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Abstract

The Internet has evolved into a platform on which large numbers of individuals

take action and join in collaborations via crowdsourcing, social media, and electronic

commerce. When designing social and economic systems on the Internet, a key chal-

lenge is understanding how to promote particular desired behaviors and outcomes. I

call this problem computational environment design.

Notable abilities a↵orded by the Internet, such as the ability to recruit large

numbers of individuals to join problem-solving e↵orts via crowdsourcing and social

media, and the ability to engage in a data-driven iterative design process, are creating

new opportunities and inspiring new methods for computational environment design.

This dissertation focuses on these abilities and proposes an approach for arriving at

e↵ective designs by reasoning and learning about characteristics of participants and

how these characteristics interact with a system’s design to influence behavior.

The dissertation consists of two major components. The first component focuses

on designing crowdsourcing and human computation systems that leverage a crowd to

solve complex problems that require e↵ective coordination among participants or the

recruitment of individuals with relevant expertise. I show how reasoning about crowd

abilities and limitations can lead to designs that make crowdsourcing complex tasks
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feasible, e↵ective, and e�cient. The solutions introduce new design patterns and

methods for human computation and crowdsourcing; notable contributions include

a crowdware design for tackling human computation tasks with global constraints,

and incentive mechanisms for task routing that harness people’s expertise and social

expertise by engaging them in both problem solving and routing.

The second component focuses on understanding how to design e↵ective envi-

ronments automatically. I introduce a general active, indirect elicitation framework

for automated environment design that learns relevant characteristics of participants

based on observations of their behavior and optimizes designs based on learned mod-

els. Theoretical contributions include developing an active, indirect elicitation algo-

rithm for a sequential decision-making setting that is guaranteed to discover e↵ective

designs after few interactions. Practical contributions include applications of the ac-

tive, indirect elicitation framework to crowdsourcing. Specifically, I demonstrate how

to automatically design tasks and synthesize workflows when optimizing for desired

objectives given resource constraints.
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Chapter 1

Introduction

The Internet has evolved into a platform on which large numbers of individuals

take action and join in collaborations. Just a decade or two ago, the Internet was used

primarily as a source of information. Today, the Internet is a center for social and eco-

nomic activity. In social computing systems such as Wikipedia and on crowdsourcing

platforms such as Amazon Mechanical Turk, large numbers of individuals contribute

to problem-solving e↵orts as volunteers and as paid workers. On social media ser-

vices such as Facebook and Twitter, friends and followers communicate news, share

thoughts and ideas, and engage in social and political action. In electronic markets

such as eBay, Etsy, and Amazon, consumers make purchases and help one another

with purchasing decisions by contributing ratings and reviews. Over the years more

and more activity is taking place online, and this trend promises to continue as the

Internet continues to evolve.

In hosting platforms and services, the Internet is a virtual space on which designers

build systems in which participants take action. From the designer’s perspective, the
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goal of a system is to attract participants and promote particular desired actions and

outcomes. For example, Wikipedia seeks to attract contributors to write, review, and

edit articles. Requesters on Mechanical Turk want to recruit workers to complete

tasks well and on-time. Facebook and Twitter want users to contribute content,

communicate with other users, and generally make use of available features.

I refer to the problem of designing social and economic systems on the Inter-

net to promote desired actions and outcomes as computational environment design.

The designer’s role is to construct the decision environment in which participants

take action. The decision environment may include interfaces, workflows, feedback

to users, incentives, constraints on actions, rules and policies, and so forth. Partici-

pants have their own knowledge and abilities, interests and motivations, availability,

and decision-making processes. Together with the decision environment, all of these

elements influence participants’ decisions about what actions to take in a system.

To elicit desired behaviors, a designer must construct a decision environment with

which to drive participant actions. For example, an e↵ective decision environment

may include tools that enable collaboration among contributors, monetary and social

rewards for taking desired actions, or interface elements that display relevant informa-

tion for decision-making. Depending on the decision environment being constructed,

e↵ective designs may draw on principles and methods from fields such as human-

computer interaction, artificial intelligence, decision science, psychology, sociology,

and economics.

Notable abilities a↵orded by the Internet are creating new opportunities and in-

spiring new methods for computational environment design. One example is the
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ability to recruit a crowd of individuals to join in problem solving and discussion. By

employing workers in an online labor market such as Amazon Mechanical Turk and

reaching out to friends and followers through social media services such as Facebook

and Twitter, one can now draw on a crowd to contribute to seemingly arbitrary tasks

of interest. Taking advantage of this ability, crowdsourcing and human computation

systems are attracting large numbers of participants to solve large-scale problems.

While individuals in the crowd may only be involved briefly, and while any given

individual may provide noisy inputs, we are beginning to develop mechanisms for

coordination and quality control that enable a crowd to provide useful solutions in a

variety of settings.

One can envision a future in which the distributed intelligence of humans and

machines across networks are brought together to tackle complex problems, with

streams of tasks flowing seamlessly to the people who are most willing and able to

contribute. Despite individual limitations, crowds of humans and machines may be

able to perform complex tasks that cannot be solved by humans or machines working

independently. A key challenge in realizing this vision is understanding how to design

decision environments that help to recruit individuals with relevant expertise to join

a problem-solving e↵ort, and that enable e↵ective coordination and collaboration.

Another notable ability a↵orded by the Internet with implications for computa-

tional environment design is the ability to engage in a data-driven, iterative design

process. Designers can experiment with alternative designs by modifying some as-

pects of a system, and track complex individual and group behaviors across multiple

interactions to get rapid feedback on designs. For example, tools for A/B testing are
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enabling designers to iteratively make changes to their web services to better pro-

mote desired outcomes by putting hypotheses to the test and objectively measuring

the outcomes of competing designs.

The ability to track complex behaviors and redesign easily not only allows de-

signers to compare alternative designs, but also allows them to gain new insights

into participants’ motivations and decision-making processes. Currently, the itera-

tive design process is largely manual and ad hoc. Designers come up with alternative

designs themselves, and the experimentation process is aimed at “hill-climbing” to

a local maximum. This process is not only tedious for the designer, but may miss

out on parts of the design space where better solutions exist. As improved models

of participant behavior and computational tools for understanding participants from

data become available, one can envision a future in which we can design decision en-

vironments automatically by systematically discovering interventions tailored to the

preferences and capabilities of participants. Such methods aim to provide for more

e�cient iterative design processes, that seamlessly combine domain knowledge with

machine-driven processes that refine models based on observed behavior.

In this dissertation, I introduce principles and methods for crowdsourcing complex

tasks and for automated environment design. I demonstrate how to discover solutions

to computational environment design problems manually and automatically. A com-

mon thread in my approach is to construct e↵ective designs by reasoning and learning

about characteristics of participants and how these characteristics interact with the

decision environment to influence behavior. By reasoning, I mean the action of think-

ing about participants and a design problem using available knowledge. By learning,
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I mean the acquisition of knowledge about participants through experience or study

that informs design decisions.

In the first part of the dissertation, I show how reasoning about crowd abilities

and limitations can lead to designs that make crowdsourcing complex tasks feasible,

e↵ective, and e�cient. I demonstrate a number of design patterns that allow the

crowd to e↵ectively coordinate and contribute to complex tasks, and provide incentive

mechanisms that encourage individuals to both contribute to a task and route the

task to others who can further contribute.

In the second part of the dissertation, I provide a general framework for auto-

mated environment design that learns relevant characteristics of participants based

on observations of behavior and optimizes designs based on learned models. I prove

theoretical properties of a method inspired by this framework, and demonstrate the

feasibility and e↵ectiveness of automated design procedures for automatically design-

ing crowdsourcing tasks and synthesizing crowd workflows.

1.1 Crowdsourcing Complex Tasks

1.1.1 Human Computation and Crowdsourcing

Over the last decade, human computation [95, 52] has established itself as a power-

ful paradigm for incorporating human intelligence in problem-solving e↵orts in which

machines cannot yet tackle the problem alone. Such systems take advantage of hu-

man abilities—e.g., in vision, natural language, and pattern recognition—to handle

instances and aspects of problems that are di�cult for computers. The ESP game [97],
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FoldIt [15], and reCAPTCHA [98] are a few examples of successful systems that draw

on human contributors and machine computations to tackle problems in image label-

ing, protein folding, and text digitization.

Many human computation systems treat humans as processors in a distributed

system, each performing a small part of a massive computation [95]. But unlike

computers, humans require an incentive to contribute to a computational e↵ort. This

incentive may be in the form of monetary rewards, a sense of duty or purpose, or

enjoyment of the task. For example, a human computation system may recruit a

crowd of paid workers through an online labor market such as Amazon Mechanical

Turk, in which workers receive small amounts of money for completing “microtasks.”

Another system may draw on a crowd of friends or followers on social media services

such as Facebook and Twitter, who may be willing to contribute based on their

relationship with the requester or other contributors. Yet another system may attract

a crowd of users of a web service who are willing or required to contribute to a

task, e.g., either because the task itself has been made enjoyable as in games with

a purpose like the ESP game [97], or because completing the task is required for

accessing content of value, as in reCAPTCHA [98].

Human attention is limited, and the incentive for individuals to contribute to a

task is also limited. Practically, attracting a large crowd to perform an arbitrary task

often implies that individuals in the crowd may only be involved briefly, and that any

given individual in the crowd may provide noisy inputs. This is in contrast to the

way work is performed in traditional firms and also in social computing systems such

as Wikipedia, where employees and dedicated volunteers are available over time and
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can be relied upon to work on larger problems, keep track of context, identify issues,

and solve problems that arise. To handle short periods of work and noisy inputs,

human computation systems aim to break down large problems into smaller tasks,

and provide means of quality control for synthesizing noisy inputs from large numbers

of individuals.

1.1.2 Human Computation Algorithms

While simple tasks may be easy to parallelize across individuals, complex tasks re-

quire more sophisticated coordination and optimization. Over the last several years,

there has been a rise of human computation algorithms, or workflows, that decom-

pose a task into more manageable, self-contained subtasks. Human computation

algorithms aim to allow individuals to contribute to small subtasks independently,

without having to reason about other subtasks or the task at large.

By drawing on core computational principles, a number of design patterns have

emerged that serve as the basic building blocks of human computation algorithms.

For example, Little et al. [60] introduced an iterative design pattern in which each

member of the crowd improves upon the previous solution. Zhang et al. [105], Bern-

stein et al. [5], and Kittur et al. [46] demonstrated how divide-and-conquer can be

applied to the crowd in which crowd workers decompose problems, solve subprob-

lems, and recompose subproblems into a solution. Methods for quality control can be

incorporated at various points within an algorithm to promote high quality results.

