
Chapter 8

Automated Workflow Synthesis

In the last chapter, we introduced an approach for automating the design of human

computation tasks with identical, parallel subtasks. In this chapter, we develop a

general framework for automating the synthesis of human computation algorithms

and workflows involving heterogeneous tasks.

There are often many ways to coordinate a crowd to solve a problem. Different

human computation algorithms or workflows embody different approaches, and may

utilize distinct tasks or allocate effort differently among the same tasks. Given a space

of possible human computation algorithms for solving a problem, figuring out which

algorithms are the most efficient requires understanding how the crowd performs on

individual tasks within an algorithm and how this in turn influences the quality of the

final solution and the cost of effort incurred. The goal of the designer is to discover

efficient workflows that make effective use of human effort to achieve high quality

solutions, and in doing so take into account crowd characteristics and any time or

resource constraints the designer may face.

202

Chapter 8: Automated Workflow Synthesis 203

Since inputs from the crowd are inherently noisy and submitted answers can be

incorrect, the output from any task is probabilistic. An algorithm may apply quality

control mechanisms that use redundancy or voting to mitigate potential errors in

tasks, which helps to mitigate errors in the final solution but incurs additional cost

of effort. Choosing an algorithm that makes efficient use of human effort involves

reasoning about which tasks to employ and how much effort to devote to each task.

These decisions rely on understanding human performance on individual tasks, and

on understanding how the probabilistic and possibly erroneous outputs from each task

affect the final solution, either directly or through other tasks that take its output as

their input.

The crowd’s performance on any given task is often imprecisely known a priori,

and the space of possible algorithms for solving a problem—involving different com-

binations of tasks and allocations of effort to tasks—is potentially very large. It is

often costly if not infeasible for a designer to empirically compare a large number of

algorithms, or to conduct a large number of experiments to learn about the crowd’s

performance on different tasks. In practice, experiments are often conducted on an

ad hoc basis, with designers relying mostly on their intuitions and common practices

to determine which algorithms to deploy. Even when deployed algorithms effectively

coordinate a crowd to solve a problem, they are not necessarily efficient and may not

make the best use of human effort.

To enable designers to discover more efficient algorithms and workflows with less

experimentation and manual effort, we develop a general framework for automated

workflow synthesis. Leveraging the active, indirect elicitation framework of automated

Chapter 8: Automated Workflow Synthesis 204

environment design, we construct models of human performance on tasks for the

purpose of improving a workflow. Over repeated interactions, an automated system

selects experiments to refine current models, with the intent of quickly discovering

an efficient workflow built on (a subset of) tasks that meets desired objectives and

satisfies resource constraints.

To learn quickly, we develop a value of information based elicitation strategy that

at any time chooses which task to experiment on based on which experiment is ex-

pected to provide information that best informs the choice of algorithm for solving

a problem. This is done by comparing the expected difference in solution quality

between the best algorithm generated using current information and algorithms op-

timized based on refined information that may be learned from experimentation. In

order to reason about the effect of human task performance on the overall performance

of an algorithm, we develop a simulation-based approach that uses available models

to estimate the cost and solution quality associated with an algorithm. This allows us

to compare workflows without having to deploy them, and is used for synthesizing the

best workflow given currently available knowledge and for deciding which experiments

to conduct.

We illustrate the effectiveness of our approach in a case study on human sorting

tasks, in which human judgment is used to determine the ordering among objects

being sorted. We focus on a class of quicksort algorithms in which pivot selection

and pairwise comparison tasks are performed by the crowd, and consider the problem

of determining how many workers to devote to each task at each level of recursion.

Experimental results show that knowledge of crowd performance on tasks allows us

Chapter 8: Automated Workflow Synthesis 205

to better optimize for algorithms that are tailored to the crowd and the designer’s ob-

jective. Results also show that our elicitation strategy reveals better algorithms more

quickly than selecting experiments to uniformly reduce uncertainty across models.

Section 8.1 reviews related work. Section 8.2 provides a model of the automated

workflow synthesis problem. Section 8.3 introduces a general approach for automated

workflow synthesis based on the active, indirect elicitation framework of automated

environment design. We introduce a simulation-based approach for evaluating algo-

rithms and present an elicitation strategy that refines current knowledge by selecting

experiments to maximize the expected value of information. Section 8.4 describes

the human sorting task. We introduce models for predicting human performance on

pivot selection and pairwise comparison tasks, and provide a local search procedure

for synthesizing sorting workflows. Section 8.5 presents experimental results. Section

8.6 discusses a number of possible extensions and directions for future work.

8.1 Related Work

A number of studies in human computation have developed optimization pro-

cedures and control strategies for enabling more efficient computation with humans

and machines. For example, Shahaf and Horvitz [84] studied generalized task markets

with human and machine problem solvers, and introduced formulations for optimally

assigning and sequencing tasks to humans and machines to maximize the utility de-

rived from the final solution. While we also optimize workflows by reasoning about

effective combinations of tasks, we consider simultaneously the problem of learning

about human performance on tasks. In addition, by utilizing simulations and local

Chapter 8: Automated Workflow Synthesis 206

search algorithms, we are able to handle optimization problems over complex work-

flows in which the quantitative relationship between the crowd’s performance on tasks

and the quality of the final solution is difficult to capture analytically.

Drawing on techniques from decision-theoretic planning, Dai et al. [16, 17] intro-

duced a framework for optimizing workflows by controlling at run-time the request

for additional work (e.g., for the purpose of redundancy) based on costs and the in-

ferred work quality. Recent work by Lin et al. [57] showed that a similar approach

can be used to dynamically switch between workflows, which can sometimes lead to

improvements over using a single workflow. In these works, the structure of the work-

flow or the set of workflows considered is predetermined and the goal is to efficiently

control the computation given fixed designs. In contrast, our framework for auto-

mated workflow synthesis aims to tackle the complementary problem of discovering

efficient designs in the first place by optimizing over the space of possible workflows,

which determines the overall structure of the optimized algorithm and the allocation

of effort within.

