
Chapter 5

Task Routing

Engaging a crowd to tackle complex tasks relies not only on effective coordina-

tion, but on recruiting individuals with relevant expertise to join the problem-solving

effort. One approach for bringing expertise to tasks is to pool knowledge about peo-

ple’s competencies and preferences and assign tasks in a centralized manner. Another

approach is to rely on individuals in a system to select tasks themselves. Both ap-

proaches have flaws. In the former, a system may not know which individuals have the

required expertise. In the latter, while individuals are often able to gauge their own

expertise, they may not know which tasks best match their respective competencies.

In social networks, an individual’s knowledge extends beyond their own expertise

on tasks and topics to knowledge about the expertise of others. Members of a social

network may know who among their friends can best answer a particular question

or provide valuable opinions on a topic of discussion. Even in situations where an

individual cannot identify an expert who can best contribute to a task, they may know

people who would likely know experts. They may also be able to identify subsets of
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individuals who share a particular interest, among whom the requisite expertise is

likely to exist.

We are interested in principles and methods for task routing that draw on the

distributed intelligence of individuals across a social network. The idea is to harness

the ability of people to contribute to a solution and route tasks to others who they

believe can effectively solve and route. Task routing provides a paradigm for problem

solving in which individuals in a crowd become engaged with tasks based on their

peers’ assessments of their expertise. On the task level, effective task routing aims

to take advantage of people’s knowledge about solving problems as well as people’s

knowledge about others’ abilities to contribute. People make routing decisions in

a peer-to-peer manner, and the system rewards participants for their contributions,

both direct and indirect through routing. On the organizational level, task routing

may provide a means for bringing tasks to individuals effectively, where people’s

routing decisions take into account not only an individual’s expertise on the particular

task, but also their ability to contribute as a router.

In this chapter, we focus on the special case in which the task is to obtain an

accurate probability assessment about an uncertain event. The task is passed among

individuals in a network, and each participant can update the posterior probability

and forward the task to a neighbor. We introduce routing scoring rules for incentiviz-

ing contributions. Given an assumption of common knowledge about the network

structure and the amount of information held by everyone in the network, truthful

reporting of posterior probability assessments and optimal routing can be obtained

in a Perfect Bayesian Equilibrium. While this result is theoretically sound, optimal
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routing is NP-hard, which suggests that people may have difficulty computing rout-

ing decisions in practice. The common knowledge assumption is also unlikely to hold

for large social networks, where each person’s information about the competencies of

others is limited to a local neighborhood (e.g., friends, and perhaps friends of friends).

To address these concerns, we consider designing incentive schemes for task routing

problems where knowledge about the network structure and others’ abilities is limited

to an individual’s local neighborhood. The main contribution is the introduction of a

family of local routing rules, that isolate simple routing decisions in equilibrium under

local knowledge about others’ expertise and take advantage of such local knowledge

to promote effective routing decisions. We achieve this by incentivizing participants

to make routing decisions based on short, locally optimal paths that can be com-

puted easily using local knowledge. In essence, we design incentive schemes that

explicitly enable equilibrium behavior for which the inference required of participants

is tractable.1

We provide a full characterization of local routing rules, and show that they are

the only routing scoring rules that induce truthful equilibria in which best responses

are invariant to knowledge outside of a local neighborhood. Simulation results demon-

strate that equilibrium routing strategies based on local routing rules lead to effective

information aggregation.

1This is analogous to the role of strategy-proofness in simplifying strategic problems facing agents
in mechanism design [71].
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5.1 Related Work

Methods for automated and manual routing of tasks have been employed in

real world online networks. For example, question-answering services such as Aard-

vark [31] allow a user to ask questions in natural language, which the system interprets

and automatically routes to appropriate individuals in the user’s social graph based

on an assessment of who is best able and willing to provide an answer. Aardvark

also allows for peer routing; a user can manually route questions to others, which en-

ables the system to reach users outside its fund of knowledge about people and their

expertise. Aardvark does not explicitly reward contributions, and instead relies on

people’s goodwill and social connections. In studying incentive mechanisms for task

routing, we are exploring how properly rewarding participants for their contributions

can help promote contributions to problem solving and routing more broadly.

Leveraging individuals’ abilities to both solve and spread the word about the task

was a key component of the winning team’s strategy in the DARPA Red Balloon

Challenge [73]. The task was to find large helium-filled balloons placed in ten undis-

closed locations across the continental United States. The winning team introduced

an incentive mechanism that uses a limited budget to incentivize individuals to look

for balloons and to let their friends know about the task.2 This mechanism aims to

induce participants to broadcast the task to everyone they know, and is well-suited

for one-off, high-stake scenarios such as search and rescue operations for which the

benefit of reaching a large audience significantly outweighs the cost of people’s atten-

2The interested reader may refer to Emek et al. [26], Douceur and Moscibroda [22], and Drucker
and Fleischer [24] for related theoretical analysis, and related work on query incentive networks [48,
4, 19] that analyze games in which players split rewards to recruit others to answer a query.



Chapter 5: Task Routing 115

tion. In contrast, the mechanisms in our work aim to leverage the expertise within a

network by bringing to people’s attention the tasks that they can best contribute to.

