
Chapter 6

Automated Environment Design

In the previous chapters, we introduced a number of designs for crowdsourcing

complex tasks that are effective in recruiting individuals with relevant expertise to

join in problem solving and enabling coordination and collaboration. To promote

desired behaviors and outcomes, we focused on reasoning about the crowd’s abili-

ties, limitations, and work processes in order to construct workflows, interfaces, and

incentive mechanisms that are tailored to the characteristics of the crowd.

While we have focused thus far on the design of human computation systems,

understanding participants and their behavior is crucial for designing any social or

economic system. Participants have varied knowledge and abilities, interests and

motivations, availability, and decision-making processes. Together with the decision

environment, these elements influence participants’ decisions on what actions to take.

Designers can draw on what they know, but do not typically have a complete under-

standing of participants and cannot always predict their behavior. For this reason,

solving a computational environment design problem may require experimenting with

142

Chapter 6: Automated Environment Design 143

alternative designs, and iterating to improve designs over time to better promote de-

sired behaviors.

The Internet provides a number of tools for designers that support a data-driven,

iterative design process. Frameworks, style sheets, and content management systems

make it easier to modify or extend existing designs. Web analytics software tracks

individual and group behaviors over time, and provides information on trends and

patterns in the data. Tools for A/B testing allow designers to put hypotheses to the

test, by measuring the performance of competing designs against defined objectives.

But despite having a rich set of tools, the process of discovering effective designs is

still largely manual, tedious and ad hoc. Designers spend significant time and effort

coming up with alternative designs, that may consist of small modifications geared

towards making immediate improvements. Without particular regard to gaining a

deeper understanding of participants or of potential interactions among design ele-

ments, this may lead to an experimentation process that tries to hill-climb toward a

solution at a local, rather than global, maximum. Designers may miss out on parts of

the design space where better solutions exist, and ultimately fail to promote desired

behaviors and outcomes.

A more principled and automated approach to experimentation may lead to more

effective designs more quickly, while requiring less manual effort. Such an approach

may use observations of participant behaviors to not only evaluate competing de-

signs, but also to refine our understanding of participants’ abilities, motivations, and

decision-making processes. This knowledge may allow us to reason about the design

space more globally, and to discover designs that we would otherwise have missed. To

Chapter 6: Automated Environment Design 144

reduce the amount of manual effort required, and to discover effective designs more

quickly, automated procedures can be employed to seamlessly combine domain knowl-

edge with machine-driven processes that optimize the choice of experiments and refine

existing models based on observed behavior. From the perspective of the designer,

an automated system may simply take as input a set of available interventions, the

objective of the designer, and a model of participants, and provide as output an in-

tervention that promotes actions and outcomes meeting the objective whenever such

interventions exist, or otherwise learn something new about participants.

In this chapter, we introduce a general approach for automated environment de-

sign. Section 6.1 presents a formal model of the automated environment design prob-

lem. Section 6.2 provides an active, indirect elicitation framework that automatically

drives an objective-oriented, iterative design process in which a system indirectly

learns about participants based on observations of participant behavior in response

to experiments chosen based on current knowledge. Section 6.3 introduces the prob-

lem of policy teaching as a case study, in which an interested party aims to provide

limited rewards to induce an agent in a sequential-decision setting to follow a desired

policy. We construct an active, indirect elicitation algorithm, that without prior

knowledge of the agent’s reward function, is guaranteed to discover rewards in a con-

strained reward space that elicit the desired policy after few interactions, as long as

such rewards exist. Section 6.4 describes how our methods and results may generalize

to other automated environment design problems, and discusses our assumptions as

well as alternative models and approaches for automated environment design.

Chapter 6: Automated Environment Design 145

6.1 Model for Automated Environment Design

We consider situations in which an automated system, which we refer to as an

interested party, seeks to design or modify aspects of a social or economic system on

the Internet with the intent of eliciting desired actions and outcomes. For simplicity

of notation and without loss of generality, we model participants in a system as if they

were a single agent.1 A model for an automated environment design problem consists

of a decision environment, an agent model, an environment change, an admissibility

condition, an environment transition function, and a goal function. Below we define

these components, and present static and dynamic formulations of the problem.

Consider an agent who acts in a decision environment e ∈ E based on his agent

model M = {θ, f,Λ}, which consists of the model parameters θ ∈ I; the agent func-

tion f : I × E → 2X , where X is the decision space; and the actuation function

Λ : X × E → O, where O is the output space. The model parameters represent the

agent’s preferences and capabilities, and contains information private to the agent.

The agent function takes the model parameters and environment as input and iden-

tifies (perhaps multiple, equivalent) decisions, which describe how the agent plans

to act in the environment. The actuation function takes the agent’s decision and

the environment and provides an output representing the agent’s actual actions in

the environment. Although described here as deterministic for expositional clarity,

the actuation function need not in general map a decision to an output deterministi-

cally, and may instead sample from a distribution over actions. Furthermore, while

1Interactions among participants can be captured by having the agent model take into account
how participants in a decision environment may interact and make decisions based on other partic-
ipants’ actions.

Chapter 6: Automated Environment Design 146

the agent’s actions may sometimes reveal the agent’s exact decision, we assume that

decisions are not directly observable.