A number of studies have focused on enabling efficient human computation in the

context of human-powered database systems that recruit a crowd to perform opera-

tions such as filters, sorts, and joins. For example, Marcus et al. [63, 62] introduced

a declarative workflow engine called Qurk, and proposed optimizations for sorts and

joins such as batching tasks, using numerical ratings, and pre-filtering tables before

joins. Venetis et al. [94] studied human computation algorithms for retrieving the

maximum item from a set, and proposed a framework for selecting algorithm param-

eters to optimize the tradeoff over quality, monetary cost, and execution time. By

Chapter 8: Automated Workflow Synthesis 207

exploring the space of possible algorithms and providing performance models and op-

timization procedures, findings from these studies can be utilized within an automated

workflow synthesis framework to help identify efficient crowd-tailored algorithms for

these and related problems.

In machine computation, program synthesis considers the use of appropriate design

tactics to systematically derive a program based on a problem specification. In the

context of sorting, Darlington [18] and Smith [86] demonstrated how to derive a

number of sorting algorithms using logical transformations and reductions. Closer to

our work, Li et al. [55] demonstrated how to synthesize sorting algorithms that are

optimized for particular computer architectures. As learning about crowd abilities

incurs a cost, our work on synthesizing sorting algorithms for the crowd must tackle

the added challenge of learning quickly, to synthesize efficient algorithms after few

experiments.

From the machine learning perspective, our value of information based elicitation

strategy can be viewed as taking an active learning approach to acquiring information.

In the context of human sorting tasks, Pfeiffer et al. [72] introduced an algorithm that

adaptively selects which pairwise comparison questions to ask a crowd in order to

quickly derive an accurate aggregate ranking using the crowd’s noisy answers. While

in both this work and our work on synthesizing sorting algorithms the goal is to

learn quickly and make efficient use of human effort, we consider through automated

workflow synthesis different ways through which humans can contribute to solving a

problem. In doing so, we seek to better understand how to structure efficient crowd

problem solving by synthesizing algorithms involving heterogeneous tasks.

Chapter 8: Automated Workflow Synthesis 208

In artificial intelligence, the study of metareasoning [36, 80] focuses on enabling

agents with bounded time and computational resources to make intelligent decisions

about what to reason about, how long to deliberate for, and when to take action.

Since deliberation can lead to better decisions but incurs a cost, it is often necessary

to evaluate the benefit and cost of gathering information through additional computa-

tion [37, 9, 79]. Due to the cost of human effort, our automated system for workflow

synthesis faces a similar problem in that it must decide on which experiments to

conduct, how much resources to devote to experimentation, and when to stop exper-

imenting. In using value of information computations to inform elicitation decisions,

we adopt a decision-theoretic framework for active, indirect elicitation that draws on

principles introduced by Horvitz [35, 36] for decision-theoretic metareasoning.

8.2 Automated Workflow Synthesis

We consider a situation in which an automated system seeks to identify an efficient

human computation algorithm or workflow for solving a problem. Given a (potentially

large) space of human computation algorithms A = {A1, . . . , An}, we let Si denote

the set of base-level human tasks in Ai that can be assigned directly to individual

workers in a crowd,1 such that S = S1 ∪ . . . ∪ Sn represents the entire set of human

tasks under consideration. Each task s ∈ S is associated with a task function fs,

which defines for each task s an output distribution on the space of possible answers,

some of which may be incorrect. This captures the distribution over answers that

1For example, in the context of Amazon Mechanical Turk, these base-level tasks are the human
intelligence tasks (HITs) assigned to workers.

Chapter 8: Automated Workflow Synthesis 209

individuals in the crowd may provide when assigned a task. For an algorithm Ai, we

let Fi represent an algorithm function that maps problem instances into a distribution

over solutions. The solution distribution based on Fi is itself constructed from the

output distributions of tasks s ∈ Si, which are based on fs.

A task encompasses all the details of how the work is requested, which includes for

example the user interface and instructions. Two tasks that request the same work

may thus produce different distributions over answers. Furthermore, algorithms that

share some or all of the same tasks may differ in the type of inputs that are passed

to the tasks, and in when and how often each task is called. Algorithms that contain

similar or even the same tasks may thus induce different distributions over solutions.

Deciding which algorithm to use depends not only on the crowd’s performance on

tasks, but also on details of the algorithm that govern how outputs combine and

propagate to form a final solution.

Given a distribution over problem instances and a measure of the solution quality,

the system seeks to identify an algorithm A∗ ∈ A that achieves a high solution quality

on average while satisfying cost constraints.2 We assume that each instance of a call

to a task incurs a known cost, which may be monetary or be based on a measure

of the time or effort required to complete the task. In contrast, we assume that the

system does not know how well the crowd can perform each task a priori (that is,

fs is imprecisely known), and thus cannot perfectly predict the expected quality of

solutions obtained through different algorithms.

2Our framework is agnostic to details of the objective. We can also consider optimizing for
cost subject to constraints on quality or more complex utility-based objectives that define explicit
tradeoffs between solution quality and cost.