These mechanisms are well-suited for efficiently processing a stream of tasks, without

overloading people with information on every task.

The problem of task routing is also related to the problem of decentralized search

on networks, in which the goal is to find a target node quickly through local routing

decisions [92, 21, 99, 47, 1]. In such work, the goal is to identify a single target node

representing a particular individual. While this differs from our task routing problem,

the results still provide theoretical and experimental support for the prospect that

routing decisions with local information may have effective global performance.

One can view routing scoring rules as an extension of market scoring rules [29],

which provide proper incentives for individuals participating in a prediction market

to improve probability estimates by contributing additional information. The ma-

jor difference between task routing and a prediction market is in who takes on the

burden of identifying expertise. While a prediction market places the responsibility

on individuals to find prediction tasks for which they have useful information, task

routing incentivizes individuals to notify others with appropriate expertise who may

otherwise be unaware of the task.

5.2 Task Routing for Prediction Tasks

To formalize the setting, consider a single prediction task T , for which we would

like to gather an accurate probability assessment of the true state ω ∈ Ω. The

probability assessment task can be for any state of the world that will be revealed
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later in time, e.g., “Will it snow next Tuesday in Boston?” or “Will the Boston

Celtics win the NBA championship this year?” We consider discrete state spaces,

and assume without loss of generality a binary state space, such that Ω = {Y,N}.3

Consider a routing game with n players, where each player is represented by a node

on the routing graph G = (V,E). Edges in the graph may be directed or undirected,

and indicate whether a particular player can route the task to another player. The

task is initially assigned to a source player named player 1, with later players on a

routing path numbered sequentially. The source player may be determined by the

system or by the individual posting the task. The source player is asked to update

the probability of state Y from the prior probability p0 to some probability p1, and

in addition, to route the task to a neighbor. The selected neighbor is then asked to

update the assessment p1 to p2 and route the task to a neighbor, and so on, until the

game ends after a prespecified number of rounds R, when a final assessment must

be made. We assume players receiving the task are provided with a list of people

who have participated so far, as well as the number of rounds that remain. Players

are allowed to route to players who have participated thus far, but know that past

participants may not have any additional information to contribute and may only

be able to help with routing. Our goal is to arrive at an accurate assessment after

R rounds by designing incentive mechanisms that will induce each player to update

probability assessments truthfully and route the task to other players that can best

refine the prediction.

3For an event with more than two states, the task is to gather a probability vector with a
likelihood assigned to each state. We can handle such events by using multi-class versions of proper
scoring rules, and all of our results extend straightforwardly.
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We model players’ knowledge about the task as follows: the true state of the world

is drawn according to the probability distribution Pr(Y ) = p0 and Pr(N) = 1 − p0,

which is common knowledge to all players. While no player observes the true state

directly, each player may receive additional information about the true state. To

model this state of affairs, each player privately observes the outcome of some number

of coin flips drawn according to a commonly known distribution that depends on the

true state. Different players may observe different numbers of coin flips, where players

observing more coin flips are a priori more knowledgeable.

Formally, we represent player i’s signal ci as a random bit vector of length li,

where bit cik is a random variable over the outcome of the k-th coin flip observed by

player i. We assume the value of bits of signal are conditionally independent given

the true state, and drawn from the same distribution (known to all players) for all

players and all bits, such that Pr(cik = H|ω) = Pr(cjm = H|ω) for all players i, j, bits

k,m, and realization H (head). Each bit of signal is assumed to be informative, that

is, Pr(cik = H|ω = Y ) 6= Pr(cik = H|ω = N) for all i, k. We also assume that bits

of signal are distinct, that is, Pr(ω = o|cik = H) 6= Pr(ω = o|cik = T ) for all i, k, o,

where H is heads and T is tails.4 We assume the realization of each player’s signal is

private, and make different assumptions about the knowledge of a player about the

number of coin flips of another player.

With conditionally independent signals, each player can properly update the pos-

terior probability without having to know the signals of previous players or their

4These assumptions rule out degenerate cases and can be made without loss of generality. A
signal that is not informative can be removed from the signal space, and two signals that are not
distinct can be treated as the same signal.
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length, as long as previous updates were done truthfully [14]. The posterior incor-

porates, and sufficiently summarizes, all information collected thus far. To perform

updates, players need to only know the signal distribution with respect to their own

signal, which we assume is known to all players. This is useful practically in that

players do not have to keep track of nor communicate their signals, and can simply

report an updated posterior probability.

5.3 Routing Scoring Rules

With rational, self-interested players who have no intrinsic value (or cost) for

solving or routing a particular task, ensuring effective task routing requires mecha-

nisms that will incentivize players to both truthfully update posterior probabilities

and route tasks to individuals who can best refine the predictions of the tasks. In this

section, we review strictly proper scoring rules and market scoring rules for incen-

tivizing truthful reports, and introduce routing scoring rules, which also incentivize

effective routing decisions.

