
Telescope: Fine-Tuned Discovery of Interactive Web UI
Feature Implementation

Joshua Hibschman
Northwestern University

Evanston, IL USA
jh@u.northwestern.edu

Haoqi Zhang
Northwestern University

Evanston, IL USA
hq@northwestern.edu

ABSTRACT
Professional websites contain rich interactive features that de-
velopers can learn from, yet understanding their implemen-
tation remains a challenge due to the nature of unfamiliar
code. Existing tools provide affordances to analyze source
code, but feature-rich websites reveal tens of thousands of
lines of code and can easily overwhelm the user. We thus
present Telescope, a platform for discovering how JavaScript
and HTML support a website interaction. Telescope helps
users understand unfamiliar website code through a compos-
ite view they control by adjusting JavaScript detail, scoping
the runtime timeline, and triggering relational links between
JS, HTML, and website components. To support these affor-
dances on the open web, Telescope instruments the JavaScript
in a website without request intercepts using a novel sleight-
of-hand technique, then watches for traces emitted from the
website. In a case study across seven popular websites, Tele-
scope helped identify less than 150 lines of front-end code
out of tens of thousands that accurately describe the desired
interaction in six of the sites. In an exploratory user study, we
observed users identifying difficult programming concepts by
developing strategies to analyze relatively small amounts of
unfamiliar website source code with Telescope.

ACM Classification Keywords
H.5.2 User Interfaces: Graphical user interfaces (GUI)

Author Keywords
Reverse Engineering; Inspecting; Tracing; Web; JavaScript

INTRODUCTION
Online platforms for learning to code such as StackOverflow,
TutsPlus, and CodeSchool attract millions of learners and sig-
nificantly expand the pool of advanced beginners, yet critical
gaps in knowledge and experience remain between advanced
beginners and professionals. Current platforms provide few
resources for progressing from learning to write function-
ing code to writing production-quality software. Professional
training programs exist, but cost tens of thousands of dollars
and are thus not accessible to most. Mentoring and coaching
is effective but not currently scalable.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST’16, October 16 - 19, 2016, Tokyo, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4189-9/16/10...$15.00
DOI: http://dx.doi.org/10.1145/2984511.2984570

Figure 1. The Telescope platform promotes user discovery of website
feature implementations by allowing the user to fine-tune the JavaScript
display across time and detail and follow visual links between JavaScript
and HTML.

Our work aims to support authentic learning [28] by gener-
ating low-barrier learning materials to understand code from
professional websites of personal interest. Professional web-
sites offer rich details missing from training examples, con-
tent that relates to the real world, and opportunities to think in
the models of the discipline. However, despite the abundant
availability of front-end code, website source code is difficult
to read and can contain superfluous details that distract from
learning core concepts.

Deriving learning material from websites presents design and
technical challenges due to the magnitude and complexity of
the underlying source code. A simple UI interaction may
require only ten lines of JavaScript, but modern web pro-
duction engineering practices make use of libraries and build
processes that can push front-end lines of code into the tens
of thousands [4, 27, 30]. Bindings between HTML and
JavaScript support an interaction, but it is difficult to deter-
mine how such bindings are constructed. A simple calendar
widget, for example, could be created entirely in JavaScript
and appended to the DOM with listeners, or it could be built
in HTML and CSS with inline calls to JavaScript hooks.
Embedding the widget amidst all its library or utility code
in a minification build process blurs the location and scope
of code most relevant to enabling the widget’s functionality.
With existing tools [23, 26, 18, 8, 1, 12, 3], it is difficult to
(1) capture the entire scope of JavaScript used, (2) identify the
interplay between JavaScript and HTML, and (3) trim away
inactive code and library code that get in the way of learning.

We thus introduce Telescope, a platform that supports the
discovery of website feature implementation by allowing the

user to fine-tune a composite view of responsible JavaScript
and explore visual links between JavaScript, HTML, and ren-
dered UI components (see Figure 1). Telescope helps users
generate low-barrier learning materials — less than two hun-
dred lines of code — from tens of thousands of lines of com-
plex website code. For example, a curious user could dis-
cover how an interactive map component achieves its drag-
ging effect in JavaScript and HTML by setting Telescope’s
JavaScript detail level to minimum (dom-modifiers only) and
time constraints before and after the click-and-drag. By click-
ing call and query markers in the interface, visual lines con-
nect JavaScript methods to queried DOM elements, and cor-
responding DOM components are highlighted in the website.

The conceptual contribution of this work is the idea of helping
users understand complex website code by generating low-
barrier learning materials. Telescope introduces three design
principles to support this idea:

1. Single Composite View: As a user interacts with a website,
Telescope brings together relevant JavaScript for an inter-
action into a single, composite JavaScript view to resolve
the challenges in finding all code relevant to a behavior in
unfamiliar code [14]. Users can easily hide sources they
deem irrelevant or alter the display order of script sources
relative to their dependency load order.

2. Detail and Time Controls: The user can scope relevant
Javascript by call time and control the amount of detail
they wish to see, ranging from showing non-library DOM-
modifying code only to showing all JavaScript present in
the website. These controls address a critical need discov-
ered through our human-centered design process, when we
found users struggling to understand the code for an inter-
action when there is either too little or too much JavaScript
to analyze.

3. Visual Links: Visual links connect active JavaScript to lines
of HTML and website DOM components to expose end-to-
end functionality.

The technical contributions of this work support Telescope’s
design principles and enable using Telescope to examine
website UI interactions across the open web in real time.
Specifically, we introduce (a) the Wisat architecture, which
supports source code tracing and instrumentation as well
as shared Telescope sessions on public websites, and (b)
the Sleight-of-Hand method (SoH), which swaps a website’s
client-side implementation during runtime with its instru-
mented counterpart. The SoH method transitions websites
from a non-traceable state to a fully instrumented state, sup-
porting live interaction traces as a user interacts with their
website. The Wisat architecture then transmits runtime traces
used to decide which JavaScript is displayed in Telescope’s
composite view and provides the linking data necessary for
drawing connections between JavaScript, HTML, and web-
site components.

In the rest of this paper, we review related work in UI fea-
ture discovery and source code inspection. We then introduce
Telescope and its main components for tuning UI discovery

and linking JavaScript and HTML source code. To exam-
ine Telescope’s performance and study its effectiveness, we
present the results of a case study using Telescope on seven
professional websites, and from an exploratory study with
five users. We conclude with a discussion of design princi-
ples, limitations of our approach, and future work enabled by
Telescope.