Chapter 8: Automated Workflow Synthesis 210

In order to learn about the crowd’s performance on tasks, the system can experi-

ment with different tasks and observe the crowd’s outputs. At any time, the system

can select from a set of possible experiments E = {e1, . . . , em}, each of which corre-

sponds to a particular task-input pair. Since the crowd’s answers are probabilistic,

the same experiment may result in different observations. For simplicity, we assume

that all possible experiments are feasible, such that if an experiment is conducted

the corresponding task will be completed by the crowd. A general goal is to quickly

discover, after few experiments, an efficient algorithm that obtains high quality solu-

tions and satisfies cost constraints. Since conducting experiments takes time and is

also costly, this allows us to deploy better algorithms sooner, and also keeps the cost

of experimentation low.3

8.3 An Active, Indirect Elicitation Approach

We introduce a general approach for automated workflow synthesis that leverages

the active, indirect elicitation framework of automated environment design. For each

task s ∈ S, we construct a task performance model f̂s to predict the output from

the actual task function fs. Using observed outputs from experiments, an inference

procedure updates f̂s after each experiment to refine the system’s knowledge of the

crowd’s performance on tasks. This allows the system to better predict the perfor-

mance of different algorithms under consideration, based on which to optimize the

choice of algorithm. In order to select experiments that lead the system to quickly

3The elicitation strategy we develop later in this chapter is able to consider explicit tradeoffs
between the cost and value derived from experimentation. For simplicity, we do not model the cost
of experimentation and focus instead on discovering efficient algorithms quickly.

Chapter 8: Automated Workflow Synthesis 211

discover efficient workflows, we introduce a simulation-based approach that allows us

to compare different algorithms based on models, and an elicitation strategy that uses

simulations to evaluate the value that can be derived from different experiments.

8.3.1 Simulating Human Computation Algorithms

At any point in the active, indirect elicitation process, we assume that the system

can use the current task performance model f̂s for task s to estimate a distribution

over outputs for any input to fs. Under this assumption, the system can simulate

an algorithm Ai on a machine by sampling from the output distribution provided

by f̂s, s ∈ Si whenever the algorithm makes a call to task s. For any algorithm

applied to a problem instance, this allows the system to estimate a distribution over

possible solutions. Simulations can thus be used to estimate the solution quality for

any algorithm based on our current knowledge of the crowd’s performance on tasks

the algorithm calls upon. Furthermore, since the number of times each task is called

in a run of an algorithm may in general depend on the crowd’s performance on tasks,

simulations also allow us to estimate, to the best of our current knowledge, the cost

associated with running an algorithm.

In addition to evaluating algorithms based on current knowledge, we can also use

simulations to estimate the solution quality of an algorithm under different hypotheses

about fs. This is helpful when deciding among a set of experiments to conduct.

Having the ability to simulate algorithms tackles two major obstacles for auto-

mated workflow synthesis. First, it allows us to compare algorithms without having

to necessarily deploy them, which is useful when we are trying to determine which

Chapter 8: Automated Workflow Synthesis 212

experiment to conduct next. Second, it allows us to reason about complex algorithms

that may be difficult to analyze analytically, which makes this approach applicable

to a broad range of settings.

8.3.2 Elicitation Strategy

An automated workflow synthesis problem may consider a large space of possible

algorithms that draw on diverse tasks. Models for each task may be complex and

difficult to learn accurately with few examples. Given this, we would like to be able

to determine which experiment to conduct at any time, for which the knowledge

acquired may significantly affect our choice of algorithm. Since our goal is ultimately

to discover efficient workflows and not to learn about the crowd’s performance on

tasks, it is not necessary to learn about the task whose model has the most variance,

or on which the fewest experiments have been conducted thus far. For example, if

we have reason to believe that a task is unlikely to help an algorithm achieve high

quality solutions anyway, it is unlikely that learning about this task will provide useful

information for improving our choice of algorithm.

Following this intuition, we consider an elicitation strategy that selects experi-

ments based on which task-input pair is most likely to reveal information that im-

proves the choice of the optimal algorithm. Let A∗
f̂

denote the optimal choice of al-

gorithm to deploy based on current task performance models, such that A∗
f̂

achieves

the highest average solution quality across all algorithms that satisfy cost constraints

when simulated using f̂s for task s on problem instances drawn from a known distri-

bution. For each experiment e ∈ E that involves the task se, let Oe = {o1
e, . . . , o

k
e}

Chapter 8: Automated Workflow Synthesis 213

denote the set of potential outcomes from experiment e based on f̂se . Depending

on the realized outcome of an experiment, we may be in one of k possible worlds,

corresponding to the state of task performance models after the inference procedure

performs an update based on the result of the experiment. We let f̂ oi
e denote the

updated task performance models under the assumption that we conduct experiment

e and observe outcome oi
e, and let A∗

f̂oi
e

denote the optimal choice of algorithm with

respect to f̂ oi
e .

Since we can potentially deploy different algorithms based on the outcome of an

experiment, the difference in solution quality between A∗
f̂

and each of the algorithms

A∗
f̂oi

e
, evaluated with respect to our knowledge after observing oi

e, captures the ex-

pected value to be gained if we were to update our choice of algorithm to deploy after

conducting a single experiment e. By comparing experiments in this way, we can

find the experiment that (myopically) maximizes the expected value of information

by solving the following optimization problem:

maxe∈E

∑
oi

e∈Oe

Pr(oi
e|f̂se)[v(A∗

f̂oi
e
|f̂ oi

e)− v(A∗
f̂
|f̂ oi

e)] (8.1)

Pr(oi
e|f̂) is an estimate of the likelihood of observing outcome oi

e when conducting

experiment e based on the task performance model f̂ , and v(A|f̂) is a measure of

the expected quality of solutions provided by algorithm A based on task performance

model f̂ .

An elicitation strategy based on this objective focuses experimentation on where

there is the most value to be derived from learning. Since an individual experiment

only obtains a single output from the crowd, it may not contain enough information

to change the decision about the best algorithm. The myopic value of information

Chapter 8: Automated Workflow Synthesis 214

may be zero for all experiments, but the choice of experiment still matters because

conducting an experiment can enable subsequent experiments to become (myopi-

cally) valuable. For this reason, it can be important to conduct experiments in batch,

where at any given time the elicitation strategy selects a set of experiments to con-

duct whose potential outcomes best inform the choice of algorithm. Outside of any

computational concerns, the elicitation strategy remains essentially the same, but

with each experiment representing a set of experiments.

