web sites in ways that facilitate effective advertising.

In such situations, an interested party can often make
limited changes to an agent’s environment to induce desired
behaviors. A retailer can provide discounts on products and
recognize top reviewers. A Web 2.0 site can tweak its inter-
face to ease the content uploading process, and can reward
users for performing tasks by offering money, scrips, or ac-
cess to premium content. An ad service provider can offer a
larger share of the advertising revenue or waive sign-up fees
to entice a publisher to choose particular web layouts.

We view these problems as examples of environment de-
sign [20]. In environment design, an interested party aims to
influence agent decisions via limited changes to the agents’
environment. Private information is indirectly inferred from
observing agents over repeated interactions, and the goal is
ultimately to elicit desired actions from the agents. This is
in contrast to mechanism design problems studied in microe-
conomics and computer science, where an interested party
designs rules of a game to directly elicit private information
from agents so that the center can make and enforce cor-
rect system-wide decisions [11]. Whereas mechanism design
centers around the transmission of private information, en-
vironment design is grounded in the agents’ physical actions.

In this paper, we study the particular environment design
problem of policy teaching [21]. Policy teaching considers a
Markov Decision Process (MDP) setting in which an inter-
ested party can associate limited rewards with world states
to affect an agent’s policy. The interested party can observe
the agent’s decisions in response to provided incentives, but
generally does not know the agent’s reward function. The
interested party can interact multiple times with the agent,
but cannot directly impose actions on the agent. The goal of
the interested party is to induce the agent to follow a desired
behavior or policy quickly and at a low cost.

Zhang and Parkes [21] previously studied value-based pol-
icy teaching, where the objective is to induce a policy of
maximal value for the interested party across those that can
be achieved with limited incentives. In this paper, we con-
sider policy teaching in which the goal is to induce a fixed,
pre-specified desired policy. A practical advantage of this
framework is that it may be easier for the interested party
to specify a desired policy than to specify a value function.
This is particularly useful in many web settings where a firm
knows which agent actions it desires but may have trouble
estimating the value of such actions.

The simpler, target-policy objective also leads to com-
putational and convergence speed advantages. In the case
that the interested party knows the agent’s reward func-
tion, Zhang and Parkes [21] showed that value-based policy
teaching is NP-hard. Here we show that the policy teaching
problem to induce a pre-specified desired policy can be for-
mulated as a linear program (LP). In the more likely case
where the agent’s reward function is unknown, we apply gen-
eral environment design results [20] to guarantee elicitation
convergence after logarithmic rounds. Furthermore, we ap-
ply results from sampling in convex spaces [4] to arrive at a
polynomial time algorithm that ensures logarithmic elicita-
tion convergence with arbitrarily high probability, whereas
neither guarantees are available in value-based policy teach-
ing [21]. We also offer practical elicitation heuristics, based
on a two-sided max slack heuristic [21], that can be formu-
lated as linear programs. We consider as an example a policy
teaching problem in the ad network setting, in which an ad
network can provide limited incentives to induce a publisher
to choose a hyperlink design that is conducive to advertis-
ing. We implement our methods and elicitation heuristics,
and provide preliminary results in a simulated ad network
to demonstrate effectiveness.

In some situations, an interested party may only observe
the agent’s actions in a subset of the states, either because
some states are private to the agent or because the agent
only visits a subset of the states when following its policy.
Also, an interested party may only wish to influence the
agent’s policy in a subset of the states. In both cases, the
interested party cannot simply ignore the other states be-
cause the agent’s policy depends on its rewards and actions
in all the states. We extend our methods to handle pol-
icy teaching with partial observability and partial goals, and
prove that the elicitation process remains convergent.

For the most part we assume that the agent is myopic, in
the sense that the agent plans with respect to the current
environment and does not reason about future incentives
from the interested party. This assumption seems reason-
able on the web, where a user of a web site tends to do what
is best for himself under the current environment and is
generally unconcerned about how his actions may influence
future changes to the web site. Despite this assumption, we
are also interested in handling both myopic and strategic,
forward-looking agents. In this direction, we show that un-
der certain conditions, a strategic agent responding to the
active, indirect elicitation method will also be incentivized
to follow the fixed desired policy as a myopic best-response.

1.1 Related work
The closest analog to policy teaching is the principal-agent

problem studied in economics [5, 13], in which a principal
can provide incentives in the form of contracts to align the
interest of an agent with that of the principal.1 In the MDP
setting, Zhang and Zenios [22] studied a dynamic principal-
agent problem in which the interested party can design the
reward structure of an agent MDP but cannot observe the

1There is also a small literature on principal-agent prob-
lems with hidden actions in computer science. Chuang et
al. [7] consider incentive problems in regards to agency in
peer-to-peer systems. Babaioff et al. [2, 1] studied issues
of “combinatorial agency” in which actions have combinato-
rial effects on the payoff of the interested party. Feldman
et al. [8] earlier studied the issue of hidden actions in the
context of multi-hop routing.

agent’s state. Our basic setup assumes that states and ac-
tions are observable, and thus does not include moral-hazard
problems. On the other hand, we have additional challenges
because the agent has intrinsic rewards that are unknown to
the interested party and that can only be perturbed in lim-
ited ways. We overcome this problem by allowing for reward
learning over repeated interactions with the agent.

Monderer and Tennenholtz [14] studied the problem of
k-implementation, in which an interested party can assign
positive monetary rewards to influence the actions of agents
in games. The work assumes an interested party who can
assign unlimited rewards to states and uses commitment to
implement desirable outcomes with only minimal assump-
tions about agent rationality. The work provides a thorough
analysis of the cost of implementing desired outcomes, but
does not deal with learning agents’ preferences.

The basic idea of inferring preferences by observing behav-
ior is not new [6, 15, 19], but the idea of revealed preference
is typically passive, and applied without modifying the envi-
ronment to make further inferences. A dynamic approach is
taken in the economics literature on Bayesian learning and
experimentation, where one gathers additional preference in-
formation through experimentation and performs Bayesian
updating to refine estimates and separate out confounding
beliefs [3, 12]. The learning problem in these papers is con-
siderably simpler than that studied here.

1.2 Outline
We formalize the policy teaching problem in Section 2, and
provide a linear programming formulation for the case of
known agent rewards in Section 3. We turn to consider the
case of unknown agent rewards in Section 4, where we first
present a general active, indirect elicitation method and then
provide tractable elicitation strategies with desirable conver-
gence properties. In Section 5 we consider a specific policy
teaching problem in an ad network setting, and present pre-
liminary experimental results in a simulated ad network to
demonstrate the effectiveness of our methods. We provide
extensions to handle partial observations and partial goals
in Section 6, and consider strategic agents in Section 7. All
proofs are omitted in the interest of space and will be made
available in a longer version of the paper.