We make a couple of assumptions about the agent model. First, we assume

that the agent fully perceives the decision environment and makes decisions with

respect to that knowledge.2 Second, we assume that f and Λ are fixed and known

to the interested party. This abstraction implies that if the interested party had full

knowledge of the agent’s model parameters, he would be able to predict the agent’s

decisions and a distribution over agent actions in the designed environment. Third,

we assume the agent can compute f on any input he encounters, such that any

computational limitations of the agent is embedded within f . Lastly, we assume that

the agent makes a single decision x ∈ f(θ, e) when f returns a non-singleton set of

decisions, with this tie-breaking rule a priori unknown to the interested party.

Having described the agent model, we turn to consider the interested party’s

problem. We assume the presence of a base environment e0, which the interested party

can modify via an environment change ∆ ∈∆. The environment transition function

F : E ×∆ → E takes the base environment e0 and an environment change as input

and outputs a modified environment. We assume this function is deterministic and

known to the interested party. Furthermore, we assume that once the environment is

modified, the agent acts with respect to a decision in the modified environment. Since

the environment enters as input into the agent function, modifying the environment

may influence the agent’s decision and actions. We assume that the interested party

fully perceives the environment, and can observe the agent’s actions.

2Alternatively, one can define f based on the agent’s perceptual inputs as opposed to the envi-
ronment. For sake of exposition we do not explicitly model the agent’s perception.

Chapter 6: Automated Environment Design 147

We assume that the agent is myopic with respect to environment changes. That

is, the agent follows his agent function and does not reason about future changes

to the environment when making current decisions. This seems reasonable in social

and economic systems on the Web, in which there are large numbers of users, most

of whom tend to use services as desired without reasoning about how systems may

change in the future. Furthermore, as design decisions tend to be guided by the

behaviors of many users, a single individual’s actions are unlikely to affect a system’s

(re)design. That said, it is generally possible for users to take actions with the intent

of influencing environment changes; we elaborate on this issue later in the chapter.

Given a setX ∈ 2X of agent decisions that may result from an environment change,

the admissible set admissible(X) ⊆ ∆ characterizes the space of allowable environ-

ment changes. Admissibility conditions can model the interested party’s design costs

and constraints, both of which may potentially depend on the agent’s decisions. For

example, an environment change that rewards user actions may be infeasible if agent

decisions in the modified environment lead to actions that require the interested party

to issue more rewards than he has available. We assume the admissible set always

contains a null element Φ, corresponding to no environment change.

Finally, we define the goal of the interested party. The goal function G : X ×

∆ × I × E → < takes the agent’s decision under the modified environment, the

environment change, the agent’s model parameters, and the modified environment

as input and outputs the value to the interested party.3 The goal may depend on

3Since the agent’s decision is not directly observable, in practice an interested party may use
samples of observed actions to evaluate admissibility and goal conditions. Since the agent’s model
parameters are also private to the agent, the interested party may need to evaluate the goal function
with respect to beliefs about the actual model parameters.

Chapter 6: Automated Environment Design 148

Environment a Web 2.0 site
Agent model parameters preferences over site modules; time available

to spend online
Agent function decision on what to do on the site based on

interest and availability
Actuation function actual user actions on the site based on user

decisions
Environment change adding, removing, and moving modules in

the user interface
Admissibility condition limit to changes within template; keep main

components centered and visible
Environment transition function describes how the user interface changes
Goal function retention rate among new users; the volume

of content contributed

Table 6.1: An example showing the various components of a computational envi-
ronment design problem in which an interested party wishes to redesign the user
interface of a Web 2.0 site to improve retention rate and increase the volume of user
contributions.

(a) the agent’s decision because it determines (the distribution over) agent actions

and outcomes; (b) the environment change because this may come at a cost; (c) the

model parameters because the designer may wish to consider the value to the agent;

and (d) the modified environment because the interested party may value the agent’s

decisions differently in different environments.

To get a sense of how the model applies to computational environment design

problems we may encounter in practice, see Table 6.1, which illustrates the various

components of a computational environment design problem in which an interested

party wishes to design the user interface of a Web 2.0 site to improve retention and

increase the volume of user contributions.

Chapter 6: Automated Environment Design 149

6.1.1 Static Formulation

As a special case, we first present the static formulation of the automated envi-

ronment design problem, in which we assume that the agent’s model parameters are

known to the interested party. The goal is to find an admissible ∆ such that the

agent’s elicited behavior in the modified environment maximizes the goal function G.

Since the interested party already knows the agent function and the environment, we

can think of the interested party’s problem as a one-shot optimization problem.

In the case of multiple possible decisions in the range of the agent function, the

agent may not select the one desired by the interested party. To be certain that the

agent selects decisions desired by the interested party, our formulation assumes that

the agent selects the worst possible decision for the interested party’s goal function:

Definition 6.1. Given an environment e, the static computational environment de-

sign problem is an optimization problem to find an environment change ∆ that max-

imizes the interested party’s goal function in the worst case:

max
∆

[min
xT

G(xT ,∆, θ, e
′)] (6.1a)

subject to: e′ = F(e,∆) (6.1b)

xT ∈ f(θ, e′) (6.1c)

∆ ∈ admissible(f(θ, e′)) (6.1d)

In the case that the agent function outputs singleton decision sets, the objective of the

optimization simplifies to max∆ G(xT ,∆, θ, e
′).

The constraints ensure that e′ is the modified environment (6.1b), that the model

parameters and modified environment induce some decision xT (6.1c), and that the

Chapter 6: Automated Environment Design 150

environment change is admissible with respect to all possible agent decisions (6.1d)

consistent with the new environment.