As a technicality, in the context of constrained optimization, an algorithm opti-

mized based on current information may be infeasible in light of information derived

from observing the outcome of an experiment. In particular, the term v(A∗
f̂
|f̂ oi

e) may

not be well defined. For example, an experiment may reveal that an algorithm that

repeatedly calls the same task until multiple solutions agree incurs higher costs than

expected if observed outputs are more varied than expected. In these situations, such

an algorithm may, by nature of being infeasible, achieve a higher solution quality than

an algorithm optimized based on newly derived information. To avoid uninformative

comparisons to an infeasible algorithm when making value of information computa-

tions, we can apply a “primal heuristic” that transforms an infeasible algorithm into

a similar, feasible algorithm. We can then perform any comparisons using the trans-

formed algorithm instead, with the view that the difference in performance between

an algorithm optimized based on new information and this transformed algorithm

captures the value of information that can be derived from experimentation. Later in

the chapter, we construct a primal heuristic for use in the sorting setting we consider.

Chapter 8: Automated Workflow Synthesis 215

8.4 Human Sorting Tasks

Having presented a general approach for automated workflow synthesis, we con-

sider as a case study the problem of finding efficient human computation algorithms

for human sorting tasks. In a human sorting task, human perception and judgment

are used to determine the ordering among objects. Examples of human sorting tasks

include sorting images by their visual appeal, sorting traffic photos by the severity

of traffic conditions presented, sorting edited versions of a paragraph by how well

written they are, and sorting web pages by their relevance to a query. Human sorting

tasks may vary in their level of objectiveness, but share the common feature that

machines often cannot accurately determine the desired ordering among objects.

There are many possible ways to sort, and designing computer algorithms for

sorting is of course a well-studied problem. While it is sometimes straightforward to

adapt a sorting algorithm for a human sorting task, the effectiveness of the resulting

human computation algorithm will depend on how well the crowd can perform the

human tasks that the algorithm calls upon. Since people can make mistakes even

for objective tasks, solutions may not be perfectly sorted, and redundancy may be

needed to achieve good solutions. The algorithm design space thus includes not only

different types of sorting algorithms, but also different allocations of effort to tasks

within algorithms. Given a constraint on the total cost of effort that can be incurred,

the goal is to synthesize a human computation algorithm that maximizes the expected

solution quality for an objective of interest.

We focus on the problem of automatically synthesizing a workflow from a class

of human computation algorithms based on quicksort, that leverages the crowd to

Chapter 8: Automated Workflow Synthesis 216

Figure 8.1: The progression of sorting with human quicksort applied to ordering
grayscale tiles from light to dark. The algorithm determines the amount of human
effort to allocate to each pairwise comparison and pivot selection task at different
levels of recursion.

perform pairwise comparison and pivot selection operations. Quicksort is a divide-

and-conquer sorting algorithm that sorts a list of elements by first identifying groups

of elements that are less than or greater than a pivot element, and then recursively

applying quicksort on each group. The choice of the pivot affects the algorithm’s

running time, and for example can be chosen based on the median of three elements

selected randomly from the list.

In adapting quicksort for human sorting tasks, we consider how much redundancy

to require for each pairwise comparison and pivot selection task that is assigned to the

crowd at different points in the computation (see Figure 8.1). These decisions affect

the quality of the solution, as well as the number of operations and thus cost required

to compute a solution. For example, allocating more effort to pairwise comparisons

Chapter 8: Automated Workflow Synthesis 217

early in the computation helps to place elements in roughly the correct order, whereas

allocating more effort later in the computation increases the likelihood that adjacent

elements are in the correct order.

Specifically, we consider optimizing over two sets of parameters rd and kd, that

determine the number of people to recruit for identifying the median of three randomly

chosen elements as the pivot (rd), and the number of people to recruit for comparing

a pair of objects (kd), at the d-th level of recursion. In cases where rd = 0, a random

element is chosen as the pivot. For any task, the algorithm takes the majority answer

from people recruited to perform the task as output, breaking ties randomly as needed.

Algorithm 8.1 presents the pseudocode for the class of human quicksort algorithms

as a function of rd and kd, in which MedianOfThree() and PairwiseCompare()

represent the pivot selection and pairwise comparison tasks respectively.

The performance of an algorithm in this class depends on how well the crowd can

identify the median and perform pairwise comparisons, and on the implications of the

crowd’s performance on the quality of the solution and the cost incurred. We assume

that each call to a pairwise comparison or pivot selection task incurs known costs cc

and cp respectively, which are additive and independent of the input to a task. To

evaluate solution quality, we consider inversions as a measure of sortedness. Given a

list {l1, . . . , ln} that should be sorted in ascending order, the number of inversions is

the number of pairwise elements that are out of order, which occurs whenever lj < li

for j > i. The goal is to find parameter values rd, kd such that Human Quicksort

based on these values produces solutions with few inversions on average, while staying

within a cost budget C.

Chapter 8: Automated Workflow Synthesis 218

Algorithm 8.1 Human Quicksort

Require: {rd}, {kd}

1: procedure HumanQuicksort({l1, . . . , ln}, t)

2: if n = 1 then

3: return {l1}

4: else if n = 2 then

5: if PairwiseCompare(l1, l2, kt) then

6: return {l1, l2}

7: else

8: return {l2, l1}

9: else

10: L = {}, R = {}

11: p←MedianOfThree(l, rt)

12: for i = 1→ n do

13: if PairwiseCompare(li, p, kt) then

14: Add li to L

15: else

16: Add li to R

17: return HumanQuicksort(L, t+ 1) · {p} ·HumanQuicksort(R, t+ 1)

8.4.1 Task Performance Models

In order to discover efficient algorithms quickly, we apply our framework for au-

tomated workflow synthesis to sorting by first constructing models for the pairwise

comparison and pivot selection tasks. Given two distinct objects a and b, a pairwise

Chapter 8: Automated Workflow Synthesis 219

comparison task outputs the correct answer with some probability p, and the incor-

rect answer with probability 1 − p. The probability of error may depend on aspects

of the task such as its user interface and instructions, on how “close” a and b are, etc.