2. POLICY TEACHING
The policy teaching problem [21] considers an agent per-

forming a sequential decision task with respect to an infinite
horizon MDP M = {S, A, R, P, γ}, where S is a finite set of
states, A is a finite set of possible actions, R : S → ℜ is
the reward function, P : S ×A× S → [0, 1] is the transition
function, and γ ∈ (0, 1) is the discount factor. Given M , the
agent’s decision problem is to choose actions for each state
to maximize the expected sum of discounted rewards. Let
π denote a stationary policy, such that π(s) is the action
the agent executes in state s. Given a policy π, the value
function V π(s) = R(s) + γ

P
s′∈S P (s, π(s), s′)V π(s′) cap-

tures the expected sum of discounted rewards from state s.
Similarly, the Q function captures the value of taking an ac-
tion a and following the policy π in future states, such that
Qπ(s, a) = R(s) + γ

P
s′∈S P (s, a, s′)V π(s′). By Bellman

optimality [16], an optimal policy π∗ maximizes the Q func-

tion in every state, such that π∗(s) ∈ arg maxa∈A Qπ∗

(s, a).
We assume the agent can compute an optimal policy of its
MDP, and that its inherent reward R is persistent.

We consider an interested party who knows S, A, P , and
γ, and aims to induce a pre-specified target policy πT . The
interested party can influence the agent’s reward function
by providing incentives ∆ : S → ℜ. We assume the agent
is myopically rational and follows its optimal policy given
∆.2 We assume that ∆ affects the agent’s reward function
linearly, such that the agent plans with respect to M ′ =
{S, A,R+∆, P, γ} in the modified environment. We assume
for now that the interested party observes the agent’s policy.

We assume the interested party can only provide limited
incentives. We define the notion of admissibility:

Definition 1. An incentive function ∆ : S → ℜ is admis-
sible with respect to a policy πT if it satisfies the following
linear constraints, denoted admissible(∆):

V πT

∆ (s) = ∆(s) + γPs,πT (s)V
πT

∆ ,∀s ∈ S Incentive value.

V πT

∆ (start) ≤ Dmax Limited spending.

0 ≤ ∆(s) ≤ ∆max ,∀s ∈ S No punishments.

The incentive value V πT

∆ (s) in Definition 1 captures the
total sum of expected discounted incentives provided to an
agent following policy πT starting from state s. The limited
spending constraint limits the total incentives provided to
Dmax when the agent performs πT from the start state.3

The no punishment condition ensures that only bounded,
positive incentives are provided, which seems quite fitting
in many of the web domains that motivate this work.4

3. THE KNOWN REWARDS CASE
When the interested party knows the agent’s reward func-

tion, the policy teaching problem is to find minimal admissi-
ble incentives that induce the desired policy πT . We first de-
fine the concept of inverse reinforcement learning (IRL) [15]
to capture the space of rewards that are consistent with a
particular policy:

Definition 2. Given a policy π and M−R = {S, A, P, γ},
let {R : R ∈ IRLπ} denote the set of reward functions for
which π is optimal for the MDP M = {S, A, R, P, γ}. Fur-
thermore, for ǫ > 0, let {R : R ∈ IRLπ

ǫ } denote the set of
rewards for which π is uniquely optimal for M by a slack of
at least ǫ, such that Qπ(s, π(s))−Qπ(s, a) ≥ ǫ for all s ∈ S,
a ∈ A\π(s).

The policy teaching problem then aims to find incentives
leading to a reward function that is consistent with the de-
sired policy:

Definition 3. Policy teaching with known rewards. Given
an agent MDP M = {S, A, R, P, γ}, target policy πT , in-
centive limits Dmax and ∆max, and ǫ > 0, if there exists an
admissible ∆ such that (R + ∆) ∈ IRLπT

ǫ , find such a ∆ to
minimize V πT

∆ (start).

2We are also able to handle situations in which the agent
plans with respect to an almost constant reward, or where
the agent almost plans optimally. We postpone discussion
to a longer version of the paper.
3The use of a single start state is without loss of generality,
since it can be a dummy state whose transitions represent a
distribution over possible start states.
4Alternative definitions of admissibility are possible as well.
Our methods are not specific to a particular admissibility
definition, so we won’t pursue the issue further in this paper.

The definition requires the provided incentives to strictly
induce the desired policy. This avoids scenarios in which an
agent is indifferent among multiple optimal policies and may
choose one other than that desired by the interested party.
To solve this problem, we need to (1) locate the space of
reward functions under which πT is uniquely optimal and
(2) find an admissible incentive ∆ that maps the agent’s
reward into this space. We apply a well-known result from
inverse reinforcement learning, which shows that the space
of rewards consistent with a particular (uniquely) optimal
policy is given by a set of linear constraints:

Theorem 1. (Ng and Russell [15]) Given a policy π and
M−R = {S, A, P, γ}, R ∈ IRLπ satisfies:

(Pπ −Pa)(I− γPπ)−1
R � 0 ∀a ∈ A (1)

Furthermore, for ǫ > 0, R ∈ IRLπ
ǫ satisfies

(Pπ − Pa)(I− γPπ)−1
R � ǫ ∀a ∈ A (2)

where Pπ and R are the transition function with respect to
π and the reward function written in matrix form, and I is
the identity matrix.

This theorem leads directly to our result:

Theorem 2. The following linear program solves the pol-
icy teaching problem with known rewards:

min
∆,RT

V πT

∆ (start) (3)

RT (s) − ∆(s) = R(s) ∀s (4)

((PπT
− Pa)(I− γPπT

)−1
RT)[s] � ǫ ∀s, a ∈ A\a1 (5)

admissible(∆) (6)

where a1 ≡ πT (s) denotes the actions of the target policy.

Theorem 2 shows that policy teaching with a pre-specified
target policy can be solved in polynomial time, unlike value-
based policy teaching which is NP-hard and needs a mixed
integer program formulation [21]. Another practical advan-
tage of this formulation is that the interested party need
only specify the desired policy and not its value function.

The main disadvantage is that the specified policy may not
be inducible given the limits on incentives, whereas value-
based policy teaching finds the best inducible policy given
the limits on incentives and thus will always return the best
available solution. In cases where the interested party can
specify a set of desired policies, we can solve the LP for each
desired policy until we find a feasible incentive provision to
a particular desired policy. If the set of desirable policies is
small, the LP formulation will still provide computational
and representational benefits.

4. THE UNKNOWN REWARDS CASE
In most situations, the interested party will not know the

reward function of the agent. This leads to a new policy
teaching problem:

Definition 4. Policy teaching with unknown agent reward.
Consider an agent following a policy π with respect to an
MDP M = {S, A, R, P, γ}. An interested party observes the
agent’s policy, and knows M−R = {S, A, P, γ} but not R.
Given target policy πT , incentive limits Dmax and ∆max, and
ǫ > 0, if there exists an admissible ∆ for which (R + ∆) ∈
IRLπT

ǫ , find an admissible ∆ and observe agent policy π′

such that π′ = πT .