6.1.2 The Dynamic Formulation

In the more interesting case, and the focus of this chapter, the agent’s model

parameters will initially be, at least partially, unknown to the interested party. Since

the agent function depends on both the environment and the model parameters, the

interested party may not be able to immediately identify admissible environment

changes that promote the desired behavior. To address this, the interested party can

experiment with alternative designs and have repeated interactions with the agent.

In each interaction, the interested party can modify the environment and observe the

agent’s actions in the modified environment.

Observations and measurements can inform which experiments to conduct in sub-

sequent interactions, and the goal is to arrive at effective designs quickly. An example

objective may be to induce desired decisions after few interactions, without being

concerned about the cost of experimentation. Given a target goal value G, we can

represent this objective as minimizing the number of rounds until we find an admissi-

ble ∆ that induces a decision environment e′ in which the agent’s decision xT satisfies

G(xT ,∆, θ, e
′) ≥ G.

More generally, we can imagine that in the midst of experimentation, the inter-

ested party is (in a separate process) using the results of experimentation to deploy

environment changes. Deployed designs may be designs from past experiments or new

designs that are computed using currently available information. Viewed this way,

Chapter 6: Automated Environment Design 151

the interested party may wish to maximize one of several objectives that represent the

exploration and exploitation tradeoff of having effective designs to deploy now versus

later. For any point along this spectrum, the goal is to design experiments that max-

imize some measure of the expected goal value derived from deploying environment

changes now and in the future. Different objectives weigh the value derived from

experimentation differently, depending on when particular designs are discovered and

deployed.

6.2 An Active, Indirect Elicitation Framework

Solving the dynamic formulation requires discovering effective designs quickly. To

make efficient use of experiments, we can draw on observations and measurements

to not only evaluate competing designs, but to refine our understanding of model

parameters guiding the agent’s behavior. For example, one can infer from observing

consumer purchases and worker performance on tasks information about the under-

lying preferences and abilities that guide the person’s decisions and actions. As an

agent makes decisions in different environments with respect to his actual model pa-

rameters, we can use observed behavior to make inferences about the space of model

parameters consistent with observations. Even without identifying the agent’s actual

model parameters, such information and knowledge may allow us to better predict

how an agent will respond to different designs. This enables us to reason more effec-

tively about the design space.

Taking advantage of this insight, we introduce an active, indirect elicitation frame-

work that drives an automated, iterative design process that interleaves optimiza-

Chapter 6: Automated Environment Design 152

Figure 6.1: The active, indirect elicitation framework combines optimizing exper-
iments based on current knowledge of model parameters with indirect learning of
model parameters based on observed behavior.

tion of appropriate experiments with indirect learning of model parameters (see Fig-

ure 6.1). In each round, an experiment is designed using knowledge of the agent’s

model parameters, and seeks to derive new information from observing potential

agent actions in the modified environment. Following an interaction, the knowledge

of model parameters is refined by making inferences based on observed behavior.

Since the goal is ultimately to elicit desired actions, experiments should be selected

with the interested party’s objective in mind, and not just for the sake of learning

about the agent’s underlying model parameters.

An algorithm based on the active, indirect elicitation framework contains two

components: an inference procedure and an elicitation strategy. An inference pro-

cedure updates the interested party’s beliefs about the actual model parameters, by

incorporating new observations from experiments. Let H denote the history of past

elicitation rounds, such that (ot, et) ∈ H denotes observed actions ot in environment

et in round t. For all observations (ot, et) ∈ H, the agent’s actual model parameters

θ∗ must satisfy f(θ∗, et) = xt, where xt is the agent’s decision in round t that, through

the actuation function Λ(xt, et), led to the observed output ot. By making inferences

based on the relationships among these components, the inference procedure allows

Chapter 6: Automated Environment Design 153

us to refine our beliefs about θ∗ over time. Indirectly, this enables us to better predict

the agent’s decisions and actions in response to different environment changes.

The elicitation strategy optimizes for experiments based on our beliefs, as provided

by the inference procedure using the history H. Depending on the interested party’s

objective, the elicitation strategy may focus on obtaining information that would most

immediately lead to an improved design, or be more forward looking by taking into

consideration the potential value that can be derived in the future from information

learned now.

6.3 Case Study: Policy Teaching

For an algorithm based on the active, indirect elicitation framework to be practi-

cally useful, the inference procedure and elicitation function must be computationally

tractable and help to discover effective designs quickly. To illustrate how the active,

indirect elicitation framework can be applied to a specific automated environment

design problem, we consider as a case study the problem of policy teaching.

Policy teaching considers a Markov Decision Process (MDP) setting in which an

interested party can associate rewards with world states to affect an agent’s policy.

The interested party can observe the agent’s decisions in response to provided incen-

tives, but generally does not know the agent’s reward function. The interested party

can interact multiple times with the agent, but cannot directly impose actions on the

agent. The goal of the interested party is to quickly identify feasible incentives (i.e.,

rewards from a constrained reward space) that induce the agent to follow a desired

behavior or policy, when this is possible.

Chapter 6: Automated Environment Design 154

Policy teaching models situations on the Web in which an interested party can

modulate costs and rewards in attempt to elicit desired actions. For example, a

retailer such as Amazon may want customers to make frequent purchases and write

product reviews, and may be willing to provide discounts on products and recognize

top reviewers. Question-and-answer sites such as Yahoo! Answers and Stack Overflow

may want users to answer lingering questions and generally spend time on the site,

and can tweak their interfaces to make it easier to contribute (thus reducing the

cost of effort) and offer points and badges as social rewards. Ad networks such as

Google AdSense may want publishers to design their web sites to facilitate effective

advertising, and can offer a share of the ad revenue to entice a publisher to choose a

particular web layout.