In the forecasting literature, strictly proper scoring rules [83] are mechanisms that

strictly incentivize a forecaster to truthfully reveal his subjective probability of an

event, typically under the assumption that participants are risk neutral. The outcome

of the event is assumed to be observable in the future, and payments are conditioned

on the outcome. A well-known strictly proper scoring rule is the quadratic scoring

rule, under which a player reporting probability q for state Y is rewarded 1− (1− q)2

when the true state is Y and 1 − q2 when the true state is N . Other well-known

strictly proper scoring rules include the logarithmic and spherical scoring rules. Any
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strictly proper scoring rule can be scaled or normalized via linear transformations to

form another strictly proper scoring rule [7].

Market scoring rules [29] extend strictly proper scoring rules to settings where we

wish to aggregate information across multiple people. Given a sequence of reports,

player i reporting pi is rewarded si − si−1, where si denotes the score of player i as

computed by some strictly proper scoring rule applied to this player’s report. Note

that since strictly proper scoring rules incentivize accurate reports, a player’s reward

under a market scoring rule is positive if and only if he improves the prediction.

Building on market scoring rules, we introduce routing scoring rules to incentivize

accurate predictions, along with effective routing decisions.

Definition 5.1. A routing scoring rule defines a sequence of positive integers k1,

. . ., kR−1, which rewards players i ∈ {1, . . . , R− 1} on the routing path:

(1− α)si + αsi+ki
− si−1 (5.1)

where si is the score under an arbitrary strictly proper scoring rule, α ∈ (0, 1) is a

constant, and i+ ki ≤ R for all players i. Player R reports but does not route and is

paid sR − sR−1.

In a routing scoring rule, player i’s payment is based on the marginal value the

player provides for refining the prediction, as measured by a combination of his report

and the report of the player who receives the task ki steps after him, relative to the

report of the player just before him. For player 1, s0 denotes the score computed with

respect to the prior p0. Each player i can be paid for up to R−i steps forward, and the

final player R does not route and is paid by the market scoring rule sR−sR−1. Players
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who participate multiple times within a routing game are paid based on the routing

scoring rule the first time they receive the task, and paid by the market scoring rule

in any subsequent interactions.5

Intuitively, routing scoring rules reward players who are experts as well as players

who are knowledgeable about the expertise of other players. We introduce several

routing scoring rules of particular interest. We first consider the myopic routing

scoring rule (MRSR), which sets ki = 1 for all players i < R. This routing scoring

rule aims to reward a player for submitting accurate probability assessments and

routing in a greedy manner to the adjacent player who can most accurately refine the

probability assessment.

Lemma 5.1. Consider a routing game in which each player participates at most once.

The total payment from the system with MRSR is sR − s0 + α(sR − s1).

The lemma follows from taking telescoping sums, and states that, for MRSR,

the center needs to only pay for the difference between the final assessment and the

initial assessment, since each player is only paid for the additional information they

provide and their routing decision. The expression is familiar from market scoring

rules, containing just an additional term due to routing payments.

We can extend the MRSR to reward players’ routing decisions based on the ac-

curacy of information after ki = min(k,R − i) more players have provided their

information. The k-step routing scoring rule (kRSR) rewards a player based on his

report, as well as the eventual consequence of his routing decision k steps into the

5For the local knowledge settings we consider later in the chapter, this avoids situations in which
a player may try to hold on to a task by making suboptimal routing decisions that lead to their
being routed the task again, with the intent of earning multiple routing payments beyond the first.
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future. Unlike MRSR, kRSR rewards players for routing to players who may not have

information themselves, but who are still able to route to others who do.

In particular, when player i’s routing payment is based on player R’s score, that

is, i + ki = R, for all i, we call this the path-rewarding routing scoring rule (PRSR).

As its name suggests, this routing scoring rule seeks to focus a player’s attention on

the final consequence of his routing decision, judged at the end of the game.

The choice of routing scoring rule affects players’ routing decisions in equilibrium,

which in turn affect how much information is aggregated. To formally establish the

connection between a player’s score and the amount of information aggregated, we

show that the expected score is strictly increasing in the total number of coin flips

collected:

Lemma 5.2. Let S ′ and S ′′ denote two possible sequences of players through the first

k rounds of the routing process that are identical up to player i < k. Assume all

players truthfully update posterior probabilities, and that player i knows the number

of bits lj for players i < j ≤ k on S ′ and S ′′. Let Ei
S[sk] denote player i’s expectation,

taken immediately after his own report, of the score after player k’s report in path S.

Ei
S′ [sk] > Ei

S′′ [sk] holds if and only if
∑

m∈u(S′) lm >
∑

n∈u(S′′) ln, where u(S) is the

(unique) set of players in S.

Proof. (sketch) Assume without loss of generality that there are a total of n coin flips

in S ′, and n + m coin flips in S ′′, m > 0. The expected score of player k from S ′′

consists of two (hypothetical) components: (a) the score he would get when giving a

prediction after receiving the first n coin flips, denoted s[n], and (b) the difference in

the score he would get by changing his prediction after receiving the next m coin flips,
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denoted s[n+m] − s[n]. The expectation of the first part is the same as the expected

score of player k from S ′, and the expectation of the second component is always

non-negative given any strictly proper scoring rule.

Intuitively speaking, additional bits of information can only improve the accuracy

of the prediction in expectation. Since strictly proper scoring rules reward accuracy,

collecting more coin flips will lead to higher scores in expectation.