Given three elements a, b, and c, the median-of-three pivot selection task outputs the

median element with probability q, the smallest element with probability p, and the

largest element with probability 1 − p − q. Similarly, the probability of error may

depend on aspects of the task, the relative closeness of a, b, and c, and so on.

While we do not have access to the actual task functions and thus do not know

these probabilities a priori, we can construct a probabilistic task performance model

as follows. Since it is infeasible to learn probabilities for every combination of input

values separately, we consider grouping sets of input values into clusters, and learning

a model for each task-cluster pair. In the simplest instantiation, there may only

be a single cluster per task, and the model may only attempt to learn an input-

independent probability distribution over outputs. We can consider arbitrarily more

complex models by considering finer-grained clusters.

For each model, we use Beta and Dirichlet distributions to represent our knowl-

edge and uncertainty over the actual output distributions for pairwise comparison

and pivot selection tasks, respectively. Distributions can capture any prior knowl-

edge we may have about human performance on each task and be updated based on

observations from experiments.4 With Beta and Dirichlet distributions, we can incor-

porate observations from experiments by simply updating the corresponding model’s

parameters based on a worker’s output. For example, for pairwise comparisons, a

4For simplicity, we treat each model as independent, and only perform updates on a model whose
cluster matches the inputs to the task in an experiment.

Chapter 8: Automated Workflow Synthesis 220

Beta distribution’s α and β parameters can capture the number of correct and in-

correct answers respectively, and be updated by incrementing α by 1 if the answer

to an experiment is correct or incrementing β by 1 otherwise. For pivot selections, a

Dirichlet distribution with three parameters maintains counts over the frequency of

the correct output and the two possible incorrect outputs (for each cluster), and can

be similarly updated.

8.4.2 Simulating Algorithms

Each task performance model maintains a distribution over the actual output

distribution for the task. As we conduct more experiments, a model becomes more

certain about the crowd’s performance on the task and thus allows us to more ac-

curately predict the performance of algorithms. To measure the performance of an

algorithm using current models, we can sample using the current task performance

models probability distributions over the possible outputs to each task. Each sample

represents a “guess” of the probability distribution over outputs based on the actual

task function. For each sample, we can simulate the algorithm using the sample as

the task function, and obtain a distribution over possible solutions. By aggregating

results across samples, we can obtain a “best guess” over the distribution of possible

solutions based on current knowledge of crowd performance on tasks as captured by

our models.

In order to compute the value of information that can be derived from selecting

an experiment, our elicitation strategy needs to be able to simulate algorithms with

respect to hypothetically refined models that incorporate updates based on outcomes

Chapter 8: Automated Workflow Synthesis 221

that may be observed from an experiment. To do so, we can sample output distribu-

tions using hypothetically refined task performance models whose Beta and Dirichlet

parameters have been updated to take into account possible observed outcomes, but

otherwise simulate an algorithm as we would when using current models.

8.4.3 Optimizing Quicksort Algorithms

Our elicitation strategy evaluates the expected value of information that can be

derived from conducting an experiment by computing the difference in expected so-

lution quality between (a) the optimal algorithm with respect to current models and

(b) the optimal algorithms with respect to information derived from the experiment.

For the class of quicksort algorithms we consider, the number of possible algorithms

is exponential in the assignment of effort to tasks at different levels of recursion.

Computing the optimal algorithm exactly is thus likely to be intractable. To avoid

potential computational difficulties, we take a heuristic approach and focus on finding

and comparing algorithms that are approximately optimal with respect to task per-

formance models. We do this by adapting for our setting the local search procedures

introduced by Venetis et al. [94] for optimizing human computation algorithms for

finding the maximum element in a set.

To perform our search, we assume that there is a fixed, finite set of possible

values to assign to parameters rd and kd. Given task performance models, we first

compute the optimal constant sequence algorithm, which selects fixed values for r∗

and d∗ such that rd = r∗ and kd = k∗ for all recursion levels d. Since the space of

such algorithms is small, we can obtain the algorithm that maximizes solution quality

Chapter 8: Automated Workflow Synthesis 222

while satisfying the cost constraint by simply simulating and evaluating every possible

constant sequence algorithm within the class.

The optimal constant sequence algorithm serves as a starting point for our search.

Better algorithms may exist that allocate effort non-uniformly at different levels of

recursion. Fixing the number of people to assign to pivot selection tasks (rd), we

consider a hill-climbing procedure that iteratively varies the number of people to

assign to pairwise comparison tasks (kd). For every pair of parameter values ki and

kj for which ki > 1, we consider the effect of decrementing ki and incrementing kj

up to the point that the resulting algorithm just satisfies cost constraints. If any

such swaps improve the solution quality, we apply the best such swap, and repeat the

process to incrementally improve the choice of algorithm until no such improvements

exist.5

8.4.4 Applying the Elicitation Strategy

While this local search procedure may not necessarily find the optimal algorithm

with respect to a set of task performance models, we can nevertheless use the al-

gorithms it produces to evaluate the value of information that can be gained from

an experiment. Since individual experiments may not contain enough information

to affect the choice of algorithm, we only consider batch experiments which obtain

multiple observations at once. Assuming that the set of experiments to consider is

5We can construct a generalized local search procedure that considers all possible constant values
rd = r. We can also allow for varying values of rd by fixing the values for rd and kd one level
of recursion at a time. To do this, given fixed values k1, . . . , ki−1 and r1, . . . , ri−1, we identify the
values ki and ri based on the solution of the generalized local search procedure applied to searching
over values of rd and kd that have yet to be fixed. See Venetis et al. [94].