We focus on the policy teaching problem in which the goal is to induce a fixed,

prespecified desired policy. Section 6.3.1 provides a model of this automated environ-

ment design problem. Section 6.3.2 shows that in the static case, the problem can be

formulated as a linear program. Section 6.3.3 considers the more likely case where the

agent’s reward function is unknown, and introduces an active, indirect elicitation al-

gorithm that is guaranteed to converge after a few rounds to discover rewards to apply

to states that induce the desired policy. To make the algorithm tractable, we apply

results from sampling in convex spaces [6] to arrive at a polynomial time algorithm

that maintains the same convergence guarantees with arbitrarily high probability.

Section 6.3.4 summarizes our results and discusses a few extensions.

Chapter 6: Automated Environment Design 155

6.3.1 Model

The policy teaching problem considers an agent performing a sequential decision

task with respect to an infinite horizon MDP M = {S,A,R, P, γ}, where S is a finite

set of states, A is a finite set of possible actions, R : S → < is the reward function,

P : S × A × S → [0, 1] is the transition function, and γ ∈ (0, 1) is the discount

factor. Given M , the agent’s decision problem is to choose actions for each state to

maximize the expected sum of discounted rewards. Let π denote a stationary policy,

such that π(s) is the action the agent executes in state s. Given a policy π, the value

function V π(s) = R(s) + γ
∑

s′∈S P (s, π(s), s′)V π(s′) captures the expected sum of

discounted rewards from state s. Similarly, the Q function captures the value of

taking an action a and following the policy π in future states, such that Qπ(s, a) =

R(s) + γ
∑

s′∈S P (s, a, s′)V π(s′). By Bellman optimality [76], an optimal policy π∗

maximizes the Q function in every state, such that π∗(s) ∈ arg maxa∈AQ
π∗(s, a). We

assume the agent can compute an optimal policy of his MDP, and that his inherent

reward function R is persistent.4

We consider an interested party whose goal is to induce a prespecified target policy

πT . The interested party knows S, A, P , and γ, but not the agent’s reward function

R. We assume that the interested party can observe the agent’s actions, and that

observed actions completely reveal the agent’s policy (decision). The interested party

can influence the agent’s reward function by providing incentives ∆ : S → <. We

assume that ∆ affects the agent’s reward function linearly, such that the agent plans

4Mapping back to the general model, the agent function in this setting forms the agent’s decision
by computing the optimal policy with respect to the MDP model M , which captures aspects of both
the environment and the agent’s model parameters.

Chapter 6: Automated Environment Design 156

with respect to M ′ = {S,A,R+ ∆, P, γ} in the modified environment. Following our

base assumption that the agent is myopic with respect to environment changes, we

assume the agent is myopically rational and follows the optimal policy in the modified

environment.

To capture the idea that the interested party may only be able to provide limited

incentives, we define a notion of admissibility:5

Definition 6.2. An incentive function ∆ : S → < is admissible given budget Dmax

and ∆max with respect to a policy πT if it satisfies the following linear constraints,

denoted ∆ ∈ admissible(πT):

V πT
∆ (s) = ∆(s) + γPs,πT (s)V

πT
∆ , ∀s ∈ S Incentive value. (6.2)

V πT
∆ (start) ≤ Dmax Limited spending. (6.3)

0 ≤ ∆(s) ≤ ∆max , ∀s ∈ S No punishments. (6.4)

The incentive value V πT
∆ (s) in Definition 6.2 captures the total sum of expected

discounted incentives provided to an agent following policy πT starting from state s.

The limited spending constraint limits the total incentives provided to Dmax when the

agent performs πT from the start state.6 The “no punishment” condition ensures that

only bounded, positive incentives are provided, which seems quite fitting in many of

the web domains that motivate this work.7 We focus primarily on finding admissible

5The general model allows admissibility conditions to be defined over a set of decisions, but here
we define it with respect to a single decision πT . Given that the interested party’s goal is to induce
a single target policy, it is reasonable to assume that he would only be interested in discovering and
deploying incentives ∆ that strictly induce πT and are admissible with respect to πT .

6The use of a single start state is without loss of generality, since it can be a dummy state whose
transitions represent a distribution over possible start states.

7Alternative definitions of admissibility are possible as well. Our methods are not specific to a
particular admissibility definition, so we will not pursue the issue further.

Chapter 6: Automated Environment Design 157

incentives to elicit the desired policy quickly, and only consider minimizing cost as a

secondary objective.

6.3.2 The Known Rewards Case

To develop intuition, we first consider the static formulation in which the inter-

ested party knows the agent’s reward function. The policy teaching problem is to find

minimal admissible incentives that induce the desired policy πT . To capture the space

of rewards that are consistent with a particular policy, we first define the concept of

inverse reinforcement learning (IRL) [68]:

Definition 6.3. Given a policy π and M−R = {S,A, P, γ}, let {R : R ∈ IRLπ} denote

the set of reward functions for which π is optimal for the MDP M = {S,A,R, P, γ}.