RELATED WORK
Telescope presents a new method for source discovery that
can enable new learning opportunities while addressing a
number of the known challenges of learning from unfamil-
iar code. By helping users to explore professionally written
examples of personal interest, Telescope aims to help users
overcome the Design, Selection, and Coordination barriers to
learning from code identified by Ko et al. [21]. Telescope also
extends our ability to practice web foraging [6]. Advancing
previous work by Brandt et al. [6], which enabled developers
to forage tutorials and reference examples, Telescope opens
up opportunities for eliciting examples from across the open
Web. Guided by Gross and Kelleher’s study [14] on identi-
fying functionality in unfamiliar code, Telescope provides af-
fordances that implement suggested directives such as, “con-
nect code to observable output” and “provide interactions to
fully navigate code,” to overcome the challenge of finding rel-
evant code.

Existing tools contribute design techniques to highlight, fil-
ter, and curate aspects of code responsible for an effect.
Theseus [23], FireCrystal [26], Unravel [18], Scry [8], and
Clematis [1] each contribute distinct methods of helping users
understand the difficult nature of JavaScript execution in web
development by highlighting and collecting responsible code,
tracking and diffing UI changes, and logging complex oper-
ations. Techniques such as Tutorons [17], Gidget [22], We-
bCrystal [10], Whyline [20], and Dinah [15] curate program-
ming techniques for the user as they explore code provided
by the interface. Telescope contributes techniques designed
to solve the remaining problem of condensing and linking as-
pects of code into low-barrier learning material from websites
based on user interest.

Visual learning techniques from other works help users
to easily see the dynamic effects of their code. Gli-
impse [11], PyTutor [16], and Bret Victor’s “Learnable Pro-
gramming [31]” demonstrate techniques to visualize how
code produces a UI and how code modifies program state
as it runs. Most modern web browsers provide affordances
for users to find responsible source code through visual
breakpoints in the DOM [3], JavaScript beautifiers [12], and
HTML change highlights [13]. Telescope addresses remain-
ing difficulties in conceptualizing the relationships between
JavaScript, HTML, and DOM components through its visual
linking technique.

Telescope’s architecture extends works in source code aug-
mentation to provide JavaScript instrumentation and runtime
trace analysis across the open web. Telescope deploys Fon-
due — a Javascript instrumentation strategy introduced by
Lieber et al. [23] — as an API in its Wisat architecture.
Telescope’s JS Detail control leverages filtering techniques

Figure 2. The Telescope interface is being used to discover how this HTML5 connect-the-dot game’s timer works. The interface is paused to freeze the
current view. The detail level is set at minimum, and the JavaScript call time is constrained between the 17th and 45th second of execution. The left
Telescope panel (middle) shows a filtered HTML view, where an active element is highlighted and query markers denote that JavaScript queried those
lines during the chosen time window. The right Telescope panel shows the website’s JavaScript, filtered by time and detail. With the current settings,
only the most relevant JavaScript is displayed: active non-library JavaScript which queried the DOM in the constrained time frame. A curved line is
drawn to connect the JavaScript line to its DOM query.

from Unravel’s API Harness [18] and Scry’s mutation obser-
vation [8]. Similar to Maras et al’s JavaScript source identifi-
cation technique [24], Telescope analyzes a source call graph
to determine JavaScript involved in modifying the DOM and
functions present in supported JavaScript libraries. But un-
like Maras et al’s browser extension, Unravel, and Scry —
which offer a limited view of JavaScript execution such as
DOM API callers — Telescope fully instruments a website’s
source code. Building upon a common goal to work on multi-
ple JavaScript runtimes as in Unravel [18] and Theseus [23],
Telescope brings shared feature exploration agnostic of run-
time. One website inspection session is shareable to many
users over the web, providing the ability for users to explore
and learn together in a distributed setting.

Most relevant to our work, Srcy [8] and Unravel [18] allow
users to record UI interactions and explore relevant JavaScript
underlying the interaction on public websites. We address
with Telescope three main limitations of these previous works
for understanding web UI implementations. First, Unravel
and Scry adopt sequential workflows that require back-and-
forth navigation from the interface to individual JavaScript
files to obtain what Telescope provides in a single view. As a
point of contrast, in Unravel’s study, such affordances helped
users find the first relevant source more quickly, but did not

help them to more deeply understand an implementation be-
yond that, as Telescope demonstrates in its study. Second,
Unravel and Scry examine JavaScript in a scope limited to
DOM queries and callers, whereas Telescope’s default detail
shows DOM-queries and callers, then expands to the global
scope, showing more activity such as AJAX and MVC event
logic. For example, Telescope could help a user discover how
search results are buffered in memory before writing the re-
sults to the DOM, whereas the other systems cannot. Finally,
Unravel and Scry provide single-direction inferences between
a DOM element and the JavaScript that operated on it. In con-
trast, Telescope provides visual bidirectional links between
JavaScript lines and DOM elements, helping users see how
multiple DOM elements are affected by a single JavaScript
call and vice versa.

TELESCOPE
Telescope is a web-based platform for producing learning ma-
terial to implement a UI interaction. By using the Wisat archi-
tecture discussed later, Telescope receives JavaScript runtime
traces and DOM state changes from a website’s UI during
use. The user views all JavaScript for a website in a single
composite view, condensed by time constraints and detail fil-
ters. User-activated visual links connect JavaScript, HTML,
and rendered components in the browser. (See Figure 2).

Receiving JavaScript, HTML, and Trace Activity
A user launches Telescope by initiating website instrumen-
tation from a browser extension. Once connected, Tele-
scope begins receiving traces and its interface updates in real
time to reflect the latest DOM state and an accumulation of
JavaScript traces. Queried DOM elements are marked with a
Query gutter marker. Active JavaScript functions are marked
with a Call Count gutter marker, a technique we adopted from
Theseus [23]. Telescope continuously analyzes call graphs to
determine which JavaScript calls were involved in querying
the DOM. If an active function is identified as being involved
in a DOM query, it is marked with a green call marker instead
of a colorless marker to highlight its significance. Depending
on the detail setting, a user may see call counts increasing in
a specific subset of JavaScript, or across the entire source of
the website.

Tuning Telescope: Order, Detail, and Time
A core design goal in Telescope is to avoid overwhelming the
user with large amounts of trace information by presenting
the most relevant JavaScript together in a single composite
view. Most of the websites tested in our case study, such
as The New York Times “Snow Fall” article, have tens of
thousands of lines of unminified JavaScript and hundreds of
lines of HTML. Even a simple photo-slideshow change effect
could utilize thousands of function invocations if embedded
in MVC logic from a large JavaScript framework like Angular
or React.

The controls in the header of the Telescope interface allow
the user to fine-tune the source code activity during a UI in-
teraction. From left to right, the user has the ability to (1)
pause/resume activity, and to reset the interface to a cleared
activity state; (2) flip the JavaScript presentation order; (3)
adjust the detail of JavaScript sources displayed; and (4) con-
strain the time of active JavaScript sources. We discuss each
of these affordances below.