Given a particular problem, crowdsourcing a solution may involve constructing

a human computation algorithm that utilizes multiple design patterns. In Chapter
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2, I will present an approach for formulating e↵ective workflows by reasoning about

characteristics of the crowd. I will demonstrate how this approach leads to design

patterns, algorithms, and frameworks that combine existing design patterns to en-

able the crowd to reach expert level performance on complex tasks such as audio

transcription and nutrition analysis.

1.1.3 Human Computation with Global Constraints

An important class of underexplored human computation tasks are those in which

the solution must satisfy a set of global requirements. For example, in leveraging the

crowd to write an essay, a requester may want to specify requirements on the desired

tone, tense, length, structure of arguments, and style of exposition that must hold

consistently throughout a piece of writing. Some requirements, e.g., presenting a

balanced perspective on a situation, touch upon di↵erent components of the essay

and depend on the essay as a whole.

As another example, consider the problem of crowdsourcing itinerary planning.

Planning events such as vacations, outings, and dates often involve an itinerary which

contains an ordered list of activities that are meant to be executed in sequence. People

going on a trip have preferences and constraints over the types of activities of interest

(e.g., “I am interested in history museums”), how long to spend on di↵erent activities

(e.g., “I want to spend at least 2 hours hiking”), the composition of activities (e.g., “I

want to focus on art galleries and museums for the day”), the budget, and the total

time available, which define a set of global requirements that an itinerary should

satisfy.



Chapter 1: Introduction 9

For these and other tasks that involve global constraints, good solutions rely on

the composition of di↵erent contributions as a whole, with interdependence among

solution components. As such, it is not clear how to break down these tasks into

smaller tasks for individuals in the crowd to complete independently.

In Chapter 3, I will introduce crowdware as an approach for tackling human com-

putation tasks with global constraints. Crowdware draws inspiration from group-

ware [25], which suggest principles and ideas on communication and collaboration

within a shared context that help a group accomplish a joint task. Crowd workers

di↵er from groups in that individuals may only be involved briefly, may be less willing

to spend time grasping the solution context or taking meta-level actions, and may not

fully consider the overall objective nor the aims of other crowd workers when making

decisions. To address this challenge, crowdware provides mechanisms in which the

system (indirectly) coordinates the problem-solving e↵ort by focusing the crowd’s

attention on what needs work. I will present a system for crowdsourcing itinerary

planning called Mobi, to illustrate this concept.

1.1.4 Harnessing Crowd Abilities: Control and Synthesis

Human computation algorithms tend to define an explicit sequence of steps in

which individuals in the crowd are recruited to complete subroutines within this pre-

defined process. However, there are also opportunities for the crowd to contribute to

a problem-solving e↵ort by guiding the control flow of an algorithm or even generat-

ing plans that define the problem-solving process. Taking this broader perspective,

I explore in Chapter 4 di↵erent ways in which the crowd can contribute to a human
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computation process, leading to new applications and more e�cient forms of problem

solving.

An example of having the crowd guide the problem-solving process is task routing.

Task routing aims to harness the ability of people to both contribute to a solution

and to route tasks to others who they believe can e↵ectively solve and route. Task

routing provides an interesting paradigm for problem solving in which individuals

become engaged with tasks based on their peers’ assessments of their expertise. On

the task level, e↵ective task routing aims to take advantage of participants’ individual

expertise as well as participants’ knowledge about others’ abilities to contribute. On

the organizational level, task routing can provide a means for bringing tasks to in-

dividuals e↵ectively, where participants’ routing decisions take into account not only

an individual’s expertise on a particular task, but also their ability to contribute as

a router.

In Chapter 5, I will introduce incentive mechanisms that reward individuals for

solving and routing tasks. An interesting problem that arises is that incentives need

to take into account limitations on individuals’ knowledge about the knowledge of

others. For example, in a social network setting where individuals may only know

about the expertise of those that are close to them in social distance (e.g., their

friends, and possibly friends of friends), the would-be optimal incentive mechanism

designed under the assumption that everyone knows everyone else’s expertise may

not work as desired. I will show how we can design incentive mechanisms that are

sensitive to such limitations, while still promoting e↵ective routing decisions.
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1.2 Automated Environment Design

Many tools on the Internet facilitate data-driven, iterative design processes. Web

analytics software tracks complex individual and group behaviors over time, and

provides summary information on trends and patterns in the data. Frameworks, style

sheets, and content management systems make it easier to modify or extend existing

designs. Tools for A/B testing allow designers to compare alternative designs based

on defined objectives.

Despite having a rich set of tools, identifying e↵ective designs to elicit desired be-

haviors remains a process that is largely manual, tedious, and ad hoc. One potential

solution is to automate the environment design process to systematically explore a

design space in a principled, data-driven manner. Such an approach may be able to

discover e↵ective designs quickly, while requiring less manual e↵ort. An automated

environment design system may take as input a set of available interventions, the

objective of the designer, and a model of the interaction among environment, partic-

ipants, and behaviors, and provide as output an intervention that promotes actions

and outcomes meeting the objective whenever such interventions exist.

One challenge in building such a system is that models of behavior are imperfect

and incomplete. We have limited knowledge of users’ preferences and decision-making

processes, and this private information is di�cult to elicit directly. But in online set-

tings where the designer can track individual and group behaviors, such information

can be indirectly inferred from observing actions over repeated interactions. For

example, one can infer from observing consumer purchasing decisions and worker

performance on tasks the underlying preferences and abilities that guide their deci-
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sions and the actions observed. These observations can be used to refine existing

models and drive better design decisions.

While observing user behavior can provide some information, observations of user

behavior under any particular design will only provide partial information about users’

underlying preferences or abilities. For example, a consumer’s purchase decision does

not completely reveal their underlying value for a good (which may be at or above the

purchase price), and a worker’s performance on a task does not reveal exactly how

the worker will perform on a di↵erent task. But given the ability to experiment with

alternate designs and receive rapid feedback on di↵erent designs, it may be possible

to iterate and refine our understanding of participants over time.

In Chapter 6, I will present a general approach for automated environment de-

sign that draws on these observations. I will provide an active, indirect elicitation

framework that automatically drives an objective-based iterative design process by

interweaving indirect learning of model parameters with optimization to determine ef-

fective interventions based on the current model. In Chapter 7 and 8, I will show how

to apply ideas from automated environment design to automatically design crowd-

sourcing tasks and synthesize crowd workflows.

1.3 Limitations

Approaching computational environment design problems by reasoning and learn-

ing about characteristics of participants leads to solutions that are tailored to the

participants. As such, specific results generalize only as far as the assumed character-

istics of participants hold true across domains. For example, in addressing problems in
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crowdsourcing complex tasks, I propose designs that take into account some assumed

characteristics of crowd workers (e.g., they may only make small contributions) and

demonstrate that the designs are e↵ective for participants satisfying such character-

istics. But in other settings, these particular assumptions about the crowd may be

false, and other characteristics of participants such as their intrinsic motivation may

require very di↵erent designs.

Related to this, I assume throughout the dissertation that characteristics of par-

ticipants remain more or less constant, and do not reason explicitly about how these

characteristics may change over time or how potential changes may a↵ect design

decisions.

The automated environment design framework is most applicable for learning and

reasoning about the characteristics of participants, and using this to parametrize

designs, rather than for discovering e↵ective design patterns in the first place. For

complex domains, proposing a design space that includes e↵ective designs may require

significant amounts of domain knowledge. Automated design tools can help to refine

existing models through experimentation and provide new insights, but are not yet a

replacement for human ingenuity.

1.4 Thesis and Contributions

My thesis statement is:

By reasoning and learning about characteristics of participants and how
these characteristics interact with the decision environment to influence
behavior, we can design environments that elicit desired actions and out-
comes.
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My contributions span several areas. Contributions related to crowdsourcing complex

tasks include:

• Design patterns, algorithms, and frameworks that e↵ectively utilize combina-

tions of existing design patterns to enable the crowd to reach expert level perfor-

mance on complex tasks. Constructed workflows coordinate the contributions

from the crowd, and are e↵ective in applications to crowdsourced audio tran-

scription and crowdsourced nutrition analysis based on food photographs.

• A crowdware design pattern that enables a crowd to e↵ectively resolve global

constraints. Crowdware provides a shared, collaborative workspace through

which individuals in the crowd contribute opportunistically based on the current

solution context, and in which the system indirectly coordinates the problem-

solving e↵ort by alerting crowd workers to what needs work. This design pattern

is demonstrated through a system called Mobi, in which the crowd generates

custom itineraries for day trips.

• Methods and design elements that leverage the crowd’s ability to control an al-

gorithmic procedure and generate plans that define the problem-solving process.

An experiment on the 8-puzzle that involves sharing problem-solving strategy,

and a system called CrowdPlan that produces simple plans in response to high-

level search queries, demonstrate that these methods and design elements can

enable e↵ective problem solving and novel applications.

• Routing scoring rules for prediction tasks that properly incentivize participants

to jointly contribute to a task and route the task to others for further contribu-
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tions. Theoretical results characterize the family of routing scoring rules that

promote tractable routing decisions based only on local information.

Contributions related to automated environment design include:

• A model of the computational environment design problem.

• A general framework for active, indirect elicitation for automated environment

design.

• E�cient algorithms for active, indirect elicitation in sequential decision making

settings in which the principal can modulate costs and rewards, along with

theoretical results about convergence.

Contributions that relate to both crowdsourcing and automated environment design

include:

• Crowdsourcing applications that demonstrate the e↵ectiveness of applying the

automated design approach to designing an image labeling task and to synthe-

sizing sorting algorithms tailored to crowd abilities.

• An automated design framework and associated learning and optimization al-

gorithms for synthesizing crowd workflows.

1.5 Thesis Overview

This dissertation consists of two major components. The first component demon-

strates how we can reason about crowd abilities and limitations to discover e↵ective

designs for crowdsourcing complex tasks:
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• Chapter 2 introduces design patterns from the literature that serve as the ba-

sic building blocks for designing human computation algorithms. The chapter

shows how to combine these design patterns to construct human computation

algorithms for audio transcription and nutrition analysis.

• Chapter 3 shows how to tackle human computation tasks that are di�cult to

decompose. The chapter introduces Mobi, a system for crowdsourced itinerary

planning. Mobi illustrates a novel crowdware design for tackling complex tasks

with global constraints by using a shared, collaborative workspace. Experiments

and user studies show that Mobi enables the crowd to e↵ectively resolve violated

constraints, and generates itineraries that satisfy users’ stated requirements.

• Chapter 4 provides an overview of the di↵erent ways in which crowds can con-

tribute to a problem-solving process by guiding the control flow of an algorithm

and generating plans that define the problem-solving process. As examples, the

chapter shows how passing around context can enable a crowd to more e↵ec-

tively solve a version of the 8-puzzle, and introduces a system called CrowdPlan,

that leverages a crowd to generate simple plans for accomplishing high-level

tasks.