Furthermore, for ε > 0, let {R : R ∈ IRLπε } denote the set of rewards for which π is

uniquely optimal for M by a slack of at least ε, such that Qπ(s, π(s)) − Qπ(s, a) ≥ ε

for all s ∈ S, a ∈ A\π(s).

The policy teaching problem then aims to find incentives leading to a reward

function that is consistent with the desired policy:

Definition 6.4. Policy teaching with known rewards. Given an agent MDP

M = {S,A,R, P, γ}, target policy πT , incentive limits Dmax and ∆max, and ε > 0,

if there exists admissible ∆ such that (R + ∆) ∈ IRLπT
ε , find such a ∆ to minimize

V πT
∆ (start).

The definition requires that the provided incentives strictly induce the desired

policy. This avoids scenarios in which an agent is indifferent among multiple optimal

Chapter 6: Automated Environment Design 158

policies and may choose a policy other than that which is desired by the interested

party.

To solve this problem, we need to (1) locate the space of reward functions under

which πT is uniquely optimal and (2) find an admissible incentive ∆ that maps the

agent’s reward into this space. We apply a well-known result from inverse reinforce-

ment learning, which shows that the space of rewards consistent with a particular

(uniquely) optimal policy is given by a set of linear constraints:

Theorem 6.1. (Ng and Russell [68]) Given a policy π written as π(s) ≡ a1 and

M−R = {S,A, P, γ}, R ∈ IRLπ satisfies:

(Pa1 −Pa)(I− γPa1)−1R � 0 ∀a ∈ A\a1 (6.5)

Furthermore, for ε > 0, R ∈ IRLπε satisfies:

(Pa1 −Pa)(I− γPa1)−1R � ε ∀a ∈ A\a1 (6.6)

where Pa is the transition function with respect to action a written in matrix form,

R is the reward function written in matrix form, and I is the identity matrix.

This theorem leads directly to our first result:

Theorem 6.2. The following linear program solves policy teaching with known re-

wards:

min
∆

V πT
∆ (start) (6.7)

RT (s)−∆(s) = R(s) ∀s (6.8)

((Pa1 −Pa)(I− γPa1)−1RT)[s] � ε ∀s, a ∈ A\a1 (6.9)

∆ ∈ admissible(πT) (6.10)

Chapter 6: Automated Environment Design 159

where a1 ≡ πT (s) denotes the actions of the target policy, Pa is the transition function

with respect to action a written in matrix form, and RT is a reward function that

strictly induces πT written in matrix form.

6.3.3 The Unknown Rewards Case

In most situations, the interested party will not know the agent’s reward function.

This leads to the following problem definition:

Definition 6.5. Policy teaching with unknown agent reward. Consider an

agent following a policy π with respect to an MDP M = {S,A,R, P, γ}. An interested

party observes the agent’s policy, and knows M−R = {S,A, P, γ} but not R. Given

target policy πT , incentive limits Dmax and ∆max, and ε > 0, if there exists an admis-

sible ∆ for which (R+ ∆) ∈ IRLπT
ε , find an admissible ∆ and observe agent policy π′

such that π′ = πT after few interactions.

We assume that direct queries about the agent’s preferences are unavailable and

that preference information must be inferred from observations of agent behavior.

This is often true on the Web. While firms such as Amazon and Facebook can

observe user actions, it may be considered intrusive for them to directly ask their

users for preference information. Doing so may disrupt from the user experience, and

users may question their motives.

We develop an algorithm based on the active, indirect elicitation framework,

wherein the space of potential agent rewards is narrowed by drawing additional IRL

constraints based on observations of agent behavior in response to provided incen-

tives. We assume the agent’s reward function is bounded in absolute value by Rmax

Chapter 6: Automated Environment Design 160

in every state. Within these bounds, we maintain an “IRL space” of reward functions

that are consistent with observations and that have associated admissible incentive

functions that can strictly induce the desired policy with some minimal slack ε > 0.

At every iteration, the elicitation function makes a guess R̂ at the agent’s true

reward by choosing a point in the IRL space. If the guess is correct, providing the

associated incentives ∆̂ will strictly induce πT . If instead the agent performs a policy

π′ 6= πT , we know that R̂ must not be the agent’s true reward R. Furthermore, we

know that R+∆̂ induces π′, which allows the inference procedure to add the following

IRL constraints to the IRL space:

(Pa1 −Pa)(I− γPa1)−1(R + ∆̂) � 0 ∀a ∈ A\a1 (6.11)

where a1 ≡ π′(s) denotes the actions of the observed policy, Pa is the transition

function with respect to action a written in matrix form, ∆̂ is the incentive provided,

and R is the agent’s reward function written in matrix form.

IRL constraints contain |S||A| constraints on R and restrict the space of possible

rewards to the intersection of the previous IRL space and the convex polytope implied

by the added constraints. Since we are only interested in the agent’s reward for the

purpose of solving the policy teaching problem, we can stop the elicitation process

as soon as we observe the desired policy or as soon as the IRL space becomes empty

(declaring the problem impossible).

We use the following notation. All constraints are added to a constraint set K,

such that instantiations of variables satisfy all constraints in K. An instantiation of

a variable R is denoted as R̂. Algorithm 6.1 gives the elicitation method.