Chapter 8: Automated Workflow Synthesis 223

not too large, we can compute the expected value of information for each experiment

and select the experiment with the largest expected value.

As discussed at the end of Section 8.3.2, one problem we may encounter in making

value of information computations is that a human quicksort algorithm optimized

based on current information may be infeasible in light of information derived from

observing the outcome of an experiment. In particular, the term v(A∗
f̂
|f̂ oi

e) may

not be well defined. When this occurs, an algorithm optimized based on current

information may appear to be better (by nature of being infeasible) than an algorithm

optimized based on an experiment’s outcome. To avoid uninformative comparisons

to an infeasible algorithm and to evaluate the value of an experiment even in such

situations, we apply a “primal heuristic” that makes an infeasible human quicksort

algorithm feasible by reducing the number of people it assigns to some of the tasks.

We do this by iteratively decrementing some pairwise comparison parameter kd until

the algorithm becomes feasible. At each step, we select a parameter to decrement that

leads to the largest (myopic) decrease in cost incurred per unit decrease in solution

quality. This procedure seeks to identify a version of the original algorithm that has

similar performance but does not violate cost constraints when evaluated based on

hypothetically refined performance models. In this way, the difference in solution

quality between the optimal algorithm given refined information and the transformed

algorithm still represents the value gained when reoptimizing the choice of algorithm

based on new information derived from an experiment.

Chapter 8: Automated Workflow Synthesis 224

8.5 Experiments

To test the effectiveness of our approach on human sorting tasks, we consider

experiments for learning task performance models and optimizing human quicksort

algorithms. We focus on two main questions: (a) does learning task performance

models help to discover more efficient algorithms, and (b) does our value of informa-

tion based elicitation strategy lead to more efficient algorithms more quickly than a

simple elicitation strategy?

8.5.1 Setup

We consider a human sorting task in which the goal is to sort a list of grayscale

tiles from light to dark. We chose this domain because comparisons are objective,

tasks are easy to describe, and tasks may vary in difficulty (e.g., depending on how

close tiles are in their grayscale value). This makes it easier for us to evaluate answers,

increases the likelihood that workers understand the goal of the task, and allows for

interesting models that depend on characteristics of particular task instances.

To understand human performance on this task, we recruited workers from Ama-

zon Mechanical Turk (Turkers) to complete pairwise comparison and median-of-three

pivot selection tasks. For pairwise comparison tasks, we posted 100 HITs and re-

quested 10 assignments for each HIT. We sampled pairs of grayscale values for tiles

at random, restricting the difference in value to between 1 and 10.6 For pivot selec-

tion tasks, we also posted 100 HITs each with 10 assignments. We sampled three

6We used a scale with 128 values, such that black is 0 and white is 127. We chose this scale over
a 256 valued scale so that minimal differences in darkness are barely distinguishable.

Chapter 8: Automated Workflow Synthesis 225

Figure 8.2: An example HIT of the pivot selection task.

grayscale values for tiles at random, restricting the difference in value between the

median element and the other 2 elements to between 1 and 10. Workers were required

to have a 98% approval rating, and were paid $0.01 per HIT. Figure 8.2 shows an

example HIT of the pivot selection task.

To simplify our evaluation, we use the Turkers’ responses to construct ground

truth models of task functions that provide distributions over answers to tasks based

on the empirically observed answers from the crowd. When evaluating the active,

indirect elicitation approach, instead of actually posting jobs on Mechanical Turk

for experiments an elicitation strategy chooses, we instead sample from the ground

truth distribution to simulate the answers the crowd would provide in an experiment.

Assuming that models are accurate, results of the simulation experiments would still

be indicative of the crowd’s actual performance, but with the evidence obtained a

Chapter 8: Automated Workflow Synthesis 226

priori to allow for a simpler evaluation.

For both the ground truth models and the task performance models, we cluster

inputs to tasks based on the closeness of the objects being compared, according to

our hypothesis that tiles are more difficult to compare when their grayscale values

are closer. For pairwise comparison tasks, we consider clusters that correspond to

different distances in grayscale value between pairs of objects. For pivot selection

tasks, we consider clusters based on the minimum distance between the grayscale

value of the median element and any non-median element. For both tasks, we consider

five clusters each, for distances of 1, 2, 3, 4, and 5+. The models for the pivot selection

task maintain counts or probabilities for three possible outcomes: (1) the median is

selected, (2) the element closer to the median is selected, and (3) the element farther

from the median is selected.7 We hypothesize that if some of the elements being

compared are very close together, people are more likely to make mistakes in favor of

the element closer to the median than the element farther from it.

In the active, indirect elicitation process, we maintain a model for each task-cluster

pair, which also forms the set of experiments that we can conduct at any given time.8

We batch experiments to sets of five observations each, such that any update to a

model is based on five outcomes drawn from the ground truth distribution for the

task-cluster pair. To evaluate the value of information based elicitation strategy, we

compare it to a uniform strategy that chooses the next experiment based on whichever

model has been experimented on the fewest times thus far. We hypothesize that

7Whenever two non-median elements are equidistant to the median, a model for the pivot selection
task chooses between them with equal probability whenever the median is not chosen.

8Pairwise comparison models are initialized with α = 4 and β = 1. Pivot selection models are
initialized with α1 = 6, α2 = 1, and α3 = 1.