• Chapter 5 describes methods for task routing that aim to harness people’s ability

to both contribute to a solution and to route tasks to others who they believe

can further contribute. Focusing on prediction tasks, the chapter introduces

routing scoring rules that reward e↵ective contributions via solving and routing.

The chapter also identifies a family of local routing rules, which isolate simple
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routing decisions in equilibria that are invariant to non-local information while

still promoting e↵ective routing and information aggregation.

The second component focuses on constructing automated procedures that can

automatically derive e↵ective designs by reasoning and learning about participants:

• Chapter 6 introduces a general approach for automated environment design

and describes an active, indirect elicitation framework for iteratively refining

designs. As an illustrative example, the chapter introduces the problem of policy

teaching, in which the goal is to elicit a desired policy from a single agent in

sequential decision domains modeled as Markov Decision Processes. Theoretical

results provide conditions under which an algorithm applying the active, indirect

elicitation framework is guaranteed to discover an e↵ective intervention after a

small number of interactions.

• Chapter 7 explains how to automate the design of human computation tasks.

Using image labeling as an example, the chapter shows how to learn models of

crowd performance as a function of design parameters and derive new designs

by optimizing over learned models. Experimental results demonstrate that opti-

mized designs collect significantly more high quality labels than baseline designs

at the same rate of pay.

• Chapter 8 explains how to automatically synthesize crowdsourcing workflows.

The chapter introduces an active, indirect elicitation based approach that se-

lects experiments to refine current models of the crowd’s performance on tasks

in order to synthesize algorithms that optimize desired objectives given resource
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constraints. The approach is demonstrated to be e↵ective through human sort-

ing tasks that leverage the crowd to determine the ordering among objects.

Chapter 9 concludes the dissertation with a summary of contributions and a dis-

cussion of future research directions.

1.6 For the Reader

Most of this dissertation is intended to be readable by a general audience with

interest in the design of social and economic Internet systems. The most technical

chapters are 5, 6, and 8, where some familiarity with game theory (Chapter 5),

decision science (Chapters 6 and 8), and artificial intelligence (Chapters 6 and 8)

is assumed. Technical details in these chapters may be skipped with little loss to

understanding the principles and ideas being introduced, nor the overarching message

of approaching computational environment design problems through reasoning and

learning about participants.
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Chapter 2

Human Computation Algorithms

In this chapter we study human computation algorithms that coordinate the e↵orts

of a crowd to tackle complex tasks. A human computation algorithm is a set of

instructions designed to be executed by humans and machines. Human computation

algorithms can include function calls that are assigned to a crowd of individuals

recruited to help contribute to the task. Depending on the task, one may recruit a

crowd of paid workers through an online labor market such as Amazon Mechanical

Turk, a crowd of friends or followers on social media services such as Facebook and

Twitter, or a crowd of users of a web service who are willing or required to contribute

to tasks.

Unlike employees in traditional firms or dedicated volunteers on Wikipedia who

tend to be available over time, keep track of context, and generally provide good

solutions, the types of crowds we can readily recruit may consist of individuals who

are only briefly involved in any particular task (e.g., up to 10 minutes), and include

individuals who may or may not provide helpful inputs. Given these characteristics,

20
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an e↵ective human computation algorithm that calls on such crowds must break down

complex problems into smaller tasks, and synthesize noisy inputs from large numbers

of individuals to provide quality solutions.

The chapter is organized as follows. Section 2.1 introduces design patterns from

the literature that serve as the basic building blocks for a human computation algo-

rithm. Section 2.2 considers the problem of crowdsourcing audio transcription, and

illustrates how to e↵ectively combine existing design patterns to derive new design

patterns and algorithms. Section 2.3 considers the problem of crowdsourcing nutrition

analysis from food photographs. We demonstrate how to combine our understanding

of how an expert performs a task with our understanding of the crowd to derive an

e↵ective workflow. Section 2.4 discusses how the ideas presented in this chapter may

in general be applied to the design of human computation algorithms and tasks.

2.1 Design Patterns

2.1.1 Design Pattern 1: Divide-and-Conquer

A complex task can be too large for an individual crowd worker and thus require

contributions from multiple individuals. To enable e↵ective coordination among hu-

man problem solvers, we can draw on algorithm design patterns such as divide-and-

conquer, which decomposes a problem into subproblems and composes solutions of

subproblems into a solution. Divide-and-conquer algorithms are intended for parallel

processing and are thus ideal candidates for human computation. Figure 2.1 depicts

the decompose, solve, and recompose structure of divide-and-conquer algorithms.
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Figure 2.1: Diagram depicting the decompose, solve, and recompose structure of
divide-and-conquer algorithms, with reasoning about costs and tradeo↵s associated
with di↵erent phases of the problem solving process. From Horvitz [34].

For distributed human computation, the decompose, solve, and compose steps

may be performed by humans [105]. For example, Bernstein et al. [5] introduced

Soylent, a system that uses a Find-Fix-Verify design pattern that is well-suited for

open-ended tasks such as text editing. Soylent harnesses the crowd to identify patches

of a document that need work (decompose), suggest potential fixes for each patch

(solve), and filter out poor suggestions (recompose). By applying MapReduce, a

programming framework based on divide-and-conquer, Kittur et al. [46] introduced a

system called CrowdForge and constructed human computation algorithms for writing

simple articles and making product comparisons.
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2.1.2 Design Pattern 2: Redundancy-based Quality Control

Regardless of a task’s size or design, there is no guarantee that any given indi-

vidual that is assigned the task will provide a good answer. One way to approach

this problem is to require redundancy, and find ways to synthesize noisy inputs. For

example, consider asking a multiple choice question, such as what category a product

should belong in. For this simple task, it is reasonable to assume that individuals

putting in good faith e↵ort are more likely to select the right answer than any par-

ticular wrong answer. By asking a su�cient number of people to perform the same

task independently, we can take the most common answer as the solution, and expect

with high probability that this is the actual, correct answer. Even if there are a few

spammers who try to game the system by not completing the task in good faith, the

most common answer is still likely to be correct if we collect a su�cient number of

(non-spam) answers.

Over the years, researchers and practitioners have developed quality control mech-

anisms for human computation that aim to make e�cient use of redundancy to guar-

antee high quality results. A quality control mechanism may choose a “best answer”

from a set of answers directly, or recruit a crowd to vote on answers and decide

based on collected votes. A mechanism need not necessarily choose the answer that

is most common or most voted upon, and may for example weigh answers based on

the presumed quality of workers as judged by their past work [40]. Quality control

mechanisms can be employed at various points within a human computation algo-

rithm, and deciding how much redundancy to use at any given point is often a tradeo↵

between the cost of e↵ort required and the accuracy desired in the eventual result.



Chapter 2: Human Computation Algorithms 24

While it is important to be able to determine the correct answer from a set of

collected answers, it is just as important to collect good answers in the first place.

In addition to providing workers with proper instructions, examples, and training,

requesters can attempt to elicit good faith e↵orts from crowd workers by rewarding

correct answers. We do not normally know what the correct answer is, but we can

use quality control mechanisms to both identify solutions that are likely to be correct

and to reward contributors.

For example, in the ESP game [96], an image is displayed to two players whose

goal is to reach an agreement on a label for the image. To encourage good faith e↵ort,

the ESP game uses an output-agreement mechanism [97] in which players are given

the same input independently and are only rewarded for agreeing on an output. Since

players are only likely to match on labels if they contribute in good faith, matching

inputs can be used both to reward players and to identify relevant labels.

2.1.3 Design Pattern 3: Iterative Improvement

But despite any incentives we can provide or quality control mechanisms we can

leverage, there are situations in which a task is inherently di�cult and no individ-

ual working on the task independently is likely to correctly complete the task. As

an example, Figure 2.2 shows a passage of poorly handwritten text, for which any

individual transcribing this text may not be able to correctly decipher all the words.

As one approach for handling such problems, Little et al. [59] introduced an iter-

ative design pattern, in which crowd workers are recruited to contribute sequentially

to the same task. Each worker sees the task and the solution from the previous
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Figure 2.2: A passage of poorly handwritten text is transcribed using a human com-
putation algorithm based on an iterative design pattern. Individuals in the crowd
improve upon previous transcriptions. Voting tasks are used in between improvement
tasks to decide whether a new solution is indeed an improvement over the previous.
From Little [58].

worker, and is asked to improve upon that solution. To add quality control, iterative

improvement steps can be interleaved with voting steps, in which crowd workers are

recruited to judge whether the last revision is indeed an improvement over the pre-

vious solution. For problems such as transcribing poorly handwritten text, Little et

al. [59] showed that iterative improvement can lead to higher quality solutions than

the best solution from individuals in the crowd working on the task independently.
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2.2 Case Study: Audio Transcription

Having introduced a number of design patterns for human computation algo-

rithms, we consider how to apply these design patterns for solving actual problems.

Solving any particular problem may benefit from utilizing multiple design patterns,

and the goal is to discover e↵ective and e�cient ways of leveraging the crowd.

As a case study, consider the problem of audio transcription. There is a widespread

need for transcription services that convert audio files into written text for a variety

of purposes. Common examples include transcribing meeting minutes, court reports,

notes for medical records, interviews, videos, and speeches. One benefit of having text

is that it is easier to analyze and store than audio. Apart from this, there are many

circumstances in which individuals rely on audio transcriptions in their daily lives.

For example, a person who is deaf may wish to understand the audio content within

a multimedia recording, and a person with limited ability to type, such as someone

who su↵ers from carpal tunnel syndrome, may wish to create text documents.

Audio transcription is currently achieved mainly through two methods: profes-

sional human transcription and computer transcription. Professional transcription

firms guarantee accuracies as high as 99% for fees as “low” as $1 per minute of

transcribed text. Computer software presents a cheaper alternative but achieves sig-

nificantly lower accuracies than professional human transcription. As humans are

more adept than computers at deciphering speech and even non-professionals can

contribute, crowdsourced audio transcription is being explored as a means for obtain-

ing low cost, high-accuracy transcriptions. CastingWords is an example of such a

service that recruits workers on Amazon Mechanical Turk (Turkers) to provide tran-
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scriptions, grade transcriptions, and improve transcriptions.1 CastingWords charges

between $1 and $2.50 per minute of audio transcribed depending on the required

turnaround time, and pays workers based on the quality of the transcription and the

task’s di�culty.

One of the major challenges for crowdsourcing audio transcription is ensuring high

transcription accuracy without knowing the correct answer. CastingWords has a fairly

advanced quality control system that relies on Turkers to grade previous transcripts.

To ensure that graders are putting in good faith e↵ort, CastingWords uses a number

of mechanisms for grade monitoring, such as grading the graders and using multiple

graders to check a given clip.