Chapter 6: Automated Environment Design 161

Algorithm 6.1 Active indirect elicitation for policy teaching

1: Consider agent policy π, desired policy πT , ε > 0

2: Variables R, RT , ∆; constraint set K = ∅

3: Add R ∈ IRLπ, |R(s)| ≤ Rmax ∀s ∈ S to K

4: Add RT ∈ IRLπT
ε , ∆ = RT −R to K

5: Add ∆ ∈ admissible(πT) to K

6: loop

7: Find ∆̂, R̂, R̂T satisfying all constraints in K

8: if no such values exist then

9: return FAILURE

10: else

11: Provide agent with incentive ∆̂

12: Observe π′

13: if π′ = πT then

14: return ∆̂

15: else

16: Add (R + ∆̂) ∈ IRLπ
′

to K

Theorem 6.3. Algorithm 6.1 terminates in a finite number of steps with a solution to

the policy teaching problem with unknown rewards or returns FAILURE if no solution

exists, regardless of the elicitation function’s choice of R̂ and ∆̂ from K.

Proof. (sketch) The minimal slack ε over the target policy ensures that all points

within a closed hypercube of side length δ = ε(1−γ)
γ
− κ centered at R̂ are eliminated

Chapter 6: Automated Environment Design 162

by IRL constraints whenever πT is not observed, for some arbitrarily small κ > 0.8

Since the true reward is consistent with IRL constraints, by a pigeonhole argument,

only a finite number of such hypercubes of eliminated points can fit in the IRL space

before elicitation converges.

While convergence is a desirable property, in practice the algorithm is only useful

if it can induce the desired policy after few interactions. We develop an elicitation

strategy that guarantees fast convergence and can be computed tractably.

A Centroid-based Approach

Consider the IRL space at any round of the elicitation process. Since this set of

reward functions is characterized by linear constraints, it is convex. We can apply

the following result on cutting convex sets:

Theorem 6.4. (Grünbaum [28]) Any halfspace containing the centroid of a convex

set in <|S| contains at least 1
e

of its volume.

By choosing the centroid of the IRL space of rewards for R̂, any added IRL

constraint will cut off at least a constant fraction of the IRL space’s volume:

Lemma 6.1. Let Bt
K denote the IRL space of reward functions implied by the con-

straints in K before the t-th iteration of Algorithm 6.1. Let ct denote the centroid

of Bt
K. Consider an elicitation strategy that picks R̂ = ct and any corresponding

admissible ∆̂ for which (R̂+ ∆̂) ∈ IRLπT
ε . Providing ∆̂ will either induce πT , or lead

to adding IRL constraints that eliminate at least 1
e

of the volume of Bt
K, such that

vol(Bt+1
K) ≤ (1− 1

e
)vol(Bt

K).

8Throughout this section, a hypercube refers to a closed, axis-aligned hypercube.

Chapter 6: Automated Environment Design 163

Lemma 6.1 implies that after a number of iterations logarithmic in the volume

of the IRL space, this volume can be made arbitrarily small. If we can provide

conditions under which the desired policy is elicited before the volume of the IRL

space falls below some threshold, we can guarantee logarithmic convergence.

One condition that leads to logarithmic convergence is to ensure that all points

within a small hypercube centered at the true reward are contained in the initial IRL

space and never removed by added IRL constraints (in cases where a solution exist).

If points within this hypercube are chosen for R̂, the minimal slack over the target

policy ensures that πT is elicited. Assuming this condition is satisfied, we can stop the

elicitation process after logarithmic rounds because we will either elicit the desired

policy before the volume of the IRL space drops below the volume of the hypercube,

or discover that the true agent reward must not be contained in the initial IRL space

and thus there are no possible solutions.9

Unfortunately, Algorithm 6.1 may not satisfy this condition because IRL con-

straints may potentially eliminate some points in the small hypercube centered at the

true reward Rtrue. For a reward guess R̂ and associated incentive ∆̂ that does not

induce the target policy, the observed policy π′ will be optimal for Rtrue but need not

be optimal for all reward functions in the hypercube centered at Rtrue.

Nevertheless, we can modify our current algorithm to ensure that a hypercube

of points centered at Rtrue is never eliminated. Since Theorem 6.3 ensures that all

points within a closed hypercube of side length δ centered at R̂ are eliminated by

added IRL constraints, by convexity there exists a separating hyperplane between

9Bertsimas and Vempala [6] used this general observation to formulate an algorithm for finding
a point in a convex set specified by a separation oracle with logarithmic queries.

Chapter 6: Automated Environment Design 164

R̂

H̄(π′, ∆̂)

Rtrue

P (π′, ∆̂)

(R + ∆̂) ∈ IRLπ′

IRL space

Figure 6.2: A condition that ensures logarithmic convergence requires maintaining a
hypercube of points around the true reward Rtrue throughout the elicitation process.
The larger polyhedron in the figure represents the IRL space of rewards that have yet
to be falsified. Given an observation π′ based on incentives ∆̂, the IRL constraints
(R + ∆̂) ∈ IRLπ

′
represented by the smaller polyhedron may eliminate some points

within the hypercube of points centered at Rtrue. To avoid this, we find a separating
hyperplane P (π′, ∆̂) between the hypercube centered at R̂ and the IRL constraints,

and shift P (π′, ∆̂) towards R̂ until it is arbitrarily close to R̂. The resulting hyperplane

P̄ (π′, ∆̂) separates R̂ and the hypercube centered at Rtrue. Adding the corresponding

halfspace H̄(π′, ∆̂) instead of the IRL constraints ensures logarithmic convergence.

this hypercube and the IRL constraints. Following Figure 6.2, let P (π′, ∆̂) be such

a separating hyperplane, and let P̄ (π′, ∆̂) denote a hyperplane that results from

relaxing P (π′, ∆̂) in the direction perpendicular to itself until it is arbitrarily close to

R̂. Let H̄(π′, ∆̂) be the halfspace not containing R̂ that is defined by P̄ (π′, ∆̂). Since

P (π′, ∆̂) separates Rtrue from a hypercube of side length δ centered at R̂, P̄ (π′, ∆̂)

will separate R̂ from a hypercube of side length δ centered at Rtrue. This ensures that

finding H̄(π′, ∆̂) and adding it instead of IRL constraints is a sufficient condition for

guaranteeing logarithmic convergence.