Algorithm 1 Active indirect elicitation

Require: agent policy π, desired policy πT , ǫ > 0
1: Variables R, RT , ∆; constraint set K = ∅
2: Add R ∈ IRLπ, |R(s)| ≤ Rmax ∀s ∈ S to K
3: Add RT ∈ IRLπT

ǫ , ∆ = RT − R to K
4: Add admissible(∆) to K
5: loop

6: Find b∆, bR, cRT satisfying all constraints in K
7: if no such values exist then

8: return FAILURE
9: else

10: Provide agent with incentive b∆
11: Observe π′

12: if π′ = πT then

13: return b∆
14: else

15: Add (R + b∆) ∈ IRLπ′

to K

We assume that direct queries about the agent’s prefer-
ences are unavailable, and that preference information must
be inferred from observations of agent behavior. This is of-
ten true on the web; while firms such as Amazon and Face-
book can observe user actions, it may be considered intrusive
for them to ask their users for preference information, both
because it disrupts from the user experience and because
users may question their motives.

We adopt a simplified form of the active, indirect elicita-
tion method from Zhang and Parkes [21], wherein the space
of potential agent rewards is narrowed by drawing additional
IRL constraints based on observations of agent behavior in
response to provided incentives. We assume the agent’s re-
ward function is bounded in absolute value by Rmax in every
state, and maintain an ‘IRL space’ of reward functions that
are consistent with observations and that have associated
admissible incentive functions that can strictly induce the
desired policy with some minimal slack ǫ > 0. At every it-

eration, we make a guess bR at the agent’s true reward by
choosing a point in the IRL space. If our guess is correct,

providing the associated incentives b∆ will strictly induce πT .
If instead the agent performs a policy π′ 6= πT , we know that
bR must not be the agent’s true reward R. Furthermore, we

know that R + b∆ induces π′, which allows us to add the
following IRL constraints to the IRL space:

(Pπ′ − Pa)(I− γPπ′)−1(R + b∆) � 0 ∀a ∈ A (7)

IRL constraints contain |S||A| constraints on R and re-
stricts the space of possible rewards to the intersection of
previous IRL space and the convex polytope implied by the
added constraints. Since we are only interested in the agent’s
reward for the purpose of solving the policy teaching prob-
lem, we can stop the elicitation process as soon as we observe
the desired policy or if the IRL space becomes empty.

We use the following notation for the algorithm. All con-
straints are added to a constraint set K, such that instan-
tiations of variables must satisfy all constraints in K. An

instantiation of a variable R is denoted as bR. Algorithm 1
gives the elicitation method.

Theorem 3. Algorithm 1 terminates in a finite number
of steps with a solution to the policy teaching problem with
unknown rewards or returns FAILURE if no solution exists.

Theorem 3 guarantees convergence regardless of the choice

of bR and b∆ from K in Algorithm 1. The minimal slack ǫ
over the target policy ensures that all points within a closed

hypercube of side length δ = ǫ(1−γ)
γ

− κ centered at bR are
eliminated by IRL constraints whenever πT is not observed,
for some arbitrarily small κ > 0.5 Since the true reward is
consistent with IRL constraints, by a pigeonhole argument,
only a finite number of such hypercubes of eliminated points
can fit in the IRL space before elicitation converges.

In practice, the elicitation method is only useful if it can
induce the desired policy after few agent interactions. We
consider computationally tractable elicitation strategies that
lead to few elicitation rounds. We present a centroid-based
strategy that guarantees logarithmic convergence in Section
4.1, and a practical two-sided slack maximization heuristic
in Section 4.2, adopted from [21] to this setting.

4.1 A centroid-based approach
Consider the IRL space at any round of the elicitation pro-

cess. Since this set of reward functions is characterized by
linear constraints, it is convex. We can apply the following
result on cutting convex sets:

Theorem 4. (Grünbaum [9]) Any halfspace containing
the centroid of a convex set in ℜn contains at least 1

e
of

its volume.

By choosing the centroid of the IRL space of rewards for
bR, any added IRL constraint will cut off a constant fraction
of the IRL space’s volume:

Lemma 1. Let Bt
K denote the IRL space of reward func-

tions implied by the constraints in K before the t-th iteration
of Algorithm 1. Let ct denote the centroid of Bt

K . Consider

an elicitation strategy that picks bR = ct and any correspond-

ing admissible b∆ for which (bR + b∆) ∈ IRLπT
ǫ . Then provid-

ing b∆ will either induce πT or the added IRL constraints
will eliminate at least 1

e
of the volume of Bt

K, such that

vol(Bt+1
K) ≤ (1 − 1

e
)vol(Bt

K).

Lemma 1 ensures that a constant fraction of the volume of
the IRL space is cut off at each iteration. This implies that
after a logarithmic number of iterations, the volume of the
IRL space can be made arbitrarily small. If we can provide
conditions under which the desired policy is elicited before
the volume of the IRL space falls below some threshold, we
can guarantee logarithmic convergence.

One condition that leads to logarithmic convergence is to
ensure that all points within a small hypercube centered at
the true reward are contained in the initial IRL space and
never removed by added IRL constraints in cases where a so-
lution exist. If points within this hypercube are chosen for
bR, the minimal slack over the target policy ensures that πT

is elicited. Under this condition, this suggests that we can
stop the elicitation process after logarithmic rounds because
we will either elicit the desired policy before the volume of
the IRL space drops below the volume of the hypercube, or
the true agent reward must not be contained in the initial
IRL space and thus there are no possible solutions.6 Un-
fortunately, this condition is not satisfied by Algorithm 1
5Throughout this paper, any mention of a hypercube refers
to a closed, axis-aligned hypercube.
6Bertsimas and Vempala [4] used this general observation to
formulate an algorithm for finding a point in a convex set
specified by a separation oracle with logarithmic queries.

̂R

H̄(π′, ̂∆)

Rtrue

P (π′, ̂∆)

(R + ̂∆) ∈ IRL
π
′

IRL space

Figure 1: A condition that ensures logarithmic convergence re-
quires a hypercube of points around the true reward Rtrue to be
maintained throughout the elicitation process. The larger poly-
hedron in the figure represents the IRL space of rewards that
have yet to be falsified. Given an observation π′ based on in-

centives b∆, the IRL constraints (R + b∆) ∈ IRL
π′

represented
by the smaller polyhedron may eliminate some points within the
hypercube of points centered at Rtrue. To avoid this, we find a

separating hyperplane P (π′, b∆) between the hypercube centered

at bR and the IRL constraints, and shift P (π′, b∆) towards bR until

it is arbitrarily close to bR. The resulting hyperplane P̄ (π′, b∆)

separates bR and the hypercube centered at Rtrue. Adding the

corresponding halfspace H̄(π′, b∆) instead of the IRL constraints
ensures logarithmic convergence.

because IRL constraints may eliminate some points in the
small hypercube centered at the true reward Rtrue. For a

reward guess bR and associated incentive b∆, the observed
policy π′ will be optimal for Rtrue but may not be optimal
for all reward functions in the hypercube centered at Rtrue.