While it is impressive that CastingWords is able to streamline their quality control

system, all of the human e↵ort spent on quality control does not directly help to

improve the transcription accuracy. In this section, we design a human computation

algorithm for audio transcription that eliminates the need for an explicit quality

control process, focuses the crowd’s e↵ort solely on improving transcriptions, and

achieves high transcription accuracy.

2.2.1 Designing an Algorithm

As people in the crowd may only be willing to spend a limited amount of time on

tasks, we can apply the divide-and-conquer design pattern to break audio files into

short, non-overlapping segments (decompose), obtain transcripts for these segments

(solve), and rejoin these transcripts at a later time (recompose). Figure 2.3 shows

1
http://castingwords.com/
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Figure 2.3: Divide-and-conquer is applied to crowdsourcing audio transcription. An
audio recording is partitioned into shorter clips which are transcribed and then
rejoined.

the high-level structure of an algorithm for crowdsourcing audio transcription based

on this application of divide-and-conquer.

The decompose step can be done by the machine, but we will need the crowd to

help with transcribing and rejoining transcripts. For a crowd of non-professionals,

some audio clips may be di�cult to transcribe correctly, e.g., due to background

noise, speaker accent, or recording quality. Here we can apply an iterative design

pattern: contributors are asked to transcribe to the best of their ability, and later

contributors are asked to improve existing transcriptions by correcting any mistakes

they encounter.

To rejoin transcripts of adjacent clips, we need to address the possibility that a

word may have been split when the clip was initially divided. One solution is to
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combine two adjacent audio clips and present it along with the transcriptions of the

adjacent audio clips for a contributor to join. To ensure that the person only edits

where the two transcripts join, we can allow the person to only edit the transcript

near the middle of a combined transcript. As rejoining transcripts can be a di�cult

task for anyone to complete correctly, we can again apply the iterative design pattern

for this recompose step.

To implement the iterative design pattern for transcribing and rejoining tran-

scripts, we still have to answer a couple of questions. First, how do we decide when

to stop iterating? We can choose to iterate for a fixed number of steps, but it is not

clear whether the solution after a fixed number of iterations would be a good one, or

whether a good solution would have already been obtained after fewer iterations.

Second, how can we ensure that people are providing good inputs? While most

people are likely to exert good faith e↵ort, we would like to keep spammers out and

to reward good solutions. We can include voting tasks after each iteration to check

whether the last solution improves upon the previous, but for audio transcription this

form of quality control is expensive. A person comparing two transcriptions may have

to listen to the audio clip multiple times, and go back and forth to determine which

transcription is better. As an alternative we can ask people to grade transcripts, but

this is also expensive. While voting and grading are useful work, any human e↵ort

spent on quality control does not directly help to improve transcription accuracy, and

may be better directed towards actually improving transcriptions.

To address these questions, let us take a step back from the iterative design pattern

and think about what happens if we ask two people to transcribe the same audio clip
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independently. Intuitively, if both people exert good faith e↵ort, they are likely

to come up with “similar” transcripts, even if both transcripts may contain some

mistakes. But if one or both people do not exert good faith e↵ort, it is unlikely that

the two transcripts will look similar. In this setting, an output-agreement mechanism

can thus reward people for producing similar transcripts as a means to elicit good

e↵ort contributions. Given this observation, we would like to be able to design an

algorithm that reaps both the benefit of eliciting good e↵ort from output-agreement

mechanisms and the benefit of improving transcription over time from iteration, while

refraining from using an explicit quality control process.

To do this, we introduce an iterative dual pathway structure. For each clip, we

assign contributors to one of two transcription pathways, alternating assignment by

order of arrival. A contributor listens to the clip and sees recent transcripts submit-

ted by previous contributors assigned to the same pathway (in our implementation,

the last two transcripts). Each contributor’s submission is then compared to recent

transcripts submitted by contributors on the other pathway (in our implementation,

the last two transcripts), which he is never allowed to see. Because a contributor on

one pathway is unable to see the transcripts produced by contributors assigned to the

other pathway, the two paths should be independent. As contributors are expected

to base their transcriptions on the contents of the audio file, we conjecture that the

more similar the two pathways are, the more accurate they are.

In this structure, contributors’ submissions are scored based on their similarity to

transcripts produced in the other pathway. If their contributions are vastly di↵erent,

we can remove these results to avoid misleading future contributors or causing future
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Figure 2.4: Contributors are alternately assigned to one of two pathways. They
modify previous transcripts from their own pathway, and their transcripts are scored
based on how well they match recent entries in the opposite pathway.

transcripts to be mis-scored. Comparing contributors’ submissions to previous results

necessitates having something to compare them to at the beginning; thus, at the

start of the process, we can generate a computerized transcript of the audio file. This

transcript can be treated as though it were produced by a previous contributor on

the opposite pathway. It is used for comparison, but not for display and modification

purposes.

Figure 2.4 shows an example of a clip being transcribed through the iterative dual

pathway structure. We see that contributors modify previous transcripts from their

own pathway, and their transcripts are scored based on how well they match recent

entries in the opposite pathway.

As contributors iteratively improve on previous results, transcripts should even-

tually converge to an accurate transcription of the content of the audio file. For

example, we may decide to stop when four transcripts in a row (i.e., two from each

pathway) match each other, at which point we deem that the clip has been correctly

transcribed. Termination can thus be based on converging to the correct answer, and

not rely on a fixed number of iterations determined a priori.
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The iterative dual pathway structure has nice properties: it allows us to estimate

the accuracy of a given transcript by comparing it to other transcripts (thus eliminat-

ing the need to check transcriptions in a separate process) and provides contributors

with the proper incentives to enter accurate results. Because the two paths evolve

independently and contributors can base their transcriptions only on the clips given

to them, chances are that the more similar transcripts are, the more likely it is that

they are close to being correct. By separating what contributors see from what they

are being compared against for rewarding purposes, the dual pathway structure aligns

incentives so that people are motivated to produce accurate transcripts. In doing so,

the iterative dual pathway structure e↵ectively combines the output-agreement design

pattern with the iterative design pattern to encourage contributors to provide accurate

improvements.

Putting it all together, we have a human computation algorithm for audio tran-

scription that uses divide-and-conquer to break the task down into smaller tasks. By

leveraging the iterative dual pathway structure, both the solving tasks (obtaining

transcripts for short clips) and recomposing tasks (rejoining transcripts) simply ask

people to improve on existing transcripts, and do not require explicit quality control.

2.2.2 Experiments

To test the e↵ectiveness of our transcription algorithm, we recruited 147 Harvard

University undergraduates to play an online game that implements our algorithm.

Subjects were recruited through undergraduate housing mailing lists, and were o↵ered

a chance to win a $25 Amazon.com gift card. Subjects were told that the gift card
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Figure 2.5: A screenshot of the user interface

is given to one person chosen at random, where each person’s chance of winning is

directly proportional to the total number of points accumulated through gameplay.

For our experiments, we obtained clips from http://www.americanrhetoric.com/,

most of which came from movies and speeches. Clips ranged in length, clarity, content

matter, and the degree to which they used uncommon words, proper nouns, and slang.

Clips were passed through Adobe Soundbooth CS4 (transcribed on High Quality,

using American English) to produce the computer transcripts that seeded the iterative

dual pathway structure.

Figure 2.5 provides a screenshot of the user interface for the iterative dual pathway

version of the game. In this version, players transcribed each clip and were awarded
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points according to how closely their transcripts matched the transcripts of players

on the opposite path. The similarity between transcripts was measured using the

Levenshtein distance [54], which measures the number of insertions, deletions, and

substitutions on a character basis between two strings. The game ran for a week

from 3/7/2011 to 3/14/2011. We used 20 audio files, for a total of 44 shorter ten-

second clips and 25 longer 20-second clips that spanned these shorter clips. Players

produced 549 transcripts over the course of gameplay.

In addition to the iterative dual pathway version of the game, we also implemented

a parallel version for comparison. The parallel implementation did not allow players

to see what others entered. Players were asked to transcribe the clip from scratch, and

players’ entries were scored randomly. This implementation consisted of 10 audio files

divided into 20 ten-second clips. Longer clips were not created for this experiment, so

the accuracy reported here only reflects that of the ten-second segments. The parallel

implementation of the game also ran for a week, from 2/26/2011 to 3/6/2011. Players

produced 308 transcripts.2

To compare our results to industry figures concerning transcription accuracy, we

used word accuracy (WAcc), which is measured as a percentage and calculated on a

word basis as follows:

WAcc = 100 ⇤ (1� Insertions + Deletions + Substitutions

# of Words In Accurate Transcript
) (2.1)

For other evaluations, we used a variation of word accuracy which we call character

accuracy (CAcc). This metric computes accuracy using the Levenshtein distance (LD)

2While players were allowed to participate in more than one version of the game, players were
never allowed to transcribe the same clip in both two versions.



Chapter 2: Human Computation Algorithms 35

on a character basis as follows:

LD = Insertions + Deletions + Substitutions (2.2)

CAcc = 100 ⇤ (1� LD

# of Chars In Accurate Transcript
) (2.3)

We found that in all cases tested, word accuracy and character accuracy were com-

parable.

Overall, the word accuracy for the parallel process was 93.6%, compared to 96.6%

for the iterative dual pathway process. The latter accuracy is comparable to the

accuracy advertised by professional transcription. The accuracy of the clips that

converged for the iterative process was 97.4%, compared to an average of 95.5% for

those that had not. Given more time and additional iterations, it is likely that the

96.6% accuracy we found would have been higher; in many instances, errors came

not in the middle of transcripts, but across breaking points between clips where fewer

iterations were completed.

Figure 2.6 shows the average across all clips of the minimum, average, and maxi-

mum character accuracies of transcripts in the two pathways after k iterations (i.e.,

after k contributors in each path have transcribed a clip). We find that the mini-

mum and average accuracies increased over time, and the di↵erence in the maximum

and minimum accuracies between the two clips decreased. This indicates that as the

number of iterations increased, clips became more similar and more accurate.

Table 2.1 shows the number, percentage, cumulative percentage, and accuracy of

clips that converged after exactly k iteration. Also shown is the accuracy level across

all clips that converged after exactly k-th iteration. We see that many clips converged

early on and that accuracies do not appear to depend on when a clip converged.
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Figure 2.6: The average maximum/average/minimum accuracies of transcripts in the
two pathways after k iterations. Transcripts are removed from this graph after they
converge to avoid an upward bias.

We also compared the enjoyability and e�ciency of the iterative dual pathway

structure against that of the parallel structure. By surveying participants, we found

that players enjoyed the iterative dual pathway structure more than the parallel one;

they liked correcting clips more than transcribing them anew, and they played the

former game longer than the latter. Additionally, as would be expected, players

spent less time processing clips in the iterative process than in the parallel one, with

mean transcription times of 33.1 seconds and 39.5 seconds respectively. The mean

transcription time for the iterative dual pathway tasks even includes transcription of

the 20-second clips. These results suggest that the iterative dual pathway structure

is more enjoyable and more e�cient than the parallel one.