Chapter 6: Automated Environment Design 165

Since the hypercube of points centered at R̂ and the IRL constraints are both

characterized by linear constraints, we can find the separating hyperplane P (π′, ∆̂)

by solving a simple linear program (e.g., see Theorem 10.4 in Vanderbei [93]). We

can easily find P̄ (π′, ∆̂) by relaxing P (π′, ∆̂) until it almost passes through R̂, and

define H̄(π′, ∆̂) accordingly.

We define a modified version of Algorithm 6.1, denoted Algorithm 6.1∗, where:

(i) line 3 of Algorithm 6.1∗ adds H̄(π′,Φ) instead of R ∈ IRLπ to K (where Φ

corresponds to no environment change), (ii) Algorithm 6.1∗ returns FAILURE if it

has not returned after 1 + |S|dlogbdRmax

δ
ee rounds, where b = 1

1−k for some k such

that 0 < k < 1
e
, and (iii) given observed policy π′ based on ∆̂, Algorithm 6.1∗ does

not add (R + ∆̂) ∈ IRLπ
′

to K and instead finds H̄(π′, ∆̂) and add it to K.

Theorem 6.5. Assume the agent’s true reward is bounded by Rmax − δ in every

state, where δ = ε(1−γ)
γ
− κ for some arbitrarily small κ > 0. Let Bt

K denote the

IRL space of reward functions implied by the constraints in K before the t-th iteration

of Algorithm 6.1∗, and let b = 1
1−k for some k such that 0 < k < 1

e
. For any

elicitation strategy that picks the centroid of Bt
K for R̂, Algorithm 6.1∗ terminates with

a solution to the policy teaching problem with unknown rewards or returns FAILURE

if no solution exists after at most 1 + dlogbd(Rmax

δ
)|S|ee iterations.

Since the modifications to the algorithm allow us to eliminate the centroid of the

IRL space while preserving a closed hypercube of points centered at the agent’s true

reward, the condition required for logarithmic convergence is satisfied and Theorem

6.5 follows. Here (Rmax

δ
)|S| is the number of non-overlapping hypercubes with side

length δ that fit within the bounded space of rewards considered. This can be viewed

Chapter 6: Automated Environment Design 166

as the size of the elicitation problem, and the bound given by Theorem 6.5 is logarith-

mic in this dimension. This logarithmic bound is still linear in the number of states

though, because only one of the constraints added at each iteration is guaranteed to

cut off a constant fraction of the volume.

Although computing the centroid exactly is #P-hard [77], polynomial time, ran-

domized algorithms exist and extend Grünbaum’s result to the case of the approx-

imate centroid. Bertsimas and Vempala [6] showed that any halfspace containing

the average of O(n) uniform samples from a convex set in <n will cut off a constant

fraction of its volume with arbitrarily high probability. Using this result, we can

construct an elicitation strategy that allows R̂ to be computed in polynomial time

while guaranteeing logarithmic convergence with arbitrarily high probability:

Theorem 6.6. Assume the agent’s true reward is bounded by Rmax − δ in every

state. Let Bt
K denote the IRL space of reward functions implied by the constraints

in K before the t-th iteration of Algorithm 6.1∗, and let b = 1
1−k for some k such

that 0 < k < 1
e
. For any elicitation strategy that picks the average of O(|S|) points

sampled uniformly from Bt
K for R̂, with arbitrarily high probability, Algorithm 6.1∗

terminates with a solution to the policy teaching problem with unknown rewards or

returns FAILURE if no solution exists after at most 1 + dlogbd(Rmax

δ
)|S|ee iterations.

Theorem 6.7. Each iteration of Algorithm 6.1∗ with the elicitation strategy from

Theorem 6.6 is solvable in time polynomial in the number of states and actions.

Sampling O(|S|) points uniformly takes O(|S|4) steps of a random walk that re-

quires O(|S|2) operations per step, so computing R̂ this way is O(|S|6) [6]. One can

then find ∆̂ satisfying (R̂ + ∆̂) ∈ IRLπ′ε by solving a simple linear program.

Chapter 6: Automated Environment Design 167

6.3.4 Summary

We study the problem of policy teaching, in which the goal is to elicit a desired

policy from an agent by providing rewards from a constrained space. Given unknown

agent rewards, we constructed an algorithm that applies the active, indirect elici-

tation framework to quickly narrow down the space of possible rewards consistent

with observed behavior. A centroid-based elicitation strategy guarantees convergence

to a solution after few interactions, and is made tractable by applying appropriate

sampling techniques.