Nevertheless, we can modify our current algorithm to en-
sure that a hypercube of points centered at Rtrue are never
eliminated. To do this, we adopt a technique introduced for
the general environment design problem [20]. Since Theo-
rem 3 ensures that all points within a closed hypercube of

side length δ centered at bR are eliminated by added IRL
constraints, by convexity there exists a separating hyper-
plane between this hypercube and the IRL constraints. Let

P (π′, b∆) be such a separating hyperplane, and let P̄ (π′, b∆)

denote a hyperplane that results from relaxing P (π′, b∆) in
the direction perpendicular to itself until it is arbitrarily

close to bR. Let H̄(π′, b∆) be the halfspace not containing bR
that is defined by P̄ (π′, b∆). Since P (π′, b∆) separates Rtrue

from a hypercube of side length δ centered at bR, P̄ (π′, b∆)

will separate bR from a hypercube of side length δ centered
at Rtrue, as shown in Figure 1. This ensures that finding

H̄(π′, b∆) and adding it instead of IRL constraints will lead
to logarithmic convergence.

In this setting, the hypercube of points centered at bR and
the IRL constraints are both characterized by linear con-
straints. This allows us to find the separating hyperplane

P (π′, b∆) by solving a simple linear program (e.g., see The-

orem 10.4 of [18]). We can easily find P̄ (π′, b∆) by relax-

ing P (π′, b∆) until it almost passes through bR and define

H̄(π′, b∆) accordingly.
While this technique will lead to logarithmic convergence,

it is a somewhat unsatisfying solution in that the found half-
space is a relaxation of the IRL constraints that may be

much weaker than the full set of IRL constraints. One pos-
sible alternative is to relax each of the IRL constraints and
use these relaxed constraints instead of H̄(π′, b∆). Given ob-

servation π′ based on b∆, consider the following relaxed IRL
constraints (rIRL):

(Pπ′ − Pa)(I− γPπ′)−1[s](R + b∆ + ksa) ≥ 0 ∀s, a (8)

Here ksa is a |S|-dimensional vector of parameter values
whose i-th element is δ

2
if (Pπ′ − Pa)(I− γPπ′)−1[s][i] > 0

and − δ
2

otherwise. Given an observation π, we let rIRLπ
δ

denote the relaxed IRL constraints.
This relaxation is sufficient to ensure that all points within

a closed hypercube of side length δ centered at the true re-
ward are not eliminated by relaxed IRL constraints. If any

of the relaxed constraints eliminate bR, then the intersec-

tion of all the relaxed constraints will also eliminate bR and
we can thus add the entire set of rIRL constraints. How-
ever, it is possible to construct examples in which none of

the relaxed constraints eliminate the reward guess bR. This
can only occur in situations where none of the individual
IRL constraints eliminate the hypercube of points around
bR, which we expect to be fairly unlikely. Since it is easy to

check whether bR is eliminated by plugging the point into the
rIRL constraints, we propose an algorithm that adds rIRL

constraints whenever possible and falls back to add H̄(π′, b∆)
instead if necessary.

In adapting the algorithm to achieve logarithmic conver-
gence, we assume that the boundaries of the reward space
are chosen such that the agent’s true reward is bounded
in absolute value by Rmax − δ in every state. We define
a modified version of Algorithm 1, denoted Algorithm 1*,
where: (i) line 2 of Algorithm 1 adds R ∈ rIRLπ

δ instead
of R ∈ IRLπ to K, (ii) Algorithm 1 returns FAILURE if it
has not returned after 1 + |S|⌈logb⌈

Rmax

δ
⌉⌉ rounds, where

b = 1
1−k

for some k such that 0 < k < 1
e
, and (iii) given

observed policy π′ based on b∆, do not add (R+ b∆) ∈ IRLπ′

to K. Instead, check whether (bR + b∆) ∈ rIRLπ′

δ . If not,

add (R + b∆) ∈ rIRLπ′

δ to K. Otherwise, find H̄(π′, b∆) and
add it to K.

Theorem 5. Assume the agent’s true reward is bounded

by Rmax − δ in every state, where δ = ǫ(1−γ)
γ

− κ for some
arbitrarily small κ > 0. For any elicitation strategy that

picks the centroid of Bt
K for bR, Algorithm 1∗ terminates

with a solution to the policy teaching problem with unknown
rewards or returns FAILURE if no solution exists after at
most 1 + ⌈logb⌈(

Rmax

δ
)|S|⌉⌉ iterations.

Since H̄(π′, b∆) and added rIRL constraints eliminate the
centroid of the IRL space while preserving a closed hyper-
cube of points centered at the agent’s true reward, the con-
dition required for logarithmic convergence is satisfied and
Theorem 5 follows. Here (Rmax

δ
)|S| is the number of non-

overlapping hypercubes with side length δ that fit within the
bounded space of rewards considered. This can be viewed
as the size of the elicitation problem, and the bound given
by Theorem 5 is logarithmic in this dimension. This loga-
rithmic bound is still linear in the number of states though,
because only one of the constraints added at each iteration
is guaranteed to cut off a constant fraction of the volume.

Although computing the centroid exactly is #P-hard [17],
polynomial time, randomized algorithms exist and extend

Grünbaum’s result to the case of the approximate centroid.
Bertsimas and Vempala [4] showed that any halfspace con-
taining the average of O(n) uniform samples from a convex
set in ℜn will cut off a constant fraction of its volume with
arbitrarily high probability. Using this result, we can con-

struct an elicitation strategy that allows bR to be computed
in polynomial time while guaranteeing logarithmic conver-
gence with arbitrarily high probability:

Theorem 6. Assume the agent’s true reward is bounded
by Rmax − δ in every state. For any elicitation strategy
that picks the average of O(|S|) points sampled uniformly

from Bt
K for bR, with arbitrarily high probability, Algorithm

1∗ terminates with a solution to the policy teaching problem
with unknown rewards or returns FAILURE if no solution
exists after at most 1 + ⌈logb⌈(

Rmax

δ
)|S|⌉⌉ iterations.

Each iteration of Algorithm 1∗ with sampling is solvable in
time polynomial in the number of states and actions. Since
sampling O(|S|) points uniformly takes O(|S|4) steps of a
random walk that requires O(|S|2) operations per step, com-

puting bR this way is O(|S|6) [4]. One can then find b∆ satis-

fying (bR + b∆) ∈ IRLπ′

ǫ by solving a simple linear program.