Analyzing specific transcriptions and the ways in which they evolved provide ev-

idence that the iterative process was fairly successful in allowing players to correct
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Iter. # Conv. % Conv. Cumul. % WAcc (%)
2 11 21.2 21.2 96.0

2.5 5 12.5 31.4 100.0
3 3 8.6 37.3 100.0
4 1 3.3 40.8 100.0

4.5 1 3.4 42.9 90.0
5.5 1 3.7 45.8 95.7
6.5 1 4.2 50.0 100.0
7.5 3 15.8 61.9 95.6
8 1 8.3 71.1 95.7

Table 2.1: Number and percentage of clips that reached k iterations, cumulative
percentage of clips converging before or reaching k iterations, and word accuracy of
clips converging in the k-th iteration. Iterations where no clips converged are not
displayed. Half-number iterations refer to an uneven number of transcripts on each
path (i.e., 2.5 iterations means that one of the two paths had two iterations while the
other had three).

others’ misspellings or decipher additional portions of the clip. Here is one such

example showing corrections made in the early iterations:

Iteration 1 red, red, red! what should i do?

Iteration 2 red, red, red! Dear God, where should I go, what should i do?

Iteration 3 Fred, Fred, Fred! Dear God, where shall I go, what should i do?

Iteration 4 Rhett, Rhett, Rhett! Dear God, where shall I go, what shall I do?

(“Dear God” should be “If you go”)

Players were also adept at rejoining clips:

Beginning Transcript You have modernized your economy, harnessed your rivers,

diversified your industry, liberalized your trade, electrified your fa arms, accel-

erated your rate of growth. (Break in the middle of “fa arms”)
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Iteration 1 You have modernized your economy, harnessed your rivers, diversified

your industry, liberalized your trade, electrified your farms Accelerated your

rate of growth.

Iteration 2 You have modernized your economy, harnessed your rivers, diversified

your industry, liberalized your trade, electrified your farms, accelerated your

rate of growth.

(Correct)

2.2.3 Summary

We introduce a new human computation algorithm for audio transcription. In

the process of deriving the algorithm, we demonstrated how di↵erent design patterns

(divide-and-conquer, iterative improvement, output agreement) can be e↵ectively uti-

lized together to solve a problem. In doing so, we also discovered a novel iterative

dual pathway structure that combines the benefits of output agreement and iterative

improvement, eliminating the need for explicit quality control in iterative workflows.

2.3 Case Study: Nutrition Analysis

In the audio transcription algorithm, human e↵ort is elicited only for providing

transcripts. In general, human computation algorithms can harness di↵erent types

of human e↵ort and coordinate the inputs and outputs of di↵erent tasks. For some

problems, the algorithmic challenge is identifying what types of e↵ort to elicit, and

e↵ectively coordinating heterogeneous contributions to derive a solution. In this sec-
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tion, we demonstrate how to combine our understanding of how an expert performs

a task with our understanding of the crowd to derive an e↵ective solution for crowd-

sourced nutrition analysis.

The majority of Americans perceive healthy eating as complicated [20]. For people

who commit to changing their eating habits, accurate logs of what they eat may help

in monitoring progress toward set goals [61]. Currently, food logging is typically

done by hand using paper diaries, spreadsheets, or a growing number of specialized

applications. This process is time-consuming and error-prone [74, 27]; a review of nine

studies found error rates from �76% (underestimates) to +24% (overestimates) [82].

A number of online interfaces exist to simplify the process, but they still require

tedious logging that discourages recording. Studies have also found that self-reports

using these interfaces are no more accurate than pen and paper [3, 102].

Martin et al. [65] suggested an alternative approach called the Remote Food Pho-

tography Method (RFPM). Rather than typing names of foods and estimating por-

tions, users are asked to photograph their plates at the beginning of the meal and at

the end to accurately capture how much food was actually eaten. Trained dietitians

identify the pictured foods remotely and estimate portions. The results of laboratory

studies showed that dietitians using RFPM underestimated calories by only 5-7%

compared to directly weighing the foods [65].

RFPM thus combines the accuracy of direct observation by experts with the con-

venience of free-living conditions. Users of the method found it satisfying and easy

to use [65]. The problem is cost and scarcity. RFPM relies on experts to analyze

each photograph, limiting the system’s accessibility and potential scale. The method
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might be feasible in specific healthcare settings, but trained dietitians are too costly

and scarce for general use.

This suggests an opportunity for crowdsourced nutrition analysis. Prior research

indicates that the most di�cult part of nutrition analysis is estimating portion size [65],

and that trained amateurs have low bias but high variance [64]. The “wisdom of

crowds” is ideally suited to these situations, since the average of amateur estimates

often beats a single expert [91].

A recent iPhone application demonstrates, however, that naive approaches to

crowdsourcing for nutrition analysis are not su�cient. In April, 2011, the fitness

website Daily Burn released Meal Snap, which allows users to photograph foods and

receive calorie estimates by so-called “pure magic.”3 Meal Snap creates a single

Mechanical Turk task for each image. Workers provide a free text description of

food, and the application appears to match this description with a database of average

consumption to estimate a range of possible calories. This approach is appealing, but

critics have accused it of failing to provide accurate data.4

2.3.1 PlateMate

To make accurate food logging easier and more a↵ordable, we introduce PlateM-

ate, a system for crowdsourcing nutrition analysis from photographs of meals using

Amazon Mechanical Turk. PlateMate allows users to upload food photographs and

receive nutrition estimates within a few hours. The estimates consist of a list of foods

3
http://mealsnap.com/, accessed July 5, 2011

4
http://www.mobilecrunch.com/2011/04/05/too-lazy-to-count-calories-now-you-can-

just-take-a-picture-of-your-meal/
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kcal fat (g) carbs (g) protein (g)

Figure 2.7: The PlateMate user interface. Users upload photographs of their meals,
which are processed through Mechanical Turk to produce a list of foods, serving sizes,
and nutrition information.

in the photograph, with associated measurements of serving size, calories, fat, carbo-

hydrates, and protein for each food item. The information is displayed to the user

via the interface shown in Figure 2.7.

Crowdsourcing nutrition analysis presents several challenges in task and workflow

design. First, Turkers are inexperienced, and may produce unreliable estimates. Sec-

ond, most Mechanical Turk tasks are simple and Turkers may be unaccustomed to

performing complex tasks like nutrition analysis. Finally, any individual Turker may

be biased in their estimates or have trouble recognizing certain foods contained in a

photograph.

To best design a workflow for crowdsourcing nutrition analysis, we started by ob-

serving a dietitian as she determined nutritional data from several photographs. Her

process consisted of three distinct steps: identifying foods in each image, estimating

their portions, and then calculating the corresponding nutrition data. The final step

can be fully computerized, but PlateMate implements the first two with crowdsourc-
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Baked or Fried Chicken Drumstick

Barbeque Sauce (Low Sodium, Canned)

Draw Boxes (2) Vote (3)

Tag

Vote (5)

Identify

Match (2) Measure (5)

Stages

HITs

   

Results

Italian Flatbread Focaccia

2.53 drumstick

.40 cup

1.33 slice

kCal:
Fat:

Protein:
Carbs:

869.6
41.9g
53.1g
69.4g

Cooked Spinach (from Fresh) .83 cup, fresh

PlateMate

Describe (3)

Measure

Figure 2.8: The PlateMate system. Work travels between stages and Human Intelli-
gence Tasks (HITs) along the black arrows, starting from the input on the left and
concluding with the output on the right. The system takes submitted photos and
creates Tag tasks to annotate these photos with boxes. Each box becomes the input
to a series of Identify tasks which end with a list of foods from a commercial food
database. Each individual food is then passed to a Measure task, which produces
a unit and amount. Dashed boxes represent optional stages, which may be skipped
during routing.

ing. To parallelize work, we add an input decomposition stage at the start in which

the crowd partitions a plate into distinct foods.

The result is a workflow with three major stages, shown in Figure 2.8. Tag takes

photos and labels them with boxes drawn around distinct foods on a plate. Identify

matches each box to one or more foods in a commercial nutrition database. Measure

returns portion estimates for each identified food.
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Step 1: Tag

The goal of the Tag stage is to find every food item in a photograph. One picture

may depict several plates, and each plate may contain several distinct foods. Tag

discovers these foods and distinguishes them by drawing a rectangle around each.

The result is a group of boxes overlaid on the picture. Each box corresponds to a

single food item, like a sandwich.

This step brings about a number of benefits. First, results can surface more nat-

urally in the user interface. This makes estimates easier to understand and correct.

Second, parallel work can also be combined more carefully, since we know which iden-

tifications describe each pictured food. Finally, the Tag step encourages completeness,

and prevents workers from ignoring or forgetting to match certain foods.

Drawing Boxes: Tag’s first Human Intelligence Task (HIT) asks workers to draw a

box around each food in the picture. Workers need cultural background knowledge

to understand how foods on a plate fit together. Pure computer vision can detect

edges and boundaries, but may not recognize that an open-faced hamburger with the

top half of the bun o↵ to the side is in fact one item. The HIT relies on Turkers’

general intuition about food items, and provides sandwiches, salads, and pasta with

vegetables as examples of individual food items.

Similarity Comparison and Voting: Two Turkers are asked to tag each photo.

Once both assignments are completed, they are algorithmically compared based on

the number, size, and position of boxes. If the two groups are su�ciently similar,
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one is picked at random as the final answer. If the box groups di↵er significantly,

three additional Turkers are shown each set overlaid on the photo and asked to select

the better option, using similar guidelines. The box group receiving more votes is

returned as the final result.

Step 2: Identify

The Identify step matches a tagged box to one or more food entries in a commercial

nutrition database. While each box output from Tag should only contain one food

item, some composite items do not exist in the database. For example, if “ham and

cheese sandwich” is missing, Identify should choose “wheat bread,” “sliced ham,” and

“American cheese.”

There are two main challenges in this stage. Identifications must be correct, and

when several correct identifications exist, the most compact one should be used in

order to simplify measurement and eventual presentation of data to end users.

In pilot study, Identify was performed in a single HIT. Workers used an autocom-

plete text input to list each food in the box. Their answers were frequently incorrect

or incomplete. Workers appeared to type a one-word description of the picture, like

“chicken,” and then select the first option regardless of the closeness of fit. Like the

“Lazy Turkers” mentioned by Bernstein et al. [5], they performed the minimal work

necessary and nothing more.

These problems may also have occurred because the interface asked Turkers to

perform two conceptually di↵erent tasks sequentially but only produce one final out-

put. Turkers first had to identify each food and then locate the corresponding entry
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in the database. To correct for this, we developed a workflow that contained two

simpler HITs. The first asks workers to describe the food in their own words. The

second asks (other) workers to match this description to items in the database.