Our analysis on policy teaching can be extended in a number of ways. Zhang et

al. [108] considered a heuristic elicitation strategy based on maximizing the slack in

IRL constraints. This approach does not provide logarithmic convergence guarantees,

but is simpler (the elicitation strategy only requires solving a linear program), and

achieved good empirical performance in simulation. Zhang et al. [108] also extended

the elicitation algorithm to handle situations in which the interested party only ob-

serves the agent’s actions instead of his policy, and in which the interested party only

wishes to influence the agent’s policy in a subset of the states.

Zhang and Parkes [107] considered the problem of value-based policy teaching, in

which the goal is to provide limited rewards to elicit a policy that maximizes the

interested party’s value with respect to the unknown agent rewards. With this objec-

tive, computing the optimal incentives becomes NP-hard. The IRL space is no longer

convex; while a similar active, indirect elicitation algorithm ensures convergence, log-

arithmic convergence cannot be guaranteed. Nevertheless, Zhang and Parkes [107]

proposed a mixed-integer program for solving modest-sized instances, and presented

Chapter 6: Automated Environment Design 168

simulation results showing that slack-based elicitation heuristics were still effective

and elicited the best possible policy after few interactions.

6.4 Discussion

Our solution to the policy teaching problem demonstrates how designing experi-

ments by reasoning about participants based on current models, and learning about

participants based on observed behaviors, can form an automated, iterative design

process that effectively solves automated environment design problems. Using the

active, indirect elicitation framework, the elicitation strategy sets up a hypothesis

about an agent’s model parameters, and designs an experiment that either produces

a desired outcome (e.g., the agent follows the desired policy) or rejects the hypoth-

esis. If the hypothesis is rejected, the inference procedure refines the knowledge of

model parameters, to eliminate not only the particular parameter values being tested

but any model parameters that are inconsistent with observed behavior. Zhang et

al. [103] showed how to generalize Algorithm 6.1 and the centroid-based elicitation

strategy for other automated environment design problems, and extended the theo-

retical results about logarithmic convergence to any setting with observable decisions

for which the space of model parameters considered during the elicitation process is

convex.

While we assumed in the policy teaching setting that the agent’s decision or pol-

icy is directly observable through his actions, in practice we may only have access to

samples of agent actions. This implies, for example, that we cannot always set up a

hypothesis that directly proves that a particular set of parameter values is not the

Chapter 6: Automated Environment Design 169

agent’s actual model parameters. In general, active, indirect elicitation algorithms

may need to adopt a more probabilistic framework, where observed actions and out-

comes are used to update beliefs over the underlying model parameters, but may

never completely eliminate certain model parameters from consideration. As an ex-

ample, Chapter 8 provides an active, indirect elicitation framework for automatically

synthesizing crowdsourcing workflows, that adopts probabilistic beliefs.

Implicit in the active, indirect elicitation framework is the assumption that obser-

vations of behavior can be used to infer the agent’s model parameters, and thus allow

designers to better understand how participants make decisions based on which to

more effectively design using learned models. In practice, models may be inaccurate

and imprecise. The environment may be dynamic and involve changing factors that

are outside of a designer’s control but that nevertheless affect participant behavior.

Some of these issues are explored in the next chapter, in which we consider an appli-

cation of the active, indirect elicitation framework for automatically designing human

computation tasks.

The active, indirect elicitation framework extends to settings with multiple par-

ticipants, for which information about how participants may interact or affect one

another’s decisions can also be captured by an agent model and can likewise be re-

fined by learning from observed behavior in response to well-chosen experiments. But

with multiple participants there are new challenges, particularly in modeling the in-

teraction among participants and how participants’ individual actions can lead to

complex outcomes. For example, a designer may need to reason about how the var-

ied interests and abilities of participants can enable effective collaborative problem

Chapter 6: Automated Environment Design 170

solving, or reason about how network effects may affect the adoption of a new fea-

ture. Considering multiple agents also brings into focus a broader range of elicitation

processes, which includes the ability to select particular groups of users on which to

conduct an experiment.

While we assume that participants in social and economic systems on the Web are

myopically rational with respect to environment changes, participants can be forward

looking and take actions that aim to induce the designer to select more desirable

environment changes. For example, such situations have been observed in traditional

labor markets, in which paid for performance workers purposely reduced their output

to prevent the employer from using output measures to infer their actual ability and

increase quotas or reduce pay.10 When this occurs, the interested party cannot make

inferences based on observed actions under the assumption that agents are acting

straightforwardly, because the revealed information may not truthfully represent the

agent’s model parameters.

In certain settings, the interested party may be able to avoid such issues by com-

mitting to a goal (e.g., eliciting behaviors leading to a goal value that is above a set

threshold) and by only exploring environment changes that benefit both the agent

and the interested party. The interested party may undertake an active, indirect

elicitation process, and either discover an environment change under which the agent

behaves as desired, or if not then give up and reset to the base environment. If

the agent prefers a potential environment change over the base environment, he may

nevertheless reveal sufficient information through actions to ensure that a change

10This is often referred to as the ratchet effect in economics, and occurs when an employer cannot
commit to not using revealed information to exploit a worker over time.

Chapter 6: Automated Environment Design 171

benefitting both parties is made.

In general, handling such issues requires reasoning carefully about the incentives of

participants and the interested party. Whenever possible, an automated environment

design procedure should aim to discover designs that create additional value and

benefit both parties, and in the process mitigate concerns about non-straightforward

behavior. As an example in which we try to achieve this goal, we consider in the next

chapter the problem of automatically designing a human computation task, where we

seek to identify task designs that lead to higher quality output at a fixed unit rate of

pay.