4.2 Two-sided slack maximization heuristics
Despite the theoretical guarantees, a centroid-based ap-

proach may not scale well in practice for large state spaces.
For this reason we also consider a heuristic approach to elic-
itation. We adopt a two-sided slack maximization heuristic
defined for value-based policy teaching [21] to the present
case of a fixed target policy, where we again obtain com-
putational advantages over the value-based setting. From
Theorem 3, we know that the minimal slack ǫ over the tar-
get policy provides a volume of points around an eliminated
bR that are not the agent’s true reward. If this volume of
points is large and contained within the current IRL space,
the added IRL constraints are guaranteed to make a large
cut. The goal then is to perform a two-sided slack maxi-

mization to find a large volume of points around bR that are
contained in the IRL space and that will be eliminated if
the desired policy is not induced.

We consider the objective of choosing bR and b∆ to maxi-
mize the minimal slack across all slack on the agent’s initial
policy π, induced policies π′, and target policy πT . We
introduce a variable β to capture the minimal slack. We
introduce variables αs for all states s to capture the abso-
lute value of the reward guess, and add a λ-weighted penalty
term to the objective function. This allows us to express a
preference for simpler rewards, and prevents the objective

from choosing a large bR for the sake of increasing the slack.
We have the following objective and constraints:

max β − λ
X

s

αs (9)

((PπT
− Pa)(I− γPπT

)−1
RT)[s] ≥ β ∀a, s

((Pπ − Pa)(I− γPπ)−1
R)[s] ≥ β ∀a, s

((Pπ′ −Pa)(I− γPπ′)−1(R + b∆))[s] ≥ β ∀a, s, (π′, b∆)

αs ≥ R(s) ∀s

αs ≥ −R(s) ∀s

We can use this heuristic to find bR and b∆ in Algorithm 1
by solving a linear program containing the above equations

and the constraints from the constraint set K. In round t of
the elicitation process, the algorithm will generate a linear
program with approximately 2t|S||A| constraints, which can
then be solved efficiently using standard techniques.

Many variants of the above heuristic are possible. For ex-
ample, instead of using a shared slack β, one can introduce
slack variables βs for each state s, and maximize

P
s βs in

the objective. While the hypercube of points guaranteed
to be eliminated is only provided through the smallest βs,
many points are likely to be eliminated when the slacks are
large. To ensure a large volume, one can introduce a bal-
ancing variable L to capture the maximal absolute difference
between any pair of βs’s, and add a θ-weighted term to the
objective to penalize large differences. One obtains the fol-
lowing objective function and balancing constraint (other
constraints remain as they were, with βs replacing β):

max
X

s

βs − λ
X

s

αs − θL (10)

βs − βs′ ≤ L ∀s, s′ ∈ S, s 6= s′

We investigate these variations in the next section, where
we consider a concrete example of a policy teaching problem
in the ad network setting.

5. EXAMPLE: HYPERLINK DESIGN IN AN

AD NETWORK
In an ad network, an ad provider serves advertising on a

publisher’s web site and the advertising revenue is shared
between the two parties. An ad network provides a source
of revenue for the publisher and ad provider, and matches
web surfers to ads relevant to a web page’s content. In 2008,
Google generated $6.7 billion of revenue from its AdSense
program, almost 80% of which were paid to publishers.7

Suppose that an ad provider wishes to affect the decisions
of a publisher designing the hyperlink structure of a web
site. The hyperlinks on web pages serve as paths for surfers
to follow, and are designed to direct traffic as desired. From
the publisher’s perspective, a good hyperlink design directs
surfers both to pages that generate high revenue, and to
pages for which the publisher derives value from sharing
the pages’ contents. From the ad provider’s perspective, a
good hyperlink design directs surfers solely to pages that
generate high ad revenue for the ad provider. By offering
a larger share of the ad revenue on certain pages, the ad
provider can try to induce the publisher to choose a more
ad-effective hyperlink structure.

Immorlica et al. [10] provided a model of the publisher’s
hyperlink design problem.8 For convenience, we adopt a
simplified version of the publisher’s decision model for the
policy teaching problem. We define a set of states S where
each state represents a page on the publisher’s web site. Let
R(s) represent the publisher’s utility for a surfer visiting
page s. An action a ∈ A selects a set of hyperlinks H ⊂ S
to place on a page. Choosing an action a in state s induces
a probabilistic transition P (s, a, s′) that denotes the proba-
bility a surfer on page s clicks on a link to a page s′, given

7Financial releases, http://investor.google.com
8The authors were concerned with characterizing the core
of a cooperative game in which each web page on the pub-
lisher’s web site is controlled by an autonomous agent. In
their work there is no ad provider who is trying to influence
the publisher’s decisions, and no issues of unknown reward.

the hyperlinks on page s as selected by a. We introduce
a dummy start state to indicate a surfer entering the web
site, where P (start, a, s) represents the probability of a user
starting on a page s and is independent of a. We also in-
troduce an absorbing terminal state sE to indicate a surfer
leaving the web site, where P (sE, a, sE) = 1 for all a ∈ A.
We assume the probability that a surfer leaves the web site
at any time step is constant, such that P (s, a, sE) = d for all
s ∈ S, a ∈ A. The discount factor γ is set to 1 − d and rep-
resents the probability of a surfer staying on the web site.
Without loss of generality we set R(start) = R(sE) = 0.
The publisher chooses an optimal hyperlink design π to max-
imize his expected sum of rewards from a surfer visiting the
web site.

We consider an ad provider who observes the publisher’s
hyperlink design and knows M−R = {S, A,P, γ}. These as-
sumptions are reasonable because hyperlinks on web pages
are public and traffic data is often provided to the publisher
by the ad network. The ad provider does not know the pub-
lisher’s reward function R, and cannot elicit this information
directly. The ad provider can interact with the publisher
multiple times, and aims to find an admissible incentive ∆
to induce a desired hyperlink design πT .

5.1 Simulated ad network
Assuming that a publisher is myopically rational and his

reward function is persistent, we can apply the active indi-
rect elicitation method to solve this policy teaching problem.
As we are interested in seeing how our algorithm and elicita-
tion heuristics may work in practice, we conduct preliminary
experiments on a simulated ad network with the following
parameters. We consider problem instances with 20 to 100
web pages and 5 actions. Each action a is generated to se-
lect from a specified set of 20 candidate pages, such that
with probability 1

2
a candidate page is one of the hyperlinks

a places. We can view the candidate pages as the set of
important pages on the web site, such that the publisher
is deciding on which of these pages to include in the nav-
igational links on each page. For each action a in state s,
the transition function assigns positive probabilities to pages
selected by a uniformly at random. These probabilities are
scaled to sum to γ = 1 − d = 0.7, such that at any given
time there is a 30% chance that a surfer leaves the web site.