1. Pause/Resume and Reset Traces
The Telescope UI updates continuously as the website’s UI
state changes to show live updates to source code execution.
Users can see active JavaScript populate in view, as well as
increasing call/query counts next to JavaScript/HTML lines.
To freeze the capture state and ignore ongoing functionality,
a Telescope user can pause the interface at its current DOM
state and JavaScript trace collection. Users can browse and
interact with other UI controls during this frozen state, but
no new data will be displayed. Upon resuming, Telescope
updates to the latest state of the website. Resetting Telescope
empties its collection of JavaScript traces and synchronizes
its HTML view with the latest DOM state.

2. JavaScript Order
Early pilot studies revealed that relevant source is often found
in scripts at the end of a website’s load order. The inter-
preted nature of JavaScript combined with the disorganized
nature of website script-loading leads web developers to load
scripts with more dependencies last and fewer dependencies
first [2]. As a consequence of this dependency pattern, our
earlier prototypes often placed the most important high-level
JavaScript hidden at the bottom, leaving relevant code out of

view. Based on this observation, Telescope by default inverts
the load order to display last-loaded scripts first as a heuristic.
The composite JavaScript panel in Telescope displays scripts
sorted as a whole, so the inner contents of scripts will remain
in their original form. The JavaScript order control allows
a user to invert the presentation order, e.g. to support cases
where our heuristic may not apply.

3. JavaScript Detail
Early pilot studies also revealed that simply showing users
all active JavaScript code provided little value. To support
discovery, our test users requested variable control over the
detail visible. With Telescope’s JS Detail slider, a user can
control the amount of JavaScript visible. By default, Tele-
scope slides detail to the left extreme (L1), which shows how
higher-level JS achieves an effect using library APIs without
showing library internals. Low-level DOM API calls are of-
ten wrapped by libraries and would be hidden at this level,
e.g. a jQuery call $(div) is displayed instead of the DOM API
call. Sliding detail to the other extreme will reveal all of the
JavaScript for a website. The detail levels include:

L1 (default): DOM API callers and parent callers, not internal
library code.

L2: Active JavaScript, not library internals.

L3: Active JavaScript.

L4: All JavaScript excluding known libraries.

L5: All JavaScript.

4. JavaScript Call Time
Telescope users can use timeline constraints to set a start time
and end time to see which functions were executed during
the specified interval. While JavaScript can execute asyn-
chronously at arbitrary times, users can still slide the time
constraints as a way to omit code outside a time interval, such
as initial setup code or continuous interval functions.

Linking HTML, JS, and the Rendered DOM
Telescope provides bidirectional visual links between the
HTML, JavaScript, and website DOM to provide end-to-end
connections from source code to its UI output. Inspired by
Gliimpse — which creates in-place visual transitions from
code to UI and vice versa [11] — these links help form con-
ceptual models of how JavaScript and HTML work together.
But unlike Gliimpse, Telescope shows both the source code
state and rendered UI simultaneously. Users can visualize
how high level functions change many elements (see Case
Study: Mac Pro) or how a single element event can trigger
many function handlers (see Case Study: Dot-to-Dot). Dur-
ing Telescope sessions, Query markers appear in the HTML
pane, and Call markers appear in the JavaScript pane. Click-
ing an HTML query marker draws lines to JavaScript func-
tions which query the HTML line. Clicking a green call
marker (signifies DOM-query) draws lines to HTML nodes
which were queried by the JavaScript line (see Figure 3).

Exploring HTML-JS links in either direction invokes a re-
sponse in the website, where the rendered DOM nodes are
highlighted in the foreground (See Figure 4). If multiple

Figure 3. Clicking a Telescope HTML query marker from the Mac Pro
website (left) shows lines to four JavaScript functions. In this view, a line
leads to function resizeFluidAreas, which resizes elements on scroll.

DOM nodes are involved in a query, a walkthrough is con-
structed in the rendered website that highlights each involved
element in sequence. Conversely, if elements were deleted,
the user is notified that the element is no longer in the DOM.

Hiding Libraries and Irrelevant Scripts
In early pilot studies, traces from library, tracking, and ad-
content scripts caused confusion in understanding UI feature
implementation. Telescope now hides many libraries and ir-
relevant scripts and provides affordances for users to hide
other scripts they deem irrelevant. By default, library scripts
such as jQuery and Angular are hidden, as are popular adver-
tisement and usage-tracking scripts such as DoubleClick and
ScoreCardResearch. Users can then hide or show scripts se-
lectively in two ways. Through the JavaScript dropdown view
at the top of the JavaScript panel, users can see a complete list
of the sources in view and selectively toggle their visibility.
Alternatively, users can slide the detail slider to the far right
to bring all sources into view (more library and ads) or far
left to show only sources relevant to DOM manipulation (less
library and ads, see Figure 2 top right).

Design Process and Design Insights
In the process of designing Telescope, we iterated through
three software prototypes. Prototype 1 provided the ability
to record an interaction and extract a subset of HTML, CSS,
and JS into a sharable web sandbox with visual output. Pro-
totype 2 dropped sandboxed output and added affordances to
selectively hide inactive code and sources. Clicking JS gutter
markers exposed a function’s callstack. Prototype 3 gained
the Wisat architecture for continuous distributed tracing. Af-
ter prototype 3, we trimmed features users didn’t value and
added controls for order, time, detail, and interactive links.

With each prototype we conducted a small pilot study to bet-
ter understand how to help users overcome learning barriers
tied to unfamiliar code. Each study recruited a convenience
sample of three junior developers who used the prototype for
30 minutes each and were paid $20. In this process we dis-
covered four primary design insights:

• Users need variable amounts of JavaScript to under-
stand different programming concepts. Each proto-
type provided affordances to selectively trim down the
JavaScript, but users were unsure what to trim and found it
difficult to remember what they had trimmed from view.
Users expressed desires to see both high-level code and

Figure 4. Clicking Telescope’s code markers for the New York Times
“Snow Fall” website highlights related DOM elements in the website.
The DOM element’s source is included in the highlight, connecting con-
text to Telescope’s HTML view.

low-level utility code at different times to establish a basic
understanding of how the program works before looking
into its details. We implemented the JS Detail control to ad-
just the composite JavaScript view to different detail levels
such as more minimal for DOM-modifying code or more
verbose for deeper discovery involving AJAX and MVC
logic.

• Users have varied processes for playing and inspecting.
Observed in all three studies, some users like to repeat their
interaction several times before using Telescope, whereas
others will create an interaction and jump to Telescope be-
fore it completes. Prototypes 1 and 2 had a static extrac-
tion technique that frustrated users who liked to alternate
between playing and inspecting. Telescope now continu-
ously updates both its HTML and composite JavaScript as
user plays with a website, while also giving the ability to
pause and constrain their historical runtime timeline.