Describing Items: In this HIT, Turkers see a box on a photo. One question asks

“What is this food?” Here we request one-line descriptions like “pepperoni pizza” or

“salad with chicken.” The other question asks “What is it made of?” Here we provide

a free-form text field where workers can list component parts. For simple foods like

broccoli these fields will be identical, but for composite foods the fields should collect

di↵erent answers that are each useful.

Following successful prior experiments by Little et al. [60] that have workers it-

eratively improve on descriptions of images, we also made this step iterative. One

worker starts from blank fields. His answer becomes input to another HIT, where the

next Turker is asked to improve on it by correcting mistakes and adding detail. This

process is well-suited to the “Eager Beavers” mentioned by Bernstein et al. [5], who

provide minute details and list many possibilities. It also handles “Lazy Turkers”

well, since terse descriptions are progressively expanded.

Matching Foods: After three iterations, the output of the Describe task is fed

into a Match HIT. Here, workers see the photo (with the box) and the final descrip-

tions. They are asked to select the best entry or set of entries in the database to match

the boxed portion of the photo, with the descriptions serving as suggestions for what

to search. Workers first attempt to locate the description of the box as a whole in the
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database. If they do not find a good match, they search for each part. For example,

workers should first search for “salad with chicken and tomatoes.” If this fails, they

should look for “chicken breast,” “romaine lettuce,” and “cherry tomatoes.”

The search interface is modified from a standard autocomplete. Search results

display below the input box, but the keyboard cannot be used for quick selection.

Instead, Turkers must click on items to add them. The interface also makes it clearer

that multiple items can be selected through several searches. These changes negate

the instinct of “Lazy Turkers” from the pilot study to select the first item they see.

This decomposition makes each step manageable for Turkers moving through the

HITs rapidly. The results of the Describe step are not necessary for the end goal of

calculating nutrition information, but the generated descriptions reduce the mental

work required for the Match step. We can then ask Turkers working on Match HITs to

find the simplest representation in the database, using the Describe results as a guide.

Agreement Detection and Voting: Two workers are asked to complete each

Match HIT. If each returns a list pointing to the exact same item or items in the

food database, then that list is used. Otherwise, five workers complete a Vote HIT

to decide between them.

Step 3: Measure

The Measure step produces an estimated portion size for each food matched in

Identify. With these measurements, the nutrition data for a photo can be calculated

by multiplying the per-unit nutrition breakdown from the food database.
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Measure uses only one HIT, which shows Turkers a photo with a box highlighted

along with the name of one food in that box. They are asked to first select a mea-

surement unit and then provide a numeric estimate in terms of that unit. The units

provided by the food database are specific to each food. “Pepperoni pizza” includes

options like “slice, large” or “whole pie, medium,” while “white rice, cooked” uses

cups or ounces.

Measurement is considered the most di�cult step of this process for amateurs [65],

so the Measure stage uses a number of techniques to produce accurate results. Pre-

senting multiple measurement options is helpful, since many of these only require

counting rather than estimating a weight or volume. For example, it is much easier

to count florets than to estimate grams of broccoli.

Not every food can be measured by counting. To help in cases where weight or

volume estimates are necessary, HITs include a portion guide which provides common

approximations for di↵erent measurements. For example, three ounces of meat looks

like a deck of cards and a quarter cup is roughly the size of a golf ball. These

approximations are more error-prone than simple counting, but they allow workers

to estimate portions without any training.

The interface also alerts Turkers to avoid making common errors. Pilot testing

revealed that measurements in weight were much less accurate than those using vol-

ume or counting, so a warning is presented when Turkers choose grams, ounces, or

pounds. Testing also indicated that some workers misunderstood the serving types.

For example, for “chicken nuggets,” one worker selected “serving, 6 nuggets” and

then entered 6 as the value. This indicated 6 servings of 6 nuggets each for 36 total.
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To reduce these errors, the interface generates a calorie estimate on the fly and

asks workers to eyeball their answer. They are given common calorie ranges for dif-

ferent meals and shown warnings if the count becomes unusually low or high. These

warnings cannot prevent all errors, but they encourage Turkers to double-check their

answers.

Aggregating Measurements: Five Turkers are presented with Measure HITs. The

results from these HITs can be compared in the common units of calories. This means

estimates can be aggregated without any additional human computation like voting.

Drawing on the principle that averaging many high variance but low bias estimates

can lead to accurate results [91], we remove outliers and then return the mean of the

remaining estimates.

Turker Qualifications

When recruiting workers from an online labor market like Mechanical Turk, our

algorithm decides on which workers to recruit by requiring workers to meet specified

qualifications. After several iterations during pilot testing, we decided to accept only

Turkers located in the United States who had previously completed at least 200 HITs

and had a 98% HIT acceptance rate. As we planned to test the system on food

photographs from the United States, we decided to require American Turkers due to

the cultural context required for most elements of the process.
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2.3.2 Evaluation

We evaluate the accuracy of estimates from the PlateMate system by compar-

ing its crowdsourced estimates to current alternatives. Nutritional data returned by

PlateMate was compared with ground truth, expert dietitian estimates, and estimates

by a recent commercial application. A reader interested in additional user studies and

analysis on the PlateMate system can refer to Noronha et al. [69].

The evaluation has two goals. The first was to determine the accuracy of Plate-

Mate with ground truth data obtained from manufacturers or preparers. The second

was to compare PlateMate’s performance with two alternative approaches to remote

food photography: analysis by experts and results from Meal Snap. Because Meal

Snap only returns calorie information, and to make the task manageable for our expert

participants, we limited our comparison to estimated calories even though PlateMate

generates reports that also include fat, protein, and carbohydrates.

Method

We conducted the experiment with a sample of 18 photographs showing 36 dis-

tinct foods. Some photographs depicted individual foods or packages, while other

photographs showed complex plates containing many items (see Figure 2.9). Each

pictured food had nutritional data available through the manufacturer or preparer,

and foods were weighed when necessary to ensure accuracy. These foods were selected

to span a variety of meals and sources, including restaurants, cafeterias, and grocery

items. We also included a mix of simple foods and composite items like salads and

sandwiches.
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Figure 2.9: Examples of photos from the study of PlateMate’s accuracy.

We recruited three professional dietitians to provide expert estimates: one was

a private nutrition counselor, and the other two were hospital-based. They received

compensation for their time and provided estimates from their own o�ces. They were

encouraged to use any resources (e.g., books and calorie databases) that they would

typically use for a similar task.

Our third set of estimates came from Meal Snap, a recent commercial iPhone ap-

plication. Meal Snap creates a single Mechanical Turk task for each image. Workers

provide a text description of food, and the application appears to match this descrip-

tion with a database of average consumption to estimate a range of possible calories.

Meal Snap returns a range of calories rather than a definitive answer, so we used the

mean of its high and low values.
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Figure 2.10: Mean errors (i.e., overall bias) and mean absolute errors (average magni-
tude of an error) for estimates made by the human experts, the Meal Snap application,
and PlateMate compared to data provided by manufacturer or preparer. Error bars
represent standard errors.

Results

In terms of mean absolute error on calorie estimates, PlateMate was not signifi-

cantly di↵erent from the human experts or the Meal Snap application. Figure 2.10

illustrates the results in detail. As expected, trained dietitians were the most accurate

on average. Their mean absolute error rates were 39.4%, 20.8%, and 26.1%, for an

average of 172.0 calories or 28.7% per photograph. The best expert was o↵ by just

124.5 calories, on average. PlateMate was close behind with a mean absolute error

rate of 198 calories, or 33.2%. Meal Snap was farther behind, with an average error

rate of 322.8 calories or 53.9%.

Absolute error rates reflect the average magnitude of the error, but not the biases

in each method. To understand how estimates from each source would add up over
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time, we also measured mean error without taking absolute values. The best expert

overestimated by just 32.75 calories on average, for a mean error rate of +5.5%. The

other two experts had error rates of +9.2% and �27.5%.

In comparison, PlateMate had a mean error rate of +44.1 calories, or +7.4%,

which was much closer than Meal Snap’s �34.4%. Expert and PlateMate results

are significantly correlated with the ground truth data (r2 = .8626, .9062, and .9378

for the experts, and r2 = .8622 for PlateMate, all with p < .0001), while there

was no significant correlation between Meal Snap results and the ground truth data

(r2 = .2352, p = .3475).

PlateMate’s error rate compares favorably to amateur self-reports, where error

rates can be greater than 400 calories/day and range from �76% to +24% [82, 10].

It also lacks the systematic bias towards underestimation in self-reports, especially

among vulnerable users. These results indicate that PlateMate’s answers, while im-

perfect, can be a useful nutritional guide.

Error Analysis

Most errors in the study corresponded to single failures in specific parts of the

pipeline. In the Tag stage, boxes were sometimes drawn improperly, leading to missing

or duplicate identifications. In one photo of a brownie and banana on a small plate,

only one box was drawn covering the entire banana and most of the brownie. As a

result, the workers at the Identify stage omitted the brownie.

Most errors occurred in the Identify stage. Turkers had trouble distinguishing

similar types of a food, which sometimes had large nutrition di↵erences. A plate
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of vegetarian baked beans was identified as regular baked beans, tripling the calorie

count. Branded foods also caused problems: a relatively low-calorie chicken sandwich

was identified as a sandwich from the restaurant Chili’s, which had over twice as

many calories.

During measurement, very small quantities were often overestimated, especially

when a small amount of a food was spread over a large area. Other errors occurred

when one food appeared in several boxes. This led to a hamburger bun being counted

as two buns when each half of the bun was seen in its own box.

These errors suggest areas for further improvement. In particular, introducing

personalization and geolocation capabilities can help address many of the common

errors we encountered. For example, we can adapt the task interface to emphasize

the foods most common in a user’s diet and thus most likely to appear in their

photos, potentially leading to more accurate results. Geolocation capabilities available

in many mobile devices could be used to further improve accuracy, especially for

restaurant meals. Photos could be annotated with the cuisine of the restaurant in

which they were taken, providing Turkers with helpful context while keeping the

user’s location private. Integrating with existing local “check-in” applications like

Foursquare would make it even simpler to associate meals with their places of origin.

2.3.3 The Management Framework

Because PlateMate relies primarily on dividing human work into a number of

heterogeneous and interacting tasks, and because the issues of worker skill and mo-

tivation were central to our design process, we found it conceptually helpful to use
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human organizational hierarchies as a metaphor for designing our system. Specifically,

we observe that in the real world, expert-level work can sometimes be reproduced by

less skilled workers—each working on a specific part of the process—supervised by

managers who are not necessarily skilled craftsmen themselves, but who know how

to assign tasks, route work among workers, and verify the quality of the work.

To implement division of labor for complex crowdsourcing tasks like nutrition

analysis, we created a new framework organized around objects called managers.