The publisher’s reward for each page is selected uniformly
from [0,3]. Given the publisher’s reward R, we find the inter-
ested party’s target policy πT by adding perturbations uni-
formly distributed from [0,1] to R and computing the opti-
mal policy, discarding cases where the target policy matches
the publisher’s optimal policy. We set the minimal slack
ǫ = 0.001 and ∆max = 10, and set the incentive limit Dmax

by finding the minimal incentives necessary to strictly in-
duce this policy by solving the linear program in Theorem
3 without the limited spending constraint.9

9With rewards defined over states, policies exist for which
no reward functions can strictly induce these policies. To see
this, consider an example of a 2 state MDP with actions stay
and move. A policy which chooses to stay in both states im-
plies a reward function with equal value for the two states.
When reward functions are generalized to state-action pairs,
every policy can be strictly supported by some reward func-
tion, e.g. by assigning positive rewards to pairs matching
the agent’s policy and 0 everywhere else. For the purposes
of our experiment, we discard any generated instances for
which no rewards strictly induce the target policy.

5.2 Experimental Setup
We perform simulations to evaluate the effectiveness of

our elicitation method with various max-slack heuristics. We
consider four different slack-based heuristics, corresponding

to choosing bR and b∆ to maximize the agent side slack, the
target side slack, the two-sided slack, and the two-sided
slack with a balancing term. We implement our methods
in JAVA, using JOPT10 as an interface to CPLEX version
10.1, which serves as our back-end LP solver. Experiments
are conducted on a local machine with a Pentium IV 2.4Ghz
processor and 2GB of RAM. We run 20 trials for each prob-
lem size and elicitation heuristic.

We need to set a few parameters for the algorithm and
the elicitation heuristics. We set Rmax = 50, which gives a
large initial space of rewards that the algorithm will have to
elicit over. For our max-slack heuristics, we wish to set the
reward-penalizing coefficient small enough to avoid the ob-
jective function from choosing rewards with small slack and
large enough to prevent choosing large rewards close to Rmax

for the sake of increasing the slack. To do this, we consider
the max-slack objective function with only IRL constraints
over the agent’s initial policy, and perform a binary search
to find the phase transition λ0 where the solution reward is
0 everywhere for λ > λ0 [15]. Since rewards just below λ0

have zero reward in most states, they are likely to have small
slack in many states. For our experiments then, we heuris-
tically set λ = λ0

2
. Finally, for the variant of the max-slack

heuristic with a balancing penalty term, we set θ = 0.75|S|
to tradeoff between maximizing the minimal slack and the
sum of slacks.

For all considered heuristics, each round of elicitation only
requires solving a linear program, which only takes one to
two seconds even for problems with 100 web pages. This
presents a major improvement over value-based policy teach-
ing [21], where computation time scaled exponentially in the
number of states and problem instances with 20 states and
5 actions were already taking 4–7 minutes to solve.

5.3 Results
We plot the average number of elicitation rounds on differ-

ent problem sizes for the four max-slack heuristics in Figure
2. In all cases considered, the elicitation process converged
in fewer than 13 rounds on average. For most problem sizes,
the two-sided slack with balancing objective averaged fewer
rounds than the other heuristics, whereas the agent slack
heuristic averaged more rounds than others.11 In comparing
the results to our theoretical bound, notice that the average
number of elicitation rounds stays mostly constant as the
number of states increases, whereas the logarithmic conver-
gence bound is linear in the number of states. One possible
explanation is that the IRL constraints are providing |S||A|
constraints per observation, as opposed to the one separat-
ing hyperplane used to establish the logarithmic convergence

10http://econcs.eecs.harvard.edu/jopt
11For each problem size, we conducted two-sample t-tests for
the means for all pairs of heuristics. For most treatments,
the difference in the average number of elicitation rounds is
not statistically significant at the 5% level for a two-tailed
test. There were a few treatments where the means between
particular treatments were statistically significant, e.g., be-
tween the two-sided balancing and agent slack heuristics for
30, 50, and 80 states. However, more trials are required to
obtain definitive results in this setting.

 8

 9

 10

 11

 12

 13

 14

 20 30 40 50 60 70 80 90 100

Number of States

Elicitation Rounds vs. Number of States
R

o
u
n
d
s

agent slack only
target slack only

two-sided slack
two-sided balancing

Figure 2: Convergence results for policy teaching on a simulated
ad network. Results represent averages over 20 trials. The stan-
dard errors (not shown), averaged across all states, are 0.95, 0.70,
0.76, 0.68 for agent, target, two-sided, and two-sided balancing
slack heuristics respectively.

bound. While our observation is only for this particular sim-
ulated setting, the results show some promise that the elic-
itation method and max-slack heuristics may be useful in
practice.

6. HANDLING PARTIAL OBSERVATIONS

AND PARTIAL TARGET POLICIES
We consider extensions of our model to handle situations

where an interested party only observes the agent’s actions
in a subset of the states and may only wish to influence
the agent’s policy in a subset of the states. The results
here also apply to situations of partial observations and full
target policy, and vice versa. We envision a setting in which
the interested party can only observe the agent’s policy in a
subset O of the state space S, such that the other states are
private to the agent. Furthermore, instead of observing the
agent’s policy in all states s ∈ O, we assume the interested
party only observes a trajectory of state-action pairs through
states in J ⊂ O, where the set J depends both on the agent’s
policy and on the realization of the probabilistic transitions
as the agent follows his policy.

In addition, we assume that the interested party’s desired
policy is only defined on a subset G of the state space S,
such that the interested party specifies desired actions for
states in G but is indifferent among agent actions in the
other states. We denote a partial policy by πG

T , such that
the interested party aims to induce πG

T even if some states
in G are unobservable (not in O) or unobserved (not in J).
We denote a partial observation by πJ , and assume that the
interested party’s goal is met as long as the actions in the
observed states are as desired, such that πJ (s) = πG

T (s) for
all s ∈ J ∩ G.12

Partial observations and partial target policies present
both computational and learning challenges. Computation-

12While some states are unobserved, the interested party may
still be able to infer information about the agent’s actions
in these states based on knowledge about the agent’s reward
function. That said, we are only interested in eliciting de-
sired actions in the observable states, whereas in principal-
agent models the goal is often to elicit actions in hidden
states.

ally, we can no longer write down IRL constraints on ob-
servations and target policies because such constraints are
defined with respect to a fully specified policy. For learning
the agent’s reward, our convergence results rely on eliminat-
ing a closed hypercube of points around a reward guess. It is
not immediately clear whether partial observations based on
a subset of the states is sufficient for the elicitation method
to make progress. A similar problem exists for a partial tar-
get policy, where in providing incentives we aim to strictly
induce the target policy in a subset of the states regardless
of the agent’s actions in other states.