• Users benefit from visual links connecting code to ob-
servable output. Similar to Gross et al’s recommen-
dations to connect code to observable output, we found
that linking the JS and HTML contexts to observable
output helped users understand JavaScript’s relationship
with HTML [14]. By the third prototype, our users were
still having trouble understanding how the JavaScript and
HTML related even though active-code highlights were
provided in both panes. We added support to draw visual
lines from either direction between HTML and JavaScript.
Upon drawing these lines, the DOM element is highlighted
in the website to complete the connection between the code
and its output.

• Metadata and redundant filters overwhelm the user.
Throughout prototype iteration, we kept accumulating fea-
tures which began distracting users from efficiently using
Telescope. To promote simplicity, we cut away features
that were distracting or provided little use to achieving the
goal of promoting understanding. Features cut included
call-stack inspection, the CSS pane, the HTML output
pane, code-hiding toggles, and other extraneous features.

Figure 5. The Wisat architecture supports Telescope’s ability to re-
motely process website interaction traces. A website receives its ini-
tial source swap via the Chrome extension. The website fetches instru-
mented scripts from the Fondue API (top), and the Chrome extension
negotiates a two-way handshake via the Trace Bridge to connect it with
its Telescope session (bottom). Upon successful connection, JavaScript
traces and source data propagate continuously over the trace bridge.

IMPLEMENTATION
Telescope’s implementation goals include deployability
across the open web, full-scope JavaScript instrumentation,
and multi-user session support. Unravel [18] and Scry [8]
provide JavaScript traces on public websites but limit their
inspection scope to DOM-querying JavaScript. Theseus [23]
provides full instrumentation but requires a debugging proxy
for setup on public websites. To support future empirical field
research and promote user adoption, we seek implementa-
tions that are easy for users to install with minimal setup.
Existing architectures from related systems are designed to
only support single-user sessions.

In the rest of this section, we describe the Wisat architecture
and Sleight-of-Hand methodology that together enable Tele-
scope to bring source instrumentation and JavaScript trace
analysis to public websites with minimal user setup. Build-
ing upon related systems, Telescope brings Fondue’s source
instrumentation to the open web, augments Theseus’ active
code markers with interactive links, and uses JSBin’s collab-
orative online editor environment as a foundation [23, 29].
Telescope consists of a component-based architecture where
new technologies can be swapped in or integrated later on.

Wisat Architecture
The Wisat (Web interface swap and trace) architecture sup-
ports Telescope’s JavaScript instrumentation, trace propa-
gation, source transmission, remote control, and sleight-of-
hand source swapping. After a website is instrumented via
the browser extension, Fondue API, and source cache (see
Sleight-of-Hand Method), the browser extension negotiates a
two-way handshake between the website and Telescope in-
terface via the trace bridge. Once connected, traces, sources,
and remote commands can flow freely between the two, pop-
ulating Telescope’s code views and enabling remote DOM
component highlighting (see Figure 5). Designed for web
scalability, this architecture separates functional components
so that each may be distributed across multiple load-balanced
instances. The components of this architecture are defined as:

Figure 6. The Sleight-of-Hand technique pictured above is a 7-step pro-
cess for instrumenting a website’s source code via browser extension
(black squares) and external instrumentation server (blue, middle right).
After website load (1), the extension deploys an agent (2). The agent
sends the sources for instrumentation via extension (3), which are re-
turned (4), passed to the agent (5), and swapped for the originals, delet-
ing references (6). The browser makes requests for the newly instru-
mented sources (7).

• Telescope UI: A website for receiving source trace activity
from an instrumented website, fine-tuning source findings,
and sharing with others.

• Fondue API: REST web service for JavaScript & HTML
instrumentation and deobfuscation with caching, served
over HTTPS to comply with mixed-content policies.

• Trace Bridge: WebSocket server for live cross-origin-
compliant transmission of JavaScript traces, DOM
changes, and commands between the website and Tele-
scope interface.

• Chrome Extension: Agent injected into website to deploy
the Sleight-of-Hand source swap, broker handshake with
Telescope interface, and broadcast source activity.

Sleight-of-Hand Method
The Sleight-of-Hand Method (SoH) expands upon techniques
from Fondue [23] to bring source instrumentation to public
websites. Current methods for JavaScript source tracing ei-
ther trace only DOM-querying JavaScript [18, 8, 7] or re-
quire a man-in-the-middle debugging proxy [23]. Neither of
these approaches fits with our goal to fully trace JavaScript
execution and make setup simple. The SoH method — de-
ployed from a one-click-install browser extension — imple-
ments full JavaScript traceability by swapping the scripts of a
website with their instrumented versions. The SoH process is
outlined below (see Figure 6):

1. Load a website and initiate SoH.

2. Deploy a JavaScript agent into the website from a browser
extension with bidirectional communication.

3. Agent transmits the OuterHTML property of the root DOM
element to the instrumentation API via extension, circum-
venting cross-origin policy.

Figure 7. Results from our case study show the amounts of code Telescope reduces, using time and detail filters to draw distinction between on-load
setup code and interaction code. Each website’s complexity class is provided (Small, Medium, High). The JS total lines of code (LOC), calculated after
normalized unminification, are listed per each website (left) and categorized by all active JS and the default DOM-modifying JS with inner library code
removed. In blue (middle, right) the LOC in Telescope’s default view for on-load and interaction show the amount of reduction Telescope performs
for the user while maintaining relevance. HTML LOC queried are listed, showing the small portion of DOM elements involved in each UI interaction.
Interactions include a map-drag (XKCD), a scroll animation (Tumblr), a dot-drag (DotToDot), scroll-driven video sizing (NYT), a load-and-scroll-driven
float (iPhone), a scroll-driven product show (Mac Pro), and a date-picker render and select (Southwest).

4. Instrumentation API returns the HTML with inline scripts
instrumented and <script> tags with altered “src” attributes
pointing to an instrumentation API URL.

5. Browser extension passes the response to the agent.

6. Agent overwrites the existing DOM with an empty root,
iterates through non-native window object attributes and
deletes them, and calls clearInterval on global interval in-
dices 1 to 999.

7. Agent inserts instrumented pieces of the DOM in a strict
order to control script loading to simulate the script load
order of the original site.

SoH leverages vulnerabilities enabled by browser extensions,
circumventing source alteration protection by overwriting
original sources [9]. An SoH is deployed from a browser
extension with liberal permissions to modify the page and
communicate with third party servers. It does so regardless
of logged-in state or HTTPS encryption.