Managers communicate with their supervisors and their employees via asynchronous

message passing: managers assign tasks by placing them in inboxes of lower level man-

agers and communicate with their superiors by placing results of completed tasks in

their own outboxes. This hierarchical message-passing approach allows programmers

to implement workflows by decomposing problems into progressively smaller steps.

As illustrated earlier in Figure 2.8 (page 42), the root of this tree is a chief man-

ager, which gathers new inputs and produces completed outputs. In PlateMate, the

chief has three employees: Tag, Identify, and Measure. Each of these are in turn man-

agers and have their own employees, corresponding to the individual HITs described

above.

This hierarchical structure creates a flexible workflow consisting of modules con-

nected by higher-level managers. Managers can route work intelligently among their

employees, and may dynamically alter the sequence of steps in the process depending

on a situation. For example, PlateMate’s Tag manager compares the outputs from

its DrawBoxes employee. If they are su�ciently di↵erent, they are sent to the Vote-

Boxes manager to decide between them. Otherwise, one answer is chosen randomly
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and sent up the hierarchy as Tag’s completed output. All managers work in parallel,

each processing its own stream of work.

When multiple tasks are submitted, processing is done just-in-time: for example,

as soon as one photograph is tagged, the Identify manager begins the process of finding

out what foods are present in each of the boxes without waiting for the remaining

photographs to be tagged.

At the lowest level of the hierarchy are managers whose employees are the crowd

workers. Managers at this level create jobs (such as asking for the food in one tagged

box on a photo to be identified) and receive responses. Programmers create HIT

templates and validation functions which are used by the framework to create HITs

and approve work. Managers simply assign work to the crowd and receive validated

outputs that can be passed up the tree.

The management approach di↵ers conceptually from prior work, which has focused

on creating “crowd programming languages” that combine human and machine com-

putation. For example, TurKit [60] lets requesters program crowds in JavaScript,

Qurk [63] integrates crowds into SQL, and CrowdForge [46] parallelizes work with

MapReduce scripts. In each case, the toolkit attempts to make working with crowds

more like working with computers. This approach emphasizes computation as the nat-

ural glue for combining individual worker contributions, and the resulting artifact is

a computer program with some of the primitive operations implemented as functional

calls to human workers. Of course, the Management Framework is a computational

framework, and it naturally supports a number of design patterns for programming

the crowd. For example, the Tag step is an analog of the decompose step in divide-
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and-conquer, and the Describe step (part of Identify, see Figure 2.8) relies on iterative

refinement [59] to improve the level of detail of the descriptions.

Management is implemented as an extension of Django, a web application frame-

work for Python. It builds on several useful features from Django, including an

HTML template language for defining HIT instructions, examples, and interfaces.

It also uses Django’s object-relational mapper, which automatically stores Python

objects in a MySQL database. This means that the precise state of the system is

always stored, including managers’ inboxes and outboxes, active HITs and completed

assignments, and intermediate inputs and outputs. This simplifies later analysis,

since requesters can go back and query responses from each stage in the workflow. It

also protects completed work from program errors or service outages; after crashes,

execution simply resumes from the last good state.

2.3.4 Summary

We present PlateMate, a human computation system for nutrition analysis based

on food photographs. In the process of deriving the PlateMate algorithm, we observed

the steps that an expert took in approaching the problem, transformed these steps into

stages of crowd problem solving, and decomposed each stage into smaller subtasks

so that the crowd can contribute e↵ectively. We also introduced the management

framework inspired by the structure of human organizations, which provides e↵ective

support for managing crowdsourcing of complex heterogeneous tasks.
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2.4 Discussion

Having formulated e↵ective human computation algorithms for audio transcription

and nutrition analysis based on food photographs, we present some general lessons and

ideas on how to approach the design of human computation algorithms for tackling

complex tasks.

Identify what needs to be done

Solving many complex tasks require identifying what types of e↵ort to elicit, and

e↵ectively coordinating among heterogeneous contributions to derive a solution. To

construct algorithms for the crowd, we may start by drawing inspiration from explicit

workflows used by individuals or within organizations, or capturing the implicit steps

an expert takes in the process of problem solving, as we did for PlateMate. This

provides a sense of the di↵erent components that may go into a human computation

algorithm, as well as the dependencies among these components.

Apply design patterns to overcome crowd limitations

Any tasks we identify need to be transformed into tasks that the crowd can e↵ec-

tively contribute to. This requires, for example, taking into account that individuals

in the crowd may only work for short periods of time, and can generate noisy solutions.

This transformation can be guided by identifying design patterns for overcoming any

crowd limitations that make it undesirable to assign a task directly. For example, we

used the divide-and-conquer design pattern for audio transcription to break down the

task into transcription tasks with shorter clips whose transcriptions are later rejoined,
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and combined the iterative design pattern with the output-agreement design pattern

to encourage participants to provide accurate improvements.

Design tasks based on the way the crowd works

To enable workers to make e↵ective contributions without necessarily understand-

ing the overarching goal or how di↵erent steps in a workflow contribute to that goal,

each task should be self-contained, and designed such that the process of arriving at

a good solution is conceptually simple. In initial pilot testing for PlateMate, we saw

how using an autocomplete input box when asking workers to identify foods made

it more straightforward for workers to select generic descriptions that would have

led to inaccurate results. Reasoning about the process through which crowd workers

perform a task, and being sensitive to how di↵erent workers may approach a task

(e.g., some may be overeager while others may be lazy [5]), can lead to more e↵ective

designs.

Prototype early and run pilot experiments

Last but not least, while we are often able to come up with the structure of an

algorithm by reasoning about the crowd, we do not always know how the crowd

will react to a particular task’s design. In the nutrition analysis example, we used

pilot studies to better understand how the crowd worked on tasks in order to tune

task interfaces, instructions, and feedback to workers. Given the ease with which a

requester can prototype and test their algorithms on a platform like Mechanical Turk,

experimenting with alternative designs and using observations of workers to derive

new designs can be a valuable tool for promoting helpful contributions.



Chapter 3

Human Computation with Global

Constraints

Within studies of human computation, an important class of underexplored tasks

are those in which the solution must satisfy a set of global requirements. For example,

in leveraging the crowd to write an essay, a requester may want to specify requirements

on the desired tone, tense, length, structure of arguments, and style of exposition

that must hold consistently throughout a piece of writing. Some requirements, e.g.,

presenting a balanced perspective on a situation, touch upon di↵erent components of

the essay and depend on the essay as a whole. Similar considerations arise in creative

tasks such as graphic design and more mundane tasks such as meeting scheduling.

As good solutions rely on the composition as a whole and are marked by interde-

pendence among solution components, tasks involving global constraints are di�cult

to decompose into subtasks that can be independently assigned to individuals in the

crowd. This raises a significant challenge for human computation algorithms, as such

59
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Figure 3.1: Planning mission (left) and itinerary (right)

tasks are not amenable to the divide and conquer approach introduced in chapter 2

that is used in most crowdsourcing systems.

As a focal example, consider the problem of crowdsourcing itinerary planning.

Planning events such as vacations, outings, and dates often involve an itinerary (Fig-

ure 3.1), which contains an ordered list of activities that are meant to be executed

in sequence over the course of an event. People going on a trip have preferences and

constraints over the types of activities of interest (e.g., “I want a co↵ee break right

after lunch”), how long to spend on di↵erent activities (e.g., “I want to spend at least

2 hours in parks”), the composition of activities (e.g., “I want to focus on art galleries

and museums for the day”), the budget, and the total time available, which define a

set of global requirements that an itinerary should satisfy.
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Decisions on any particular activity in the itinerary may naturally influence other

decisions. As simple examples, spending time on one activity leaves less time for

another, and moving to one location introduces distances to other locations.

To handle tasks with global requirements, we introduce in this chapter a crowdware

design that provides a single workspace in which a crowd of individuals contribute

opportunistically based on their knowledge and expertise and the current solution

context, and in which the system (indirectly) coordinates the crowd problem-solving

e↵ort by focusing the crowd’s attention on what needs work. Crowdware takes inspi-

ration from groupware [25], which suggest principles and ideas on communication and

collaboration within a shared context that help a group to accomplish a joint task.

We consider how to apply such principles and ideas to crowd workers, who di↵er from

groups in that individuals may only be briefly involved, may be less willing to spend

time grasping the solution context or take meta-level actions, and may not consider

the desires of other crowd workers when making decisions.

We focus on itinerary planning as a case study of coordinating a crowd to tackle

tasks with global constraints. We introduce a collaborative itinerary planning sys-

tem called Mobi. Mobi takes a planning mission containing a set of qualitative and

quantitative constraints as articulated by the user as input and produces an itinerary

that satisfies the mission as output. The crowd participates via a single interface—

displaying the current itinerary and a stream of ideas generated thus far—that allows

individuals to contribute opportunistically given the current context and to see their

contributions incorporated into the solution in real-time. Mobi focuses the crowd’s

attention on aspects of the evolving plan that needs work by prominently displaying
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a list of automatically generated todo items, which point out violated constraints,

provide suggestions on how to address them, and promote activities directed at the

refinement of the itinerary.

Mobi allows users to specify their desires and needs in natural language, thereby

enabling complex constraints and preferences to be expressed and used in the plan-

ning process. We present two studies, which show that Mobi’s design promotes a

collaborative planning environment in which the crowd can e↵ectively produce cus-

tom itineraries that satisfy the global constraints stated in user missions.

In the first study, we test the e↵ect of displaying todo items on the rate at which

quantitative constraints are resolved by the crowd, and measure the contribution pat-

terns of crowd workers. We find that the display of todo items promotes satisfaction

of constraints at a significantly faster rate than when todo items are not displayed,

and that the crowd’s editing patterns show evidence of both collaboration and op-

portunistic planning. In the second study, we seek to understand whether the end

users believe that crowd-generated itineraries satisfy their stated requirements. Users

report that the itineraries contain many activities of interest, mostly or fully satisfy

their mission requirements, and are useful for their actual trips.

The chapter is organized as follows. Section 3.1 presents related work. Section 3.2

introduces the Mobi system. Section 3.3 and Section 3.4 describe our two studies.

Section 3.5 revisits the elements of Mobi’s design and discusses how these elements

may in general inform the design of systems that facilitate a crowd to tackle prob-

lems involving global constraints. Section 3.6 summarizes our results and presents

directions for future work.
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3.1 Related Work

Planning can be viewed as an iterative task in which workers make successive

edits to improve the solution. There has been some attention on iterative tasks in

human computation [60], and an interesting recent example is work by Kittur [45]

that recruits workers to collaborate in Etherpad to translate a poem. Workers were

able to see their edits reflected in real time and could communicate via chat to explain

their edits. One di↵erence in Mobi is that Mobi uses its sense of the progress made

so far (e.g., how full the itinerary is, which constraints are violated, etc.) to prompt

users on what needs work so as to guide the problem-solving process.