5.4 Common Knowledge

Having introduced routing scoring rules of interest, we consider an equilibrium

analysis of the associated routing game. We first consider the case where the net-

work structure and the number of coin flips li observed by each player i is common

knowledge. Note the actual signal realizations are still assumed private.

5.4.1 Clique Topology

Let us first consider the routing game on a clique, where each player can route

the task to any other player. Given the clique topology, an optimal routing algorithm

can just route myopically and collect as many coin flips as possible at each step. In

a clique, there is no opportunity cost for being greedy in this way. We have the

following equilibrium result:

Theorem 5.1. Assume the number of coin flips of each player is common knowledge

and that players are risk neutral. Consider a routing game in which the routing graph

is a clique, and let S>i denote the set of players who have yet to receive the task after



Chapter 5: Task Routing 123

i rounds. Under the myopic routing scoring rule, it is a Perfect Bayesian Equilibrium

(PBE) for each player i to truthfully update the posterior probability, and to route the

task to player i+ 1 ∈ argmaxm∈S>i
lm, with the belief that all other players update the

posterior probability truthfully.

Proof. (sketch) We show that no player wishes to deviate from the equilibrium strat-

egy, given the belief that all other players report truthfully. For any player i, we first

show that player i should honestly update the posterior beliefs by establishing that

(a) truthful reporting maximizes si, and that (b) for any player m who may be routed

the task, truthful reporting by player i maximizes the score sm. Note that for (a),

since si is based on a strictly proper scoring rule, truthful reporting maximizes the

expectation of si. For (b), the expected score of sm (from the perspective of player

i) is strictly greater when player i reports honestly because sm is based on a strictly

proper scoring rule. It is left to show that player i maximizes si+1 by routing to the

player in S>i with the most coin flips; this follows from Lemma 5.2.

5.4.2 General Networks

We now consider routing games on general networks with missing edges; e.g., only

managers can route tasks between teams and only friends can route to friends. We

can state the algorithmic problem of finding the optimal route in terms of collecting

coin flips:

Problem 5.1. Consider the routing graph G = (V,E), in which nodes are assigned

non-negative integer weights wi (coin flips). Given a starting node o, find a path of

length at most k such that the sum of weights on the path is maximized.
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Figure 5.1: A routing game for which myopic routing (along the bottom path) is
suboptimal. Numbers in nodes are the number of coin flips held by each player.

Note that a player can route to another player who has received the task before

(the path need not be simple), but no additional information is collected in subsequent

visits to the same player.

Immediately, we see that myopic routing will not always find the optimal solution

to Problem 5.1, as routing to the neighbor with the most coin flips does not consider

the effect this can have on future routing decisions, and can now convey an oppor-

tunity cost. Figure 5.1 illustrates an example in which myopic routing would lead

player 1 and all subsequent players to route along the bottom path, while the optimal

solution requires players to route along the top path.

We can show that this problem is NP-hard for variable path length k:

Lemma 5.3. Problem 5.1 is NP-hard.

Proof. Consider a reduction from the Hamiltonian Path problem. Let all nodes have

weight 1, and set k = |V |. The solution path has total weight |V | if and only if all

nodes are visited within k steps, that is, a Hamiltonian Path exists.

While the problem is NP-hard for a variable path length k, for small constant k

the optimal path may be tractable to compute via exhaustive search.
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But intractability is not the only difficulty we face. Even if players can compute

the optimal path, we still need to find incentives that induce players to honestly

report their information and to route along the optimal path. The path-rewarding

routing scoring rule does just that.

Theorem 5.2. Assume the number of coin flips of each player is common knowledge

and that players are risk neutral. Let S>i denote the set of players who have yet to

receive the task after i rounds. Let Qi denote a solution to problem 5.1 for which

k = R − i, o = i, and wm = lm if m ∈ S>i and wm = 0 otherwise. Under the

path-rewarding routing scoring rule, it is a PBE for each player i to truthfully update

the posterior probability and route the task to the next player in the path provided by

Qi, with the belief that all other players follow this strategy.6

Proof. (sketch) Using similar arguments as in the proof sketch for Theorem 5.1, we

show that no player wishes to deviate from the equilibrium strategy, given the belief

that all other players report truthfully. For any player i, we first show that player i

should honestly update the posterior beliefs by establishing that (a) truthful reporting

maximizes si, and (b) for any subsequent sequence of players i+1, . . . , R who may be

routed the task, truthful reporting by player i maximizes the score sR at the end. For

(a), since si is based on a strictly proper scoring rule, truthful reporting maximizes

the expectation of si. For (b), the expected score of sR (from the perspective of player

i) is strictly greater when player i reports honestly because sR is based on a strictly

proper scoring rule.

6In this setting, a player who participates multiple times does not receive, nor require, any
incentives for routing beyond the first time. This is because routing along an optimal path is
required for maximizing the expected score at the end of the game, which is the basis for a player’s
(first time) routing payment under the path-rewarding routing scoring rule.
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It is left to show that player i maximizes sR by routing to the next player in the

path provided by Qi; this follows from Lemma 5.2.