The SoH method works for many websites, but synchronized
HTML/JavaScript workflows and Content Security Policies
(CSP) can cause problems. For example, if a user kept
scrolling for more news to load in a Facebook news feed,
the in-memory JavaScript would reflect news list additions
and the HTML would reflect the same. If the SoH was initi-
ated after scrolling for more news, the news list HTML would
be correct, but the in-memory JavaScript would not have the
news list additions. The result would be an odd-UI experi-
ence where interactions hit sync-error handling, such as mov-
ing the user back to the top of their news feed. Further, any
scripts lazy-loaded after the SoH starts and before SoH ends
would cause more UI oddities or potentially break the pro-
cess. Implementing a whitelist CSP successfully blocks the
SoH method, because it asks the browser to enforce a strict
list of source domains. In all the websites we tested, only
Airbnb enforced a CSP. As a fallback, CSPs can be filtered
before page-load by debugging proxies [32].

CASE STUDY
To better understand Telescope’s capabilities and perfor-
mance, we used it to identify relevant lines of code, key inter-
action methods, and implementation patterns across UI fea-
tures on seven popular websites. This study aims to address
the following research question:

RQ1 To what extent can Telescope reduce and scope lines of
code for understanding complex feature implementations?

We chose websites with interesting and complex UI features
that are not straightforward to understand, that have over ten
thousand lines of code. Interactions of interest include a map-
drag (XKCD), a scroll animation (Tumblr), a dot-drag (Dot-
ToDot), scroll-driven video sizing (NYT), a load-and-scroll-
driven float (iPhone), a scroll-driven product show (Mac Pro),
and a date-picker render and select (Southwest). We classified
websites as light (L), medium (M), or heavy (H) in proportion
to their UI complexity and average number of function invo-
cations. For each example, we tracked the minimum usage
necessary to discover UI features on the website, while com-
paring against Unravel as a control.

Fine-Tuning Lines of Code
Telescope supported discovery on the seven websites with
minimal tuning regardless of source code size (see Figure 7).
We measured the lines of code visible in Telescope during
on-load and interaction, normalizing JavaScript and HTML
with unminifying preprocessors. Telescope identified each
site’s large on-load setup processes (521 to 5,534, mean 3,507
LOC), allowing us to easily scope timeline constraints be-
yond the setup code to yield each interaction’s code (49 to
934, mean 205 LOC). Besides the Mac Pro example, run-
ning Telescope on all other websites with the default detail
setting yielded 150 lines or less of code that sufficiently ex-
plained how the interaction was created in each site. With
1 to 68 (mean 21) LOC of HTML queried during interactions,
the HTML query markers offer a simple starting point for ex-
ploration.

Figure 8. Telescope is being used to discover XKCD’s map-drag imple-
mentation. A JavaScript call marker has been clicked next to the Map
function, resulting in HTML line highlights and a DOM element high-
light in the website.

Low Complexity Example: XKCD 1110
XKCD’s interactive comic #1110 website presents a simple
test scenario for Telescope with its relatively small codebase
and direct UI interaction (see Figure 8). Telescope revealed
a composite 49-line draggable map implementation (exclud-
ing library code). We quickly discovered functions map,
update, and dragwith Telescope’s default settings. We ex-
amined the startup code and moved the timeline past startup
to see the interaction. The map-drag effect is achieved by
events bound on mousedown that track mouse position rel-
ative to a center start position. The map is a grid of image
tiles with names representing their position, where images ±1
away from the centered tile are loaded and set to visible, while
others are hidden.

Using Unravel on the same interaction, we were able to easily
find the same functions behind XKCD’s map load, however
we needed to look through 420 lines of JavaScript to find how
relevant calls in separate files fit together. Unravel showed
changes to the DOM caused by dragging the map, but it was
difficult to determine the scope of JavaScript operating on the
map. Setting DOM breakpoints through Chrome Developer
Tools, we were able to step through function calls responsible
for modifying the map.

Moderate Complexity Example: Dot-to-Dot
In analyzing the design award-winning Dot-to-Dot game,
Telescope helped us to understand how the game connects
the dots. We sought to understand the code behind connect-
ing a dot to another: dots appear, a line is drawn, and audio
plays a dot sound. We didn’t need to look far to find a dot
class in the setup code, which was referenced later in the JS
time 23s to 42s. The JavaScript code was heavily minified,
but Telescope expanded it in a way we could infer how func-

Figure 9. We evaluated Telescope’s performance and source discovery
on Apple’s Mac Pro product demo website. While performance lagged
during UI animation, Telescope accurately captured and reduced the
source code view to show how the scroll-driven effect works. Above,
an HTML line marker has been selected in the Telescope interface that
draws lines to linked functions and highlights the DOM component.

tions operated even without their names. Function c activates
a game round, function y starts the timer interval, function o
draws a line invoking RaphaelJS, and function v handles dot
clicks and dot animation. Sliding JS detail towards the mid-
dle we found a pop.mp3 xhr request, where the response is
stored in a variable and played via SFX.pop().

In this scenario, Unravel provided hundreds of JavaScript in-
spection points and DOM changes. We inspected the top two
most-called functions and quickly found the game’s timer and
dot-insertion logic by clicking through Unravel’s inspection
points. Using Chrome’s search feature was more convenient
than manually looking through the remaining Unravel results,
so we ran find-all queries for RaphaleJS calls and set break-
points to determine how game rounds began. Separating the
game’s setup code from runtime code was difficult with Un-
ravel, because all of the JavaScript functions accumulate in
one list that is only sortable by call count or function name.

High Website Complexity Example: “Snow Fall”
The Pulitzer Prize winning New York Times article “Snow
Fall” stretched Telescope’s technical ability with 41,526
lines of JavaScript and 1,458 lines of HTML along with
a high volume of recurring background JavaScript execu-
tion. In this test, we sought to discover how the Steven’s
Pass flyover interaction was activated. We scanned through
300 lines of irrelevant ad and tracking code before find-
ing the right Telescope settings. We set the JS Call Time
to 41s to 73s and set the JS Detail to the middle, where
we found relevant functions videoBG.setFullscreen,
checkArticleProgress, and percentTillNext re-
lated to an HTML5 video player (see Figure 4). The
latter two run on every scroll event and the former is
activated when the article progress reaches the “Tunnel
Creek” narrative. We found related HTML elements
div.nytmm video player. Unravel quickly revealed
results pointing to functions responsible for setting full screen
and initiating video playback, but like in the previous case,
the magnitude of function traces occluded the search for other
meaningful functionality. We were unable to quickly find the
remaining functional pieces for checking the article progress
and activating new sections.

Figure 10. We observed Telescope’s use while discovering a map-drag in-
teraction on XKCD (left), a dot-connect interaction on Play-Dot-To.com
(middle), and a scroll animation on Tumblr (right).