Chapter 8: Automated Workflow Synthesis 227

Pairwise Pivot

Difference Pr(correct) Pr(incorrect) Pr(median) Pr(closer) Pr(farther)

1 0.74 0.26 0.585 0.27 0.145
2 0.87 0.13 0.69 0.16 0.15
3 0.94 0.06 0.74 0.13 0.13
4 0.98 0.02 0.82 0.10 0.08
≥5 0.997 0.003 0.85 0.08 0.07

Table 8.1: Ground truth models based on Turkers’ performance on pairwise compar-
ison and pivot selection tasks as a function of the (minimum) difference in grayscale
value between tiles.

(regardless of elicitation strategy) learning will lead to better algorithms, but that

the value of information elicitation strategy will lead to better algorithms after fewer

experiments.

When synthesizing human quicksort algorithms, we consider optimizing with re-

spect to random permutations of a list with 20 tiles holding grayscale values 1 through

20, with costs cc = cp = 1 and budget C = 250.9 We consider kd ∈ {1, 3, 5, 7} and

rd = r ∈ {0, 1, 3} as the possible values to assign to parameters kd and rd, where

d ∈ {1, 2, 3, 4, 5, 6+}.

8.5.2 Results

From the Mechanical Turk experiment, we found that people indeed make more

mistakes in pairwise comparison tasks when tiles are closer in grayscale value. We

observe from Table 8.1 that when tiles only differ in value by 1, the crowd makes

twice as many mistakes (26% error rate) as when tiles differ in value by 2 (13%), and

9Note that since our models only consider the difference in grayscale value between tiles, the
exact grayscale values we assign to tiles are inconsequential for the purposes of our experiments.

Chapter 8: Automated Workflow Synthesis 228

Figure 8.3: The performance (with respect to ground truth models) of algorithms
optimized through the process of learning. Values represent averages over 50 trials.

about four times as many mistakes as when tiles differ in value by 3 (6%). The crowd

makes very few mistakes for any larger differences in value, which suggests that after

a certain point the tiles are noticeably different. For pivot selection tasks, we also

found that people make more mistakes when one or more of the non-median elements

is close to the median. We observe that when a non-median element is very close to

the median (i.e., differ in grayscale value by 1), people are much more likely to make

mistakes in favor of selecting that element than the farther non-median element.

Based on workers’ answers, we constructed ground truth models using the empir-

ically observed probabilities for each task-cluster pair (Table 8.1). Figure 8.3 shows

that the average performance of the algorithm optimized using current task perfor-

mance models (evaluated with respect to the ground truth models) improves over time

as we conduct more experiments in simulation and observe more samples drawn from

Chapter 8: Automated Workflow Synthesis 229

Figure 8.4: Comparison of the performance (with respect to ground truth models)
of algorithms optimized based on current models through the process of learning for
the value of information (VOI) and uniform elicitation strategies. Values represent
averages over 50 trials.

the ground truth distribution.10 This demonstrates that knowledge acquired from

experiments reduces noise and uncertainty in task performance models and informs

better decisions when synthesizing workflows based on learned models.

Figure 8.4 compares the average performance of algorithms optimized using cur-

rent models over the course of learning based on the value of information and uniform

elicitation strategies. We observe that for both strategies, solution quality generally

improves as more information is collected from experiments. Comparing the two

strategies, we observe that at any given point in time, algorithms optimized based

on information obtained using the value of information elicitation strategy tend to

10As with making value of information computations, we may encounter scenarios in which an
optimized algorithm using current task performance models does not satisfy cost constraints with
respect to the ground truth distribution. In these cases we apply the primal heuristic earlier discussed
and evaluate the performance of the feasible, transformed algorithm instead.

Chapter 8: Automated Workflow Synthesis 230

Figure 8.5: Comparison of the performance (with respect to ground truth models) of
the best algorithms discovered thus far through the process of learning for the value
of information (VOI) and uniform elicitation strategies. Values represent averages
over 50 trials.

outperform algorithms optimized based on information obtained using the uniform

elicitation strategy (90% of the time). That is, given the same amount of experimen-

tation, the value of information elicitation strategy allows the system to synthesize

better algorithms on average than the system can synthesize based on information de-

rived from following the uniform strategy. Viewed differently, for any desired solution

quality, the value of information elicitation strategy allows the system to optimize for

algorithms achieving that solution quality after fewer experiments.

Since learned task performance models are inherently probabilistic and noisy, there

is no guarantee that a piece of evidence obtained from experimentation will neces-

sarily lead to an optimized algorithm with strictly better performance. An algorithm

optimized based on current models thus serves as a best guess of what may be a good

Chapter 8: Automated Workflow Synthesis 231

k1, k2, k3, k4, k5, k6+ r Inversions Cost

Best discovered through learning 3, 3, 5, 3, 7, 5 1 3.45 249
Synthesized based on ground truth 3, 3, 3, 5, 7, 5 3 3.60 248

Table 8.2: Configuration and performance (with respect to ground truth models) of
the best human quicksort algorithm discovered through our learning experiments and
the human quicksort algorithm synthesized with respect to the ground truth models.
We consider random permutations of a list with 20 elements holding values 1 through
20, with costs cc = cp = 1 and budget C = 250.

algorithm. From the designer’s perspective, algorithms synthesized at any point in

time can be viewed as candidates for A/B testing against the best algorithm dis-

covered thus far that is (presumably) currently deployed. Taking this view, we also

compared the value of information elicitation strategy against the uniform elicitation

strategy based on the solution quality of the best algorithm discovered thus far. Fig-

ure 8.5 shows that on average, the value of information elicitation strategy discovers

efficient algorithms more quickly, and at any point in time, has already discovered a

more efficient algorithm than has been discovered by the uniform strategy.

Table 8.2 shows the configuration and performance (with respect to ground truth

models) of the best human quicksort algorithm discovered through our learning ex-

periments and the human quicksort algorithm synthesized with respect to the ground

truth models. We see that both algorithms apply more effort at deeper levels of re-

cursion than at shallow levels (1 and 2). In quicksort, at deeper levels of recursion,

any two tiles being compared are more likely to be closer in grayscale value. Since

workers are more likely to make mistakes when tiles are close in grayscale value, the

additional effort being applied at deeper levels of recursion reduces the likelihood of

such errors and thus effectively reduces the number of inversions.