Since PRSR rewards each participant’s routing decision based on the final score,

it is in each participant’s interest to maximize the number of coin flips collected along

the entire routing path. We can show that reporting honestly and routing this way

is the only behavior that can be supported in equilibrium under PRSR:

Theorem 5.3. The set of PBE identified in Theorem 5.2 (corresponding to possible

ties in the solution to problem 5.1) are the only PBE of the routing game under PRSR.

Proof. (sketch) Given any routing path, by backward induction every player should

update the posterior probability truthfully because participants’ scores are computed

using a strictly proper scoring rule. Given that players update truthfully, by back-

wards induction every player i should route along the path identified by some solution

Qi because maximizing the number of coin flips collected maximizes the routing por-

tion of each player’s score (Lemma 5.2).

5.5 Local Common Knowledge

Although people may know one another’s expertise in small organizations, the

common knowledge assumption becomes unreasonable for larger organizations and

social networks. An individual will not necessarily know everyone else, and may only

have limited information about the expertise and connectivity of individuals outside

of a local neighborhood.
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We replace the common knowledge assumption with a requirement that individu-

als all attain the same minimal level of knowledge about each other’s expertise within

a local neighborhood of a particular size, defined by the number of hops between

participants. For example, all friends of a particular person are aware of his expertise

(one hop). Friends of his friends may also be aware (two hops).

Definition 5.2. A routing game satisfies the local common knowledge assump-

tion within m-hops if, for all nodes (individuals) i, (a) li is common knowledge

to all individuals connected to i via some path of length at most m, and (b) i knows

all paths of length at most m connecting i to other individuals, and this is common

knowledge.

For example, 1-hop local common knowledge assumes that all friends of a partic-

ular person know the person’s level of expertise, and 2-hop local common knowledge

extends this shared knowledge to his friends of friends. Note that the local common

knowledge assumption within m-hops is just a minimal requirement and does not

preclude a player from having more information.

Given that a player may only have m-hop local common knowledge, let’s consider

the problem facing such a player when deciding how to route to maximize the final

prediction quality after R steps. Routing optimally may require the player to use

the history of routing decisions to infer why certain people were not routed the task

(but could have been), based on which to perform inference about the amount of

information held by different people in the network. Furthermore, optimal routing

requires a player to make inferences about the values that can be generated from the

routing decisions of subsequent players beyond his locality. Not only is such reasoning
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complex and likely impractical, any equilibrium to induce optimal routing will likely

be fragile because it requires players to adopt priors over other players’ beliefs.

An attempt to avoid such issues may suggest rewarding players based on a m-

step routing rule whenever the local common knowledge assumption holds for m-

hops. The problem with this suggestion is that a player would still have to consider

the routing decisions of players outside his locality because maximizing his payoff

requires considering the routing decisions of the chain of players within his locality.

For example, consider the two-step routing rule (see bottom of Figure 5.2). For any

player, the score two steps forward will depend in part on the routing decision of the

next player. But since the next player is paid for the score two steps forward (from

him), his routing decision will depend not only on the amount of information held by

the player after him, but also that player’s routing decision. Since each player has to

consider the routing decision of the next player, each player has to reason about the

future routing decisions of all players down the routing path, in order to just compute

the expected score after two steps.

This motivates the family of local routing rules, under which players’ strategies

in equilibrium rely only on computations based on local information. We define the

notion of a local strategy as follows:

Definition 5.3. A player i in a routing game adopts a m-local strategy if his

routing decision depends only on m-hop local common knowledge and is invariant to

any beliefs the player might have about players outside of his own locality.

Let us first consider the following local routing rule, designed to be useful with

2-hop local common knowledge:
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2	   1	   2	   1	   2	  

2	   2	   2	   2	   2	  

Figure 5.2: Illustration of the 2-1-2-1 and 2-step routing rules. Arrows depict depen-
dencies in routing payments.

Definition 5.4. The 2-1-2-1 routing rule is a routing scoring rule which sets ki = 2

if i is odd and i < R− 1, and ki = 1 otherwise.

The 2-1-2-1 routing rule incentivizes players to compute locally optimal paths

of length two (see top of Figure 5.2), which can be computed with local common

knowledge. As even-numbered players are paid based on the myopic routing scoring

rule, they will route to the available player with the most number of coin flips. Since

each odd-numbered player knows the number of coin flips that can be collected from

the next even-numbered player and the next odd-numbered player that is routed the

task, he can compute the best local path without regard to routing decisions beyond

his locality. Players still need to take into account which other players have already

participated, but no other inference based on history is necessary.

Expanding on the idea, we construct a class of routing scoring rules (e.g., MRSR,

2-1-2-1, 3-2-1-3-2-1, . . .) that incentivize players to compute locally optimal paths for

m-hop local common knowledge.

Definition 5.5. The m-hop routing rule is a routing scoring rule which sets ki =

min[m− (i− 1) mod m,R− i].
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The m-hop routing rule supports the following equilibrium behavior:

Theorem 5.4. Assume that players are risk neutral and m-hop local common knowl-

edge holds. Let S>i denote the set of players who have yet to receive the task after

i rounds. Let Qi denote a solution to problem 5.1 for which k = min[m − (i −

1) mod m,R − i], o = i, and wj = lj if j ∈ S>i and wj = 0 otherwise. Under the

m-hop routing rule, it is a PBE for each player i to truthfully update the posterior

probability and route the task to the next player in the path provided by Qi, with the

belief that all other players follow this strategy.