High Complexity Example #2: Mac Pro
The interactive product page, which disassembles an Apple
Mac pro on user scroll, tested Telescope’s performance
limitations but revealed insight into the website’s design (see
Figure 9). The initial product-rising animation was captured
in Telescope, logging 30k+ function invocations. We scrolled
down to activate the Mac Pro’s disassembly animation and
tuned Telescope’s JavaScript time to exclude on-load code
and any code after our interaction. We disregarded 400
lines of code before finding the appropriate settings. We
found an MVC architecture with event-driven-design, where
a sectionController and a clipController
listens for events relative to a timeline with func-
tions like pauseTimeline, getVideoHeight,
resizeFluidAreas, and resizeCanvas. While
the clever video playback and container resizing became
more evident, we found misleading code that queries and
resizes canvas elements when there are none. Similar to
the previous two cases, Unravel found hundreds of changes
and traces, with the topmost being calls to trigger, enable,
and update sections via an onWheel handler. Discovering
components of the MVC architecture through Unravel was
extremely difficult in this case. Unravel provided a sorted
view of JavaScript activity based on DOM query count,
which highlighted portions of the MVC most active in
DOM modification (i.e. pointing to view logic and ignoring
model/controller logic).

Runtime Performance
Telescope performed without significant delay on four sites
but experienced intermittent frame rate drops on three dy-
namic sites with hundreds of UI transformations per second.
With a relatively small codebase and heavy JS use for SVG
modification, the Dot game showed frame-rate drops for 2-3
seconds during some SVG transformations and line render-
ings. We noticed UI frame rate drops during scroll transi-
tions in 3-4 second intervals for “Snow Fall” as well as some
UI delay as all of the startup code traces were transmitted.
The Mac Pro website incurred the most significant UI per-
formance delays to less than 1 frame per second for 20 sec-
onds while traces were being processed. In the future, Tele-
scope’s performance can be optimized by storing information
predetermined about a program’s runtime instead of calculat-
ing HTML-JS relationships and detail level in real time.

EXPLORATORY USER STUDY
Having demonstrated Telescope’s capabilities, we evaluate
Telescope’s use to answer the following research questions:

RQ2 What programming concepts are users able to elicit us-
ing Telescope?

RQ3 What usage strategies do users employ while discover-
ing a web interaction with Telescope?

Method
We conducted an exploratory study with five junior software
developers at Northwestern University to understand how
they can use Telescope to learn from professional websites.
Three of the developers stated they had at least 3 months
of professional web development experience through intern-
ships. The other 2 stated they knew enough to create website
and setup simple JavaScript interactions with libraries like
jQuery or Bootstrap. Each user was interviewed about their
technical experience and trained to use Telescope for 5 min-
utes on toy examples. They were then asked to explore 1–3
websites on their own in the time remaining. Sessions lasted
45 minutes each, and each participant was compensated $20.
Each participant provided a screen recording with audio for
the entire test.

We chose three websites and interactions from the seven in
the case study (see Figure 10) that had fun or clever dynamic
UI’s whose implementation involved at least two functional
UI transformations. For each website we observed how users
reacted to aspects of code we identified as highly relevant to
the UI interaction through prior review. We prompted users
to talk-aloud during their interaction and periodically asked
them open ended questions such as, “What can you tell me
about the way the feature is constructed?”, “What coding
lessons or decisions can you identify?”, and “How does Tele-
scope help in understanding this feature’s source?”

Results
In our exploratory study, Telescope helped junior developers
quickly identify coding design techniques and programming
concepts in the unfamiliar code underlying professional web-
sites, while also inspiring additional discovery. This section
addresses our research questions with results from user ob-
servations and talk-alouds during user testing.

RQ2: Programming Concepts Recognized
All five users identified front-end software engineering con-
cepts including lazy media loading, mouse position tracking,
class-toggled effects, library usage, and animation. A user
said, “Seeing what this is helps me know how to approach
this problem design-wise (code design).” Four users found
an example of lazy-loading and mouse position tracking in
XKCD’s map viewport by moving the JS timeline constraints
past the startup code activity and watching the JavaScript call
counts while repeating the map-drag interaction. Two users
discovered class-toggled effects by watching the HTML view
change during Tumblr’s scroll effect, then clicking the HTML
query markers to see what JavaScript queried the section el-
ement. All users identified instances of library usage in the

Dot game’s RaphaelJS line-drawing or each site’s jQuery ref-
erences. Two users found how to construct simple animation
through Tumblr’s use of jQuery animate.

Seeing in-context front-end architectural patterns working
together helped users learn from examples. Users identi-
fied patterns for interactive UI including event-driven design,
function closures, and state maintenance. Before using Tele-
scope on the XKCD map, a user said, “I know how to make
event handlers, queries, and I know the syntax of JavaScript,
but I’m missing the how of making them work together for a
feature like this draggable map.” Telescope enabled this user
to find multiple patterns in XKCD’s comic. Users intuitively
found the nature of function closures in JavaScript in scenar-
ios like XKCD’s update function callback, which contains
a map variable declared outside the function scope but is ref-
erenced without declaration inside the function scope. Users
found alternate implementations of state maintenance: stor-
ing active state in HTML attributes on Tumblr, or storing the
game state in an in-memory JavaScript object via references
to this in Dot-To-Dot’s Dot object.

RQ3: Telescope Strategies
We discovered a mix of strategies for interacting with Tele-
scope that our users employed while learning from a UI with
Telescope: constrain-expand, copy-paste, watch-and-wait,
and step-constrain-step.

The constrain-expand strategy helped users focus on relevant
code and other users curious about library code, external de-
pendencies, or background code. One user said, “The detail
control is crazy, because it lets me see just what modified the
DOM or I can bring in background code too.” Constrain-
expand was typically used after the user gained a significant
understanding of the interaction and wanted to validate their
assumptions of hidden variable references or function decla-
rations.

The copy-paste strategy emerged when users either tried to
play with a portion of code themselves or wanted to see
the external media referenced by JavaScript and HTML. The
XKCD and Dot-to-Dot websites load external images and au-
dio, which are referenced in Telescope’s HTML view. Users
copied links to the media to view them as whole files outside
the interface. Users copied portions of JavaScript code to an
external IDE to see which variables were declared in scope
and which ones were not.

We also observed users adopting two other strategies that
were less successful in our test. With watch-and-wait, users
watch the Telescope interface update without adjusting any
controls. This made it difficult for users in our test to find in-
teraction code amidst setup code, but could be effective when
used on websites with little setup code. Another strategy is
step-constrain-step, where users narrow the timeline min and
max to examine one second of execution at a time. This made
it difficult to see calls from high order functions which span
multiple seconds, but it was effective in reducing noise from
background functions.