To handle partial observations, we introduce binary vari-
ables Xsa over whether the agent took action a in state

s. For any observation πJ and corresponding incentive b∆,
we can write down ‘partial IRL’ constraints that ensure the
agent’s Q values for observed decisions are higher than that
of other actions, leaving unobserved decisions as variables:

Q(s, a) = R(s) + b∆(s) + γPs,aV ∀s ∈ S, a ∈ A (11)

V (s) ≥ Q(s, a) ∀s ∈ S, a ∈ A (12)

V (s) ≤ Mv(1 − Xsa) + Q(s, a) ∀s ∈ S, a ∈ A (13)

Xsa = o(s, a) ∀s ∈ J (14)
X

a
Xsa = 1 ∀s ∈ S (15)

Xsa ∈ {0, 1} ∀s ∈ S, a ∈ A (16)

Here Q, R, V , and X are variables. For all s ∈ J , o(s, a) = 1
if πJ (s) = a and o(s, a) = 0 otherwise; Mv = Mv − Mv,

Mv = (∆max + Rmax)/(1 − γ), Mv = −Rmax/(1 − γ). Con-
straints 11–13 ensure that the agent’s policy is optimal with

respect to his true reward and the provided incentive b∆.
Constraint 14 assigns values to the binary variables for ob-
served state-actions, and constraint 15 ensures that only
one action is chosen per state. The Big-M constant Mv

is set such that V (s) = Q(s, a) for optimal actions and
V (s) ≥ Q(s, a) otherwise. Note that the above constraints
correspond to a particular observation, and we would intro-
duce additional variables Q, V , and X for another observa-
tion, where the constraints from different observations are
coupled only by the reward variable R.

At each round of elicitation, the interested party must

choose bR and b∆ such that bR is consistent with all past partial

observations and bR + b∆ strictly induces the partial target
policy. We can write ‘partial IRL’ constraints on the partial
target policy similarly:

Q(s, a) = R(s) + ∆(s) + γPs,aV ∀s ∈ S, a ∈ A (17)

V (s) ≥ Q(s, a) ∀s ∈ S, a ∈ A (18)

V (s) ≤ Mv(1 − Xsa) + Q(s, a) ∀s ∈ S, a ∈ A (19)

ǫ − ǫXsa ≤ V (s) − Q(s, a) ∀s ∈ G, a ∈ A (20)

Xsa = t(s, a) ∀s ∈ G (21)
X

a
Xsa = 1 ∀s ∈ S (22)

Xsa ∈ {0, 1} ∀s ∈ S, a ∈ A (23)

Here Q, ∆, V , and X are variables specific to the partial
target policy, and R is the reward variable shared with the
partial IRL constraints from observed policies. For all s ∈ G,
t(s, a) = 1 if πG

T (s) = a and t(s, a) = 0 otherwise. Con-
straint 20 ensures that the interested party strictly prefers
desired actions for states in G.

The computational concerns are manifested in the use of
binary variables and the need to move to a mixed-integer
program from a linear program.13 For the case of unknown
rewards, we can still guarantee elicitation convergence:

Theorem 7. Consider the policy teaching problem with
unknown rewards in a setting with partial observations and
a partial target policy. Modify Algorithm 1 to add partial
IRL constraints instead of IRL constraints, both for partial
observations and the partial target policy. The elicitation
process terminates after finite ∆ adjustments with an agent
performing the desired actions in the specified states that
are observed, or returns FAILURE if no admissible ∆ exists
to strictly induce the partial target policy for some minimal
slack ǫ > 0.

The key insight here is that when the reward guess and
incentives are chosen to strictly induce a partial target pol-
icy, any partial observations to the contrary will falsify the
reward guess and a volume of points around it. This is be-
cause points around the reward guess also strictly induce
the partial target policy. These points may induce different
actions in states not in G, but actions in those states are
irrelevant. Given this, we can establish convergence as we
had done for the standard model. Since partial observations
and the partial target policy can be described solely with
constraints, we can still choose any elicitation strategy for

picking bR and b∆.
The new learning challenge is manifested here in that we

are no longer able to provide logarithmic convergence re-
sults. The problem is that the IRL space with the partial
constraints is no longer guaranteed to be convex.

Remark. With partial observations it is possible for the
agent to follow a trajectory consistent with the desired be-
havior but later follow another trajectory under the same
incentives that reveals states in which the agent’s policy is
inconsistent with the desired policy. This poses no issues for
the elicitation algorithm, as we can just provide the same in-
centives until we observe agent actions that differ from the
partial target policy. In this sense the algorithm remains
“open” while waiting for another ∆ adjustment, because it
may be that some state has not been traversed, and that
this will occur with only very low probability. Once such
states are traversed and an action is wrong, this presents
new evidence and thus a new ∆ is triggered.

7. HANDLING STRATEGIC AGENTS
Our discussion thus far relies on the assumption that an

agent plans optimally with respect to the incentives cur-
rently provided and without consideration of the effect on
future incentive provisions. While well motivated in many
domains, we are interested also in handling both myopic and
strategic agents in the same framework. A strategic agent
may perform suboptimally in the current interaction in an
attempt to distort the interested party’s beliefs about his
preferences. For example, a user who is willing to take a
survey for a $5 gift certificate may nevertheless refuse to
take the survey today if he believes that this refusal may
lead to a better offer in the future.

13The technique of using binary variables to explicitly cap-
ture the agent’s optimal policy is adopted from value-based
policy teaching [21].

For the purpose of analysis, we consider an infinitely re-
peated game, in which each stage game describes the inter-
ested party’s interaction with the agent. We assume that the
interested party aims to induce the desired policy πT and is
indifferent with respect to the exact incentive provision as
long as it is admissible. Furthermore, we assume that the
agent knows the interested party’s desired policy, and dis-
counts values received in future interactions by a constant
discount factor.

A standard approach to induce a strategic agent to choose
a desired action is to use a trigger strategy, that provides
maximal incentives as long as the agent performs the de-
sired action but stops providing incentives as soon as any
deviation is observed. This can be applied to the policy
teaching problem; if an agent is sufficiently patient, he will
perform πT as long as doing so is better than his optimal pol-
icy without additional incentives. The interested party can
immediately induce the desired policy, and without having
to elicit underlying preferences.

However, this trigger-strategy approach does not satisfac-
torily solve the policy teaching problem. First, it is the
threat to remove incentives in the future that induces the
agent to follow πT and the provided incentives need not
make following πT myopically optimal for the agent. This
is outside the spirit of environment design, which aims to
align the agent’s optimal behavior in the current environ-
ment with that of the interested party and seeks to at least
handle myopic planners. In extending to handle strategic
agents, we do still want to also handle myopic agents. Sec-
ond, the equilibrium based on the trigger strategy is not sub-
game perfect. Given the agent’s policy, the interested party
cannot commit to providing no future incentives because
doing so implies that it will fail to implement the desired
policy. Third, the trigger strategy does not allow any error
from the agent’s side and is thus quite a fragile solution.