Proof. (sketch) Using similar arguments as the proof sketch for Theorem 5.1, we can

show that players should truthfully update the posterior probability. To show player

i should route based on Qi, we first note that Qi is computable given m-hop local

common knowledge. Since Qi maximizes the number of coin flips collected in the

next k steps, Lemma 5.2 proves the point, and the theorem.

Unlike in the common knowledge setting under the path-rewarding routing scor-

ing rule, this equilibrium under the m-hop routing rule may not be unique. For a

player routing more than once, after the first time, the player is weakly indifferent

among all routing decisions because his payment reduces to the market scoring rule

for subsequent routing opportunities. Such a player need not route along a locally

optimal path in making subsequent routing decisions and this can affect the equilib-

rium behavior of other players who may route the task back to this player. If we

wish to ensure that routing along a locally optimal path is a unique equilibrium, we

can modify the routing game slightly to prevent players from routing to other players
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who have already participated in the game.7

The main idea behind the m-hop routing rule is that each player can compute his

best routing action with respect to the decisions in his locality and without regard to

routing decisions beyond his locality. It turns out that this property can be satisfied

by other local routing rules as well. For example, when m = 3, the 3-1-1-3-1-1 routing

rule is one in which the first of three players in sequence is paid by the score three

steps forward, but the next two players are each paid myopically. Note that the first

player here can still compute his optimal routing decision using only local common

knowledge by computing the routing decisions of others in his locality via backwards

induction. We can thus characterize the entire family of local routing rules:

Definition 5.6. Given m-hop local common knowledge, the family of m-local rout-

ing rules consists of routing scoring rules defined with parameters k1, . . . , kR−1, that

satisfy ki+j + j ≤ m for all i and 0 ≤ j < ki.

Generally, we can refer to these as local routing rules, dispensing with the m when

this detail is unimportant. The condition ensures that local routing rules can only

reward players whose routing decisions may affect the payoff of an earlier player based

on the routing decisions of future players that are within m hops of that earlier player.

In other words, it considers the set of routing scoring rules for which the payment to

any player should only depend on the local information that player is guaranteed to

hold. For example, the 2-1-2-1 routing rule satisfies this condition for m = 2 because

7We can modify the routing game so that in cases when a player has no one to route to, no
routing payments will be assigned. The task is returned to the system which will randomly select
a new participant. Since players cannot participate twice in this modified game, uniqueness of the
equilibrium stated for the m-hop routing rule in Theorem 5.4, and more generally for local routing
rules in Theorem 5.5, can be recovered without requiring further assumptions. The argument is
similar to that in the proof of Theorem 5.3.
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for an odd i, ki ≤ 2 ≤ m and ki+1 + 1 = 2 ≤ m, and for an even i, ki = 1 ≤ m.

However, the two-step routing scoring rule violates the condition, because for all

i < R−2, ki+1 +1 = 3 > m. Note that the m-hop routing rule satisfies the condition,

since ki is set such that ki+j + j = m for all appropriate i and j in Definition 5.6.

We argue that using a local routing rule is necessary and sufficient for the existence

of an equilibrium under m-hop local common knowledge, in which participants follow

m-local, truthful strategies. We first show sufficiency:

Theorem 5.5. Assume that risk neutrality and m-hop local common knowledge holds.

For any node i and possible path ni+1, . . . , ni+ki
from i, let the weights wj on node j

be lj if j has yet to be visited up until then, and 0 otherwise. For any m-local routing

rule, consider the following dynamic program:

V (nj+1, . . . , nj+kj
|n1, . . . , nj) = max

j+1,...,j+kj+1

[

kj+1∑
b=1

wj+b

+ V (nj+kj+1+1, . . . , nj+kj
|n1, . . . , nj+kj+1

)]

V (∅|n1, . . . , nj+kj
) = 0 ∀n1, . . . , nj+kj

(5.2)

Let n∗i+1, . . . , n
∗
i+ki

= argmaxV (ni+1, . . . , ni+ki
|n1, . . . , ni) denote a solution of the

dynamic program. It is a PBE for each player i to truthfully update posterior proba-

bilities and to route the task to n∗i+1, with the belief that all other participants follow

this strategy.

Proof. (sketch) To prove the theorem, we first note that all players would truthfully

update the posterior probability along the path as we had previously argued, as

doing so maximizes the scores computed, based on a player’s own assessment and the

assessments collected from those routed the task via the routing payment. Second, as
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Figure 5.3: Routing game construction for the j = 0 case.

the variables and parameters of the dynamic program are only the nodes in paths of

length at most ki from i, and by the definition of local routing rules ki ≤ m, players

follow m-local strategies. That is, the information that each player i needs to compute

the dynamic program is within m hops and thus known to player i. Finally, given

the routing decisions of others down the path, the number of coin flips collected is

by definition maximized by the routing decisions along the computed path. Applying

Lemma 5.2 proves the point, and the theorem.

Theorem 5.6. The only routing scoring rules that induce for every routing game

a truthful PBE (where players honestly update probability assessments) in m-local

strategies are local routing rules.