Users were able to quickly and easily locate relevant source
code for complex interactions. Averaging less than four con-

trol toggle changes to find code pertinent to their interac-
tion, users excelled in parsing through fine-tuned views of
JavaScript. Three of the users continued exploration past their
goal to discover additional coding concepts. One user said,
“Once I found that Raphael was being used, I wanted to dig
deeper to see how it was configured to make a line wobble.”

Developers with less JavaScript experience chose Telescope’s
HTML pane as a reference point, whereas developers with
more experience spent time carefully gaining insights from
JavaScript implementation decisions. Telescope’s line draw-
ing features helped less experienced developers explore
JavaScript from an HTML reference point they felt familiar
with. A user said, “This would become my starting point over
forums/tutorials – I might even use it on a tutorial’s solution
instead of reading the tutorial’s example code.” Telescope’s
detail expansion feature helped developers with more experi-
ence learn architectural decisions about the code. Less expe-
rienced developers focused on understanding how to recreate
the effects in the default, least detailed view.

DISCUSSION
Having demonstrated the effectiveness of Telescope for help-
ing web developers discover implementations underlying UI
interactions, we revisit techniques that contribute to Tele-
scope’s effectiveness.

Design Principles for Understanding Unfamiliar Code
The design of the Telescope platform evolved from three pro-
totypes, each shaped by user feedback. Initially we aimed to
deliver a code-extracting tool for delivering all code behind
an interaction to the users, but providing code by itself was of
little value. A participant said, “I can finally see everything
that happened, but I don’t know what it means.” Each subse-
quent iteration incorporated techniques to present JavaScript
and HTML to the user in a way the didn’t overwhelm them,
which shaped Telescope’s three design principles: (1) Bring
together relevant JavaScript for an interaction into a single
composite JavaScript view. (2) Give the user control over the
amount of JavaScript detail they wish to see for any given
time frame. (3) Provide affordances to visually link func-
tionality end-to-end, connecting active JavaScript to queried
HTML and components in the rendered website. Evaluating
the current prototype showed success in helping junior de-
velopers understand UI’s. All users were able to identify UI
engineering concepts in unfamiliar code, and seeing architec-
tural patterns in-context helped users identify how program-
ming techniques can be used to construct a system.

Enabling UI Discovery
Advancing related work [23, 26, 18, 8, 1, 3, 12, 13], Tele-
scope’s live tracing and source view constraints helped users
identify and understand code supporting an interaction. As a
user interacts with a website’s UI, Telescope receives trace in-
formation and processes it into HTML and JavaScript views
for the user. The display of these views are controlled by
JavaScript load order, detail, and time constraints. Default
settings show the user a focused view of JavaScript respon-
sible for modifying the DOM. Clicking code markers draws
lines connecting JavaScript to HTML, helping the user see

how JavaScript manipulates the DOM for a desired outcome.
Evaluating the UI discovery in our case study, we found that
the source code needed to understand a complex UI behavior
is often 150 lines or less.

LIMITATIONS
Instrumentation Scope and Applicability
While Telescope currently supports UI discovery on many
popular websites, some limitations prevent it from working
on all websites. Scripts that are loaded via lazy-loaders can
escape Telescope’s instrumentation if they are not present on
the page when the Sleight-of-Hand method takes place. Lazy
script loaders use URLs in strings to append to scripts to the
DOM asynchronously. Telescope will capture and rewrite
sources at the time of its invocation, but scripts loaded later
are beyond the rewrite scope. However, Telescope does cap-
ture calls to load the scripts. Lazy intercepts can be added to
Telescope in the future through request blocking and source
redirection.

Telescope only instruments and monitors the top-level web-
site frame. Subsequent or nested iFrames were omitted in this
project, as iFrames are typically used to embed external con-
tent. Future versions of Telescope can recursively traverse the
DOM to instrument and listen to traces from iFrames.

While calls to their API’s are captured in Telescope, the ren-
dering logic underlying HTML5 Canvas, OpenGl, Flash, Sil-
verlight, and Java Applets are not visible to Telescope. Instru-
menting these technologies through website source rewriting
is currently not possible.

Performance
Unlike Unravel, Scry, and FireCrystal, Telescope depends on
third party servers and lengthy instrumentation processes for
large files. The performance overhead required for source
instrumentation is considerable on modern hardware and ex-
ceeds the capabilities of web browsers. A rich UI might con-
tain fifty thousand lines of code, which can require up to three
minutes to instrument. While instrumentated files are cached
to speed up repeat-loads, future versions of Telescope could
optimize the instrumentation process for larger script trans-
formations by indexing and caching common file subsets like
modules and libraries.

Telescope was unable to capture UI interactions on several
test sites due to memory limits and website implementation
techniques. Telescope sessions for the Netflix and Spotify
web players exceeded the browser’s memory limitations, re-
sulting in truncated trace data. Amazon’s use of iFrames,
Airbnb’s content security policy, and Forecast.io’s app cache
script loading prevented Telescope from collecting meaning-
ful trace data. Telescope successfully displays interactions
from Google web products, but we found their minification
techniques especially difficult to read due to the minifica-
tion of HTML attributes in addition to JavaScript. In fu-
ture work, memory problems can be overcome by disabling
source tracing and logging for portions of a website until
needed, CSP’s can be filtered out by debugging proxies, and
given enough interest, a crowd of experts could help identify
minified HTML attributes.

Code Explanations
Telescope instruments and examines only client-side code
and does not curate or explain the code. Further, Telescope
does not process or interpret CSS. Existing tools like Theseus
and Scry help users discover how server-side code is executed
and client side CSS transformations alter the DOM render-
ing [23, 8]. Future versions of Telescope could incorporate
technologies like Tutorons in order to explain the code in the
context of active traces [17].

FUTURE WORK
Our future work seeks to transform discovered UI features
into portable and indexed deliverables for users to share and
learn from, enabling learning communities around real-world
examples. Junior web developers struggle with creating UI
interactions and experienced web developers have difficulty
keeping up with the latest techniques. Enhancing Telescope
to support webstrates would allow bidirectional modification
of a website UI, giving users the opportunity to “sandbox”
their UI discovery with a real website [19]. Creating a UI
interaction implementation library would help these devel-
opers discover techniques used on the web. For example, a
user might search for an autocomplete implementation and
have the option to compare source code underlying well de-
signed interfaces from Google, Twitter, and Facebook. Fur-
ther, indexed UI traces from telescope code could be used
in-context within IDE’s through technologies like Codeletes
and BluePrint [25, 5]. With labeling and UI metadata, Tele-
scope’s output could be indexed for mining UI behaviors, or
the combination of user-prompted interaction and underlying
source code traces. Output from this mining could be used to
elicit implementation patterns or best practices across web-
sites. With a platform that enables example-centric learning
from professional websites, we aim to continue lowering the
learning barriers present in web development.