Instead of pursuing a trigger strategy approach, we present
an incentive scheme based on the active indirect elicitation
method that overcomes these challenges and embraces both
myopic and strategic agents. We consider a sufficiently pa-
tient agent, which means an agent that has a high discount
factor for interactions with the interested party:

Theorem 8. Consider a strategic agent for whom there
exists an admissible ∆ such that (R +∆) ∈ IRLπT

ǫ for some
ǫ > 0. Consider an interested party who does not know R,
follows Algorithm 1 when the IRL space is nonempty, and
provides no incentives otherwise. There is a discount factor
less than 1 with respect to interactions with the interested
party for which the strategic agent will perform the desired
policy before the IRL space becomes empty.

This method guarantees that the interested party can in-
duce the desired policy even if a strategic agent misrepre-
sents his preferences. Compared with the trigger strategy
approach, this approach works for both myopic and strate-
gic agents. The key to the result is to recognize that it
remains in the interest of a patient, but strategic agent to
eventually receive incentives that induce the target policy
when this is reachable through some admissible incentives.
Thus, although the agent may misrepresent his rewards, he
will not do so to the extent that this leads to a situation in
which the target policy becomes unreachable, either because
of inconsistencies due to an empty IRL space or because of
inadmissibility due to the agent being too “greedy.”

Although we do not argue that the strategy of the in-
terested party forms an equilibrium with that of the agent,
there is a sense in which the commitment issue is less severe
than with the trigger approach. In particular, if the inter-
ested party adopts myopic beliefs – namely that the agent
is acting in each round according to his underlying prefer-
ences – then the IRL space represents the space of agent
rewards consistent with observations. Since the interested
party selects incentives in each round that are optimal for
some reward from this space, in this sense the interested
party is always myopically best-responding to the agent.

Note that following the elicitation method does not guar-
antee that the interested party will achieve the target policy
with a minimal incentive provision. Any incentives up to
Dmax may be provided, and this is true for the trigger strat-
egy as well. In situations where the value of having the agent
follow the desired policy greatly outweighs the specific costs
of incentives, this is not a major issue. On the other hand,
since Theorem 8 is based on the active indirect elicitation
method, all our results on logarithmic convergence continue
to hold and thus this method satisfies an interested party
who is concerned about inducing the desired policy quickly.

8. CONCLUSIONS
The policy teaching problem is a specific example of the

general problem of environment design, which is a powerful
framework for action elicitation in environments with self-
interested agents. We present a solution to the problem of
finding limited incentives to induce a particular target pol-
icy, and provide tractable methods to elicit the desired policy
after few interactions. Future work can look to extend this
policy teaching framework by considering multiple agents, or
learning (rather than planning) agents, adopting a Bayesian
framework, or introducing alternative design levers beyond
providing incentives. We would also like to further evaluate
our algorithms in other settings to gain some insight into
the elicitation process.

Acknowledgments

The authors gratefully acknowledge useful feedback from
Jerry Green, Avi Pfeffer, Michael Mitzenmacher, and the
anonymous reviewers on earlier versions of the paper. This
work is supported in part by an NDSEG Graduate Fellow-
ship to the first author.

9. REFERENCES

[1] M. Babaioff, M. Feldman, and N. Nisan.
Combinatorial agency. In Proc. 7th ACM Conference
on Electronic Commerce (EC’06), pages 18–28, 2006.

[2] M. Babaioff, M. Feldman, and N. Nisan. Mixed
strategies in combinatorial agency. In Proc. 2nd Int.
Workshop on Internet and Network Economics
(WINE’06), 2006.

[3] D. Bergemann and J. Valimaki. Learning and strategic
pricing. Econometrica, 64(5):1125–49, September 1996.

[4] D. Bertsimas and S. Vempala. Solving convex
programs by random walks. Journal of the ACM,
51(4):540–556, 2004.

[5] P. Bolton and M. Dewatripont. Contract Theory. MIT
Press, 2005.

[6] U. Chajewska, D. Koller, and D. Ormoneit. Learning
an agent’s utility function by observing behavior. In
Proc. 18th International Conf. on Machine Learning,
pages 35–42, 2001.

[7] J. Chuang, M. Feldman, and M. Babaioff. Incentives
in peer-to-peer systems. In N. Nisan, T. Roughgarden,
E. Tardos, and V. Vazirani, editors, Algorithmic Game
Theory. Cambridge University Press, 2007.

[8] M. Feldman, J. Chuang, I. Stoica, and S. Shenker.
Hidden-action in multi-hop routing. In Proc. 6th ACM
Conference on Electronic Commerce (EC’05), pages
117–126, 2005.

[9] B. Grunbaum. Partitions of mass-distributions and of
convex bodies by hyperplanes. Pacific Journal of
Mathematics, 10(4):1257–1261, 1960.

[10] N. Immorlica, K. Jain, and M. Mahdian.
Game-theoretic aspects of designing hyperlink
structures. In Proc. 2nd Int. Workshop on Internet
and Network Economics (WINE’06), pages 150–161,
2006.

[11] M. O. Jackson. Mechanism theory. In U. Derigs,
editor, The Encyclopedia of Life Support Systems.
EOLSS Publishers, 2003.

[12] G. Keller and S. Rady. Optimal experimentation in a
changing environment. Review of Economic Studies,
66(3):475–507, July 1999.

[13] J.-J. Laffont and D. Martimort. The Theory of
Incentives: The Principal-Agent Model. Princeton
University Press, 2001.

[14] D. Monderer and M. Tennenholtz. k-implementation.
In EC ’03: Proceedings of the 4th ACM conference on
Electronic commerce, pages 19–28, New York, NY,
USA, 2003. ACM.

[15] A. Y. Ng and S. J. Russell. Algorithms for inverse
reinforcement learning. In ICML ’00: Proceedings of
the Seventeenth International Conference on Machine
Learning, pages 663–670, 2000.

[16] M. L. Puterman. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons,
New York, 1994.

[17] L. A. Rademacher. Approximating the centroid is
hard. In SCG ’07: Proceedings of the twenty-third
annual symposium on Computational geometry, pages
302–305, New York, NY, USA, 2007. ACM.

[18] R. Vanderbei. Linear programming : foundations and
extensions. Springer, 3rd edition, 2008.

[19] H. Varian. Revealed preference. In M. Szenberg,
editor, Samuelsonian Economics and the 21st
Century. Oxford University Press, 2003.

[20] H. Zhang, Y. Chen, and D. Parkes. A general
approach to environment design with one agent. In
Proceedings of the Twenty-first International Joint
Conference on Artificial Intelligence (IJCAI-09), 2009.

[21] H. Zhang and D. Parkes. Value-based policy teaching
with active indirect elicitation. In Proceedings of the
Twenty-Third National Conference on Artificial
Intelligence (AAAI-2008), 2008.

[22] H. Zhang and S. Zenios. A dynamic principal-agent
model with hidden information: Sequential optimality
through truthful state revelation. Operations Research,
56(3):681–696, 2008.