Proof. (sketch) Assume for sake of contradiction that there exists a routing scoring

rule that induces a truthful PBE for all routing games in m-local strategies but is not

a local routing rule. Since this routing scoring rule is not a local routing rule, there

must be some i in the sequence for which there exists some j such that ki+j + j > m,

0 ≤ j < ki. Consider the first such i and j.

First consider the case where j = 0. We construct a graph with two paths (top

and bottom), as shown in Figure 5.3.
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Based on the construction, consider two routing games G and G′. In game G the

coin flips held by U and V are 1.5ε and 1.6ε respectively, and in game G′ the coin

flips at U and V are reversed. Due to the violation of the condition for local routing

rules at i for j = 0, by construction U and V are more than m hops from player i. In

a PBE with m-local strategies, it is thus necessary for the routing decisions of player

i to be independent of the number of coin flips held by players at U and V , that is,

for the routing decision to be the same for these two games G and G′.

We show that player i’s best response to the equilibrium strategies of the other

participants depends on G or G′. For both games, using backwards induction, all

players strictly prefer to route the task forward (to the right) instead of backwards

at any given point in time and for any lookahead depth as induced by their routing

payment. This is because a player’s expected payment is based on the number of

coin flips collected and one can always collect more coin flips in the forward direction

(for any player, going backwards would necessitate visiting a node that’s been visited

before with no new coin flips to share). Since in game G player i would collect

more coin flips by routing up due to the higher value at U over V and the reverse

is true in game G′, player i’s best response would be different, which contradicts our

assumption.

Now consider the case where j > 0. We construct a graph with three paths (top,

middle, and bottom), as shown in Figure 5.4.

Based on the construction, consider two routing games G′′ and G′′′. In game G′′

the coin flips held by A, B, and C are ε, ε, and ε respectively, and in game G′′′ are

ε, 1.7ε, and 1.7ε, respectively. Due to the violation of the condition for local routing
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Figure 5.4: Routing game construction for the j > 0 case.

rules, by construction A, B, and C are more than m hops from player i. In a PBE

with m-local strategies, it is thus necessary for the routing decisions of player i to be

independent of the number of coin flips held by players at A, B, and C, that is, for

the routing decision to be the same for G′′ and G′′′.

We show that player i’s best response to the equilibrium strategies of the other

players depends on G′′ or G′′′. We first consider game G′′. Using backwards induction,

note that each player must strictly prefer to route the task forward (to the right)

instead of backwards at all times, regardless of the lookahead induced by their routing

payment. This is because a player’s expected payment is based on the number of coin

flips collected and, as before, one can always collect more coin flips in the forward

direction (as going backwards necessitates visiting a node that’s been visited before).

In this case, the top player at i+ j would route up because the i+ ki-th player would

have more coin flips (1.6ε) and is within the scope of the routing payment. Given

knowledge of the values at A and B, it is thus strictly better for player i to route up

in G′′.

Consider now game G′′′. By backwards induction, each player strictly prefers to

route forward because doing so guarantees the largest payment along the way for any
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lookahead. The top player at i + j will route along the middle path in equilibrium

because he would receive ε + 1.7ε from coin flips at the middle path of i + ki and

i+ j+ ki+j versus the 1.6ε + ε along the top path. In this case, player i would rather

route down instead of up because it would collect 0.5ε more coin flips due to the 1.5ε

at i+ki on the bottom path. However, since player i’s best response routing decision

should be the same for game G′′ and G′′′, we have a contradiction.

5.6 Simulations and Results

The equilibrium strategies induced by local routing rules can be viewed as pro-

viding a heuristic algorithm for computing an optimal route over a network. We now

demonstrate via simulations that routing decisions based on local rules can effectively

aggregate information as a task is routed through the network.

We consider connected random graphs with 100 nodes and average degree d ∈

{4, 10}, generated using the Watts-Strogatz model [100]. By varying the re-wiring

probability β, the model allows us to generate graphs that interpolate between a reg-

ular lattice (β = 0) and a G(n, p) random graph (β = 1), with small-world networks

emerging at intermediate values of β. We associate each node with a number of coin

flips. Coin flips are drawn independently either discretely from U[1,10] or from a

skewed distribution where the value is 1 with probability 0.9 and 46 with probability

0.1. The two distributions have equal mean (5.5), but the skewed distribution more

closely resembles a setting where there are few experts. For graphs generated in this

manner, we simulate player strategies under local routing rules (MRSR, and m-hop

with m = 2, m = 3) by computing local paths in the manner noted in Theorem 5.4,
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d = 4 d = 10

β Dist. MRSR m=2 m=3 MRSR m=2 m=3

.03 U 69 71 72 83 84 85
0.1 U 71 72 75 85 86 87
1.0 U 76 78 80 89 89 90
.03 S 80 87 104 150 183 227
0.1 S 88 109 146 181 226 259
1.0 S 120 155 183 227 258 278

Table 5.1: Comparison of routing performance based on the average number of coin
flips collected after 10 steps. Values represent averages over 100 trials. We considered
connected Watts-Strogatz graphs based on uniform (U) and skewed (S) coin flip
distributions with fixed mean (5.5). In all cases, routing based on local routing rules
collected significantly more coin flips than the 55 coin flips (upper bound) we would
expect to collect from routing randomly.

where revisited nodes are treated as having no value. As a baseline, we consider a

random routing rule that routes to a random neighbor, and whenever possible, to a

random neighbor who has yet to be assigned the task. Note that the expected per-

formance of the baseline is bounded by 5.5 coin flips per round, as we would expect

from randomly picking unvisited nodes in the graph.