ACKNOWLEDGEMENTS
We thank the members of the Design, Technology, and Re-
search program, particularly those in the special interest
group Readily Available Learning Experiences (RALE), for
helping shape the direction of this work: Jon Rovira, Sarah
Lim, Nicole Zhu, Alex Wang, and Christina Kim. We thank
Kevin Chen, Henry Spindell, Yongsung Kim, Leesha Mali-
akal, and Ryan Madden for their design feedback, Darren
Gergle, Bryan Pardo, and Aaron Shaw for helpful research
discussions.

REFERENCES
1. Alimadadi, S., Sequeira, S., Mesbah, A., and

Pattabiraman, K. Understanding javascript event-based
interactions. In Proceedings of the 36th International
Conference on Software Engineering, ACM (2014),
367–377.

2. Archibald, J. Deep dive into the murky waters of script
loading, 2013.

3. Barton, J. J., and Odvarko, J. Dynamic and graphical
web page breakpoints. In Proceedings of the 19th
international conference on World wide web, ACM
(2010), 81–90.

4. Bolin, M. Closure: The Definitive Guide. ” O’Reilly
Media, Inc.”, 2010.

5. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S. R. Example-centric programming: integrating web
search into the development environment. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2010), 513–522.

6. Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., and
Klemmer, S. R. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM (2009),
1589–1598.

7. Burg, B., Bailey, R., Ko, A. J., and Ernst, M. D.
Interactive record/replay for web application debugging.
In Proceedings of the 26th annual ACM symposium on
User interface software and technology, ACM (2013),
473–484.

8. Burg, B., Ko, A. J., and Ernst, M. D. Explaining visual
changes in web interfaces. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software &
Technology, ACM (2015), 259–268.

9. Carlini, N., Felt, A. P., and Wagner, D. An evaluation of
the google chrome extension security architecture. In
Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12) (2012), 97–111.

10. Chang, K. S.-P., and Myers, B. A. Webcrystal:
understanding and reusing examples in web authoring.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2012),
3205–3214.

11. Dragicevic, P., Huot, S., and Chevalier, F. Gliimpse:
Animating from markup code to rendered documents
and vice versa. In Proceedings of the 24th annual ACM
symposium on User interface software and technology,
ACM (2011), 257–262.

12. Google. Dev tools tips and tricks, 2016.

13. Google. Inspect and edit pages and styles, 2016.

14. Gross, P., and Kelleher, C. Non-programmers
identifying functionality in unfamiliar code: strategies
and barriers. Journal of Visual Languages & Computing
21, 5 (2010), 263–276.

15. Gross, P., Yang, J., and Kelleher, C. Dinah: An interface
to assist non-programmers with selecting program code
causing graphical output. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM (2011), 3397–3400.

16. Guo, P. J. Online python tutor: embeddable web-based
program visualization for cs education. In Proceeding of
the 44th ACM technical symposium on Computer
science education, ACM (2013), 579–584.

17. Head, A., Appachu, C., Hearst, M. A., and Hartmann, B.
Tutorons: Generating context-relevant, on-demand

explanations and demonstrations of online code. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2015 IEEE Symposium on, IEEE (2015),
3–12.

18. Hibschman, J., and Zhang, H. Unravel: Rapid web
application reverse engineering via interaction
recording, source tracing, and library detection. In
Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology, ACM (2015),
270–279.

19. Klokmose, C. N., Eagan, J. R., Baader, S., Mackay, W.,
and Beaudouin-Lafon, M. Webstrates: Shareable
dynamic media. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology,
ACM (2015), 280–290.

20. Ko, A. J., and Myers, B. A. Designing the whyline: a
debugging interface for asking questions about program
behavior. In Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM (2004),
151–158.

21. Ko, A. J., Myers, B. A., and Aung, H. H. Six learning
barriers in end-user programming systems. In Visual
Languages and Human Centric Computing, 2004 IEEE
Symposium on, IEEE (2004), 199–206.

22. Lee, M. J., and Ko, A. J. Personifying programming tool
feedback improves novice programmers’ learning. In
Proceedings of the seventh international workshop on
Computing education research, ACM (2011), 109–116.

23. Lieber, T., Brandt, J. R., and Miller, R. C. Addressing
misconceptions about code with always-on
programming visualizations. In Proceedings of the 32nd
annual ACM conference on Human factors in computing
systems, ACM (2014), 2481–2490.

24. Maras, J., Stula, M., Carlson, J., and Crnkovic, I.
Identifying code of individual features in client-side web
applications. Software Engineering, IEEE Transactions
on 39, 12 (2013), 1680–1697.

25. Oney, S., and Brandt, J. Codelets: linking interactive
documentation and example code in the editor. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2012),
2697–2706.

26. Oney, S., and Myers, B. Firecrystal: Understanding
interactive behaviors in dynamic web pages. In Visual
Languages and Human-Centric Computing, 2009.
VL/HCC 2009. IEEE Symposium on, IEEE (2009),
105–108.

27. Sakamoto, Y., Matsumoto, S., Tokunaga, S., Saiki, S.,
and Nakamura, M. Empirical study on effects of script
minification and http compression for traffic reduction.
In Digital Information, Networking, and Wireless
Communications (DINWC), 2015 Third International
Conference on, IEEE (2015), 127–132.

28. Shaffer, D. W., and Resnick, M. ” thick” authenticity:
New media and authentic learning. Journal of
interactive learning research 10, 2 (1999), 195–215.

29. Sharp, R. Js bin collaborative javascript debugging,
2016.

30. Souders, S. High-performance web sites.
Communications of the ACM 51, 12 (2008), 36–41.

31. Victor, B. Learnable programming., 2012.

32. West, M. An introduction to content security policy,
2012.

	Introduction
	Related Work
	Telescope
	Receiving JavaScript, HTML, and Trace Activity
	Tuning Telescope: Order, Detail, and Time
	1. Pause/Resume and Reset Traces
	2. JavaScript Order
	3. JavaScript Detail
	4. JavaScript Call Time

	Linking HTML, JS, and the Rendered DOM
	Hiding Libraries and Irrelevant Scripts
	Design Process and Design Insights

	Implementation
	Wisat Architecture
	Sleight-of-Hand Method

	Case Study
	Fine-Tuning Lines of Code
	Low Complexity Example: XKCD 1110
	Moderate Complexity Example: Dot-to-Dot
	High Website Complexity Example: ``Snow Fall''
	High Complexity Example #2: Mac Pro
	Runtime Performance

	Exploratory User Study
	Method
	Results
	RQ2: Programming Concepts Recognized
	RQ3: Telescope Strategies

	Discussion
	Design Principles for Understanding Unfamiliar Code
	Enabling UI Discovery

	Limitations
	Instrumentation Scope and Applicability
	Performance
	Code Explanations

	Future work
	Acknowledgements
	REFERENCES