Chapter 8: Automated Workflow Synthesis 232

We also observe from Table 8.2 that it is possible for an algorithm synthesized

based on learned models to outperform an algorithm synthesized based on ground

truth models when evaluated with respect to the ground truth models. This counter-

intuitive situation may occur because the local search procedure we use to synthesize

algorithms may constrain the search space differently depending on the models con-

sidered. In particular, since the local search procedure fixes the number of repetitions

(r) used for pivot selection tasks based on the best constant sequence algorithm, de-

pending on the models considered, some values for r are not explored. While the

search space with respect to the ground truth models can only consider human quick-

sort algorithms for which r = 3, the search space with respect to learned models may

consider different values of r and thus include better algorithms.

In comparing the best algorithm discovered through our learning experiments with

the algorithm synthesized based on ground truth models, we observe that with r = 1,

the best algorithm discovered allocates more repetitions to k3 and fewer repetitions

to k4, which is infeasible for r = 3. This helps to reduce the number of inversions

because the nominal number of calls to pairwise comparison tasks (not counting how

many repetitions are requested for each task) for which the tiles’ grayscale values are

1 apart is highest at level 3. This is due to the recursive structure of quicksort. Since

there are roughly twice as many lists at level 4 than at level 3, there are roughly

twice as many pivots selected at level 4. Since tiles being compared against the pivot

are those that have yet to be selected as a pivot, the number of pairwise comparison

tasks decreases rapidly as we move to deeper levels of recursion. While the fraction

of pairwise comparison tasks for which grayscale values are 1 apart is higher at level

Chapter 8: Automated Workflow Synthesis 233

4, at level 3 there is significantly more pairwise comparison tasks. The effort shifted

from repetitions assigned to pivot selection tasks and to k4 is thus put to good use

through k3 to reduce the potential for error in more pairwise comparisons tasks for

which the likelihood of error is highest.

8.6 Discussion

We applied the active, indirect elicitation framework of automated environment

design to the problem of automated workflow synthesis and demonstrated how learn-

ing about human performance on tasks and synthesizing workflows based on learned

models can enable more efficient human computation. To discover more efficient

algorithms more quickly, we introduced an elicitation strategy that reasons about

the value of information that can be derived from conducting different experiments

and focuses the learning on where this value is greatest. Results from experiments

on human sorting tasks showed that the elicitation strategy is effective for quickly

discovering efficient algorithms that are tailored to the crowd’s performance on tasks.

Our framework and methods are quite general, and can be extended in a number

of ways. In the context of sorting, we can for example consider a larger set of possible

tasks beyond pairwise comparison and pivot selection, and include in the design space

other classes of sorting algorithms beyond quicksort. As some tasks may be used in

multiple algorithms, any knowledge of the crowd’s performance on such a task will

inform the design of all algorithms that use it. In addition to deciding how to allocate

effort within each class of algorithms, we can also consider optimizing over hybrid sort

algorithms. For example, we can consider using one algorithm to first order items

Chapter 8: Automated Workflow Synthesis 234

roughly and another algorithm to then refine the sort, which may be more efficient

in some settings [62].

We saw from observing Turkers’ performance when comparing grayscale tiles that

task performance can depend on not only the task, but on specifics of the problem

instance. In general, for accurately predicting the crowd’s performance in order to

effectively synthesize algorithms, models of task performance may need to be quite

rich. This suggests that a model may require significant effort and domain knowledge

to construct and a significant amount of data from experiments to learn. Given that

the same tasks may be used in not only different algorithms for solving a particu-

lar problem, but also in different contexts for solving completely different problems,

we would like to be able to reuse designer and crowd effort by building extendable

libraries of task performance models that can be reused in other automated work-

flow synthesis problems. Such libraries would allow for a “warm start,” where one

can begin reasoning about algorithms using already learned information about some

tasks and focus learning efforts on other tasks. Learned models can similarly be

incorporated into libraries for future reuse.

While we have focused primarily on the learning problem, considering a more

complex design space brings into focus computational challenges in optimizing and

synthesizing workflows. Since synthesizing an algorithm may involve choosing tasks

and allocating effort to tasks, both of which are combinatorial in general, the problem

can be arbitrarily hard computationally. Having tractable procedures that can effec-

tively search over the design space and discover efficient algorithms quickly is crucial,

both for the purpose of quickly deploying designs based on learned information and

Chapter 8: Automated Workflow Synthesis 235

for making decisions based on elicitation strategies that synthesize workflows under

different knowledge conditions as subroutines in value of information calculations. As

in active, indirect elicitation approaches more generally, synthesis procedures can use

current models of participant behavior to help constrain the search for a well-tailored

design.

Human computation algorithms may include tasks for machine computation. The

performance and efficiency of such tasks can be similarly measured, modeled, and rea-

soned about when synthesizing workflows. Our framework extends straightforwardly

to include machine tasks, and allows for learning and optimizing over human-machine

algorithm design spaces. The decision-making over whether to use human or machine

computation components may consider particular tradeoffs in efficiency, cost, and

performance [84].

As mentioned in our discussion of related work, we make a conceptual distinction

between automated workflow synthesis and decision-theoretic control [16, 17]. Work-

flow synthesis is about algorithm design, and focuses on reasoning about the structure

of an algorithm before it is deployed. Decision theoretic control is about execution

control, and focuses on reasoning about the state and progression of problem solving

in the midst of solving a problem. As design and control both influence eventual per-

formance and complement one another, future work should explore considering both

aspects in unison, which may lead to discovering new techniques and approaches.