Table 5.1 shows the average number of coin flips collected after 10 steps by players

following local routing rules on graphs with varying β, average degree, and coin flip

distribution over 100 trials (standard errors are small and hence not reported). We

see that routing rules are particularly effective in cases where there are few experts

(S), and when the graph has a sufficiently high connectivity (higher d and β) such

that paths exist through which experts can be routed the task. But even in cases

with uniformly distributed coin flips (U) and low average degree (d = 4), local routing

rules collect significantly more coin flips than the upper bound of 55 we would expect
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Figure 5.5: Comparison of routing performance based on the average number of coin
flips collected for graphs with β = 0.1, d = 10, and skewed coin flip distributions. Val-
ues represent averages over 100 trials. Routing based on local routing rules collected
significantly more coin flips over fewer rounds than routing based on the random
routing rule.

from randomly choosing nodes. Despite connectivity constraints, paths still included

many high valued nodes (recall the max per node is 10).

The difference in routing performance among local routing rules is rather small for

uniformly distributed values, but is more significant when the distribution is skewed.

In this case, effective routing may require finding short paths to experts who are not

neighbors. That said, this difference shrinks for graphs with higher degree, as high-

value nodes become more reachable (recall that as graphs approach cliques, myopic

is optimal).

Figure 5.5 shows the average number of coin flips collected by local routing rules

as we progress through the routing game on graphs with β = 0.1, d = 10, and skewed

coin flip distributions. We see that routing based on local routing rules collected
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significantly more information over fewer rounds than routing based on the random

routing rule. For m ≥ 2, the performance under the local routing rules are essen-

tially the same, suggesting that we can sometimes achieve near-optimal performance

globally with just two-hop local common knowledge.

With the random routing rule, we see that the rate of information aggregation

stays nearly constant throughout the routing game. Since the rule routes to new

players whenever possible, this suggests that the graph is well-connected and that new

players can often be routed the task even later in the game when many players have

already participated. With local routing rules, we see that the rate of information

aggregation eventually slows down, which denotes the point at which virtually all

experts have been routed the task.

5.7 Discussion

We consider the opportunity for incentivizing the joint refinement and routing of

tasks among people within a network, focusing on prediction tasks. We introduce and

study local routing rules which, in equilibrium, support people truthfully contributing

information and routing tasks based on simple computations that nevertheless lead

to effective information aggregation.

In our analysis, we have assumed that bits of signal are conditionally independent.

But in some settings, players’ signals may be conditionally dependent, and accurate

predictions may depend on collecting the complementary information held by different

players. In this setting, our theoretical results continue to hold with small modifica-

tions. First, it is no longer sufficient to maintain a posterior estimate. Instead, we
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need to explicitly keep track of the information contained in players’ signals. Sec-

ond, we need to restrict players from participating more than once, or alternatively,

from being paid for their information beyond the first time. This prevents the type

of incentive issues that may occur in prediction markets, in which participants with

conditionally dependent signals may be better off withholding some information until

complementary information has been reported to the market [14].

While local routing rules enable equilibrium behavior for which the inference re-

quired of participants is tractable, these rules still assume that participants are ratio-

nal in that they maximize their expected payoff. In practice, participants can make

mistakes and route suboptimally. But even so, local routing rules may provide for a

robust design in which participants are incentivized towards making good decisions

even if their decisions are not optimal. Since local routing rules are based on strictly

proper scoring rules, which in our setting are accuracy-rewarding [51], more accurate

predictions will lead to strictly higher payoffs. Furthermore, since the equilibrium is

constructed within local paths, any “mistakes” also remain local, and do not affect

the routing decisions of later participants outside of local reach.

In crafting local routing rules, we demonstrated a means for designing incentives

that explicitly enable players to make simple computations in equilibrium. The key

idea is to ensure that players need only make decisions based on information they are

guaranteed to have. This requires that players’ routing payments are localized and

that any chains of reasoning are limited to within local neighborhoods. We believe

this idea generalizes beyond prediction tasks and can enable effective solving and

routing over social networks in a variety of settings.
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There are many possible directions for future work on task routing. One direction

is to study routing performance under specialized network topologies and knowledge

distributions. Another direction is to extend our models to consider the intrinsic

value and cost for solving or routing. In this direction, we are also interested in

introducing communication or sensing mechanisms coupled with means of tracking

costs of acquiring information, in order to take into account and study the process

through which individuals make contributions.

We are interested in developing general principles and methods for solving and

routing with humans and machines, and in considering other types of meta-knowledge

participants may have about the expertise of others in a social network. In addition

to multiple opportunities to address task-level issues, there are also opportunities to

address organizational issues related to distributing streams of tasks in a manner that

takes into account people’s solving and routing abilities over a spectrum of tasks, as

well as participants’ changing levels of attention, motivation, and availability. We

elaborate on this direction in Chapter 9.