Wikipedia can be viewed as an example of a system in which (mostly expert

and highly dedicated) contributors write and edit articles to resolve a set of global

constraints as defined by Wikipedia’s standards. Much like the way todo items are

used in Mobi to drive progress, template messages and cleanup tags are used in

Wikipedia to alert editors of changes that need to be made to improve an article.1

Such messages are typically managed by human contributors, whereas in Mobi todo

items are managed in an automated manner whenever possible.

Several models have been proposed to describe how people generate plans to

achieve goals. The successive refinement model advocates a top-down approach,

where a high-level goal is decomposed into subgoals iteratively, down to a sequence of

elementary actions [81]. In contrast, the planning of many everyday activities (e.g.,

errands) is often opportunistic. In other words, planning decisions happen whenever

opportunities arise [30, 44], so that a decision or observation in one part of the plan

1See http://en.wikipedia.org/wiki/Wikipedia:Template_messages/Cleanup
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may suggest new ideas or illuminate problems in a di↵erent part of the plan, causing

the planner to refocus his attention. Opportunistic planning may involve both top-

down and bottom-up processing. For example, in an errand planning experiment,

Hayes-Roth and Hayes-Roth [30] found that subjects would start making detailed

plans (e.g., sequencing individual errands), and then switch to planning on a more

abstract level (e.g., by discovering clusters of errands), and back and forth as they

refined the plan. Mobi is designed with the opportunistic planning model in mind,

where individuals in the crowd are allowed to contribute freely as they see fit based

on their observations of what needs work given the current solution context.

Real-life planning is a di�cult problem for computers. Despite advances in auto-

mated planning [67], a major challenge is making sense of people’s goals, preferences

and other “soft” considerations [13]. Currently, the automated planner in Mobi sup-

ports workers by automatically checking constraints and computing trip times and

routes. In the future, automation may play a more active role in the planning process

by learning about di↵erent requirements, suggesting activities and their composition

in the itinerary, or even detecting and adding important constraints that may have

been missed by the requester.

There are several existing commercial systems that allow groups to plan trips for

themselves or to ask friends and other members for suggestions. Examples include

Gogobot, Triporama, Kukunu, and FriendTripper. Mobi di↵ers from these systems

in that it produces not only suggestions for activities, but an itinerary satisfying a

set of global requirements. By using todo items, Mobi can also focus the crowd on

making contributions where they are most needed.
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3.2 Mobi: A System for Crowd Itinerary Planning

Mobi takes a planning mission consisting of preferences and constraints as input,

and generates an itinerary by having a crowd plan asynchronously using a shared

interface. Workers invited to contribute can view the current plan and all ideas

proposed thus far, and make contributions as they see fit. Edits can be made at any

time and without restrictions. The itinerary is automatically saved after each change.

We now describe Mobi’s interfaces for specifying the planning mission and assembling

the itinerary, and discuss how these two interfaces support the process of generating

itineraries and resolving constraints.

3.2.1 Specifying the Planning Mission

Our target users, also referred to as requesters, are people who are interested in

planning a trip. To start planning, the requester enters a planning mission using a

simple web interface, by specifying the title and description of the trip, start/end

locations and times, and whether he or she will use public transit or drive between

locations in addition to walking.

Requesters can express two kinds of constraints: qualitative and quantitative. Fig-

ure 3.1 (page 60) shows an example of a planning mission that includes both types

of constraints. Qualitative constraints are specified in natural language (e.g., in a

paragraph). They can describe, for example, the nature of the trip, what the user

hopes to accomplish, and who they are traveling with. Quantitative constraints are

specified by creating categories using arbitrary natural language phrases (e.g., “cool

art,” “by the ocean”), and assigning preferences and limitations over categories. One
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can specify constraints on the number of activities in each category (e.g., “I want to

visit up to two museums”), as well as the amount of time to spend on activities in each

category (e.g., “I want to spend at least two hours on cool art”). Such constraints

can also be used to express the preferred combination of activities in the plan (e.g.,

“I want to spend half of my time on activities by the ocean, and the other half on

activities in the city”). In our prototype, the domain-specific language for quantita-

tive constraints allows for constraints encoded in the form of “I want {at most, at

least, exactly} [number] {activities, hours} of {cat1, cat2, . . . , catn},” where cati refers

to the i-th requester-defined category.

Both qualitative and quantitative constraints contain natural language, and can

express “soft” considerations that the computer cannot tackle alone. In addition to

these constraints, the system maintains a pair of time constraints, which state that

the cumulative duration of the activities in the itinerary should not be greater than,

or significantly less than, the duration of the trip specified by the user.

3.2.2 Assembling the Itinerary

Once a requester specifies a planning mission, workers can use Mobi’s planning

interface to view the mission by clicking on the “reveal mission details” button in the

information panel (Figure 3.2, on top). The planning interface consists of two key

components: the brainstream and the itinerary viewer.
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Figure 3.2: The Mobi planning interface consists of the information panel (top), the
brainstream (left), and the itinerary viewer (right).

Brainstream

The brainstream (Figure 3.2, on left) is a collection of everyone’s ideas. An idea

can be an activity (“something to do or see”) or a note (“a thought about the plan”).

To view ideas in the brainstream, one can either scroll down the list, click on a

hashtag to display ideas belonging to a particular category, or use the autocomplete

search box. Clicking on an idea reveals a dialog box with additional details, an option

to edit the idea, and in the case of an activity, an option to add it to or remove it from

the current itinerary. A blue badge next to an activity indicates that it is already in

the current itinerary.

To add a new idea (an activity or a note), one can type a title into the search box

and click “add.” If similar ideas already exist, a drop down list will appear, which

helps to prevent duplicates and promote editing. For notes, workers can fill in a

description. For activities, the activity editor (Figure 3.3) asks workers to provide the

name of the location, what to do or see, the activity’s duration, and the (requester-
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Figure 3.3: Adding a new activity to the brainstream

defined) categories that the activity belongs in. In the same editor, workers can view

a map, which allows them to mark the location of the point of interest. Workers can

decide to add the activity to both the itinerary and the brainstream, or only to the

brainstream for the time being.

The brainstream allows workers to brainstorm together and build upon each

other’s ideas. It keeps around all suggested activities, and allows workers to quickly

access them through the hashtags and the search box. By adding notes, workers can

identify areas that need work or raise questions about the plan’s feasibility, which

other workers or the requester can then help to address or provide comments on. The

brainstream’s design draws inspirations from social technologies such as Twitter and

Piazza, that aggregate information into a feed or stream that one can easily process.
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Figure 3.4: The brainstream displays system-generated todo items which alert workers
to what needs work.

If the current itinerary does not satisfy a quantitative constraint or is over time

or under time, the violated constraints are automatically turned into todo items that

are displayed at the top of the brainstream with exclamation marks (Figure 3.4).

Todo items alert workers to what needs work. They suggest specific actions, such

as “Add a ‘lunch’ activity” or “The itinerary is over time. Try reordering itinerary

items. You can also edit or remove items.” Todo items also provide natural language

explanations of how the current itinerary violates particular constraints. For example,

a todo item may explain that “You need a ‘lunch’ activity but there is currently none

in the itinerary” or “The itinerary is over time because the trip must end by 9pm.”

We note that the system is able to check arbitrary quantitative constraints and

generate todo items without understanding the meaning of the natural language cat-
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egories. This is because workers associate activities with the categories they belong

in when the activities are suggested. As we will show in the next section, todo items

are an important design element that accelerates the speed at which quantitative

constraints are resolved.

Itinerary Viewer

The itinerary viewer (Figure 3.2, on right) consists of an itinerary and a map. The

itinerary displays the activities in order, with times during which they are scheduled to

take place. Travel times between locations are automatically computed and accounted

for. The map displays the activities’ locations and the routes between locations.

The map and itinerary allow crowd workers to see at a glance whether the plan is

coherent. A worker may notice activities that are out of order, for example by seeing

on the itinerary that lunch is happening too early or seeing on the map that activities

can be reordered to avoid unnecessary travel. A worker can also use the itinerary to

detect if too much or too little time is spent on an activity.

The itinerary doubles as an editor. Workers can drag and drop activities to

rearrange their order, and click an activity to see its details, edit it, or remove it

from the itinerary. On any itinerary change (i.e., via adding, removing, editing, or

reordering of activities), the itinerary, activity times, map display, trip time, and todo

items automatically update, which provides direct feedback to the workers as they

refine the itinerary.

Mobi promotes collaboration by making the plan always visible and editable by

everyone. This follows the WYSIWIS (What You See Is What I See) principle [88],
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which ensures that all participants have equal access to shared information. Mobi also

supports opportunistic planning, by providing support for both top-down and bottom-

up planning, and a fluid way to move back and forth between the two. For example,

as workers plan at a detailed level (e.g., suggesting activities in the brainstream), they

may become aware of shortcomings of the current itinerary, which in turn prompts

them to start considering the itinerary as a whole. Likewise, when workers refine

the itinerary, they may think of new activities to add to the brainstream, or ways to

elaborate on the details of a particular activity in the current itinerary.

3.3 Experiment: Todo or Not Todo

We hypothesize that elements of Mobi’s design, namely the todo items and having

a shared interface in which the crowd can work o↵ the current solution context and

existing ideas, promotes the crowd to e↵ectively and collaboratively resolve the users’

stated constraints so as to produce itineraries that satisfy planning missions. In this

section, we consider an experiment using two versions of Mobi—one that displays todo

items and one that does not—to evaluate the e↵ect of todo items on how quickly the

crowd can reach solutions that satisfy the stated quantitative constraints.

3.3.1 Method

We created custom day-trip planning missions for each of eight major U.S. cities:

New York, Chicago, Washington DC, Las Vegas, Los Angeles, San Francisco, Seattle,

and San Diego. We recruited Amazon Mechanical Turk workers (Turkers) in the U.S.

with 95% or higher approval rating to contribute to the planning missions by working
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on human intelligence tasks (HITs) in which the Mobi interface was fully embedded.

The interface is nearly identical to that shown in Figure 3.2, with di↵erences being the

addition of a “submit” button on the bottom, a “HIT instructions” button replacing

the “what you can do to help” button in the information panel, and the addition

of a “continue to improve the itinerary” todo item that displays only when there

are no other todo items (all quantitative constraints are satisfied). Turkers were

asked to make “micro-contributions” as they plan the trip with other Turkers, and

were told that they can submit a HIT as soon as they have made any contribution.

Turkers were paid 15 cents per HIT, and no verification was used other than requiring

Turkers to have made some edit (however small) to the brainstream or itinerary before

submitting the task. For half of the cities, the version with todo items was posted

prior to the version without todo items, and the order of posting was reversed for

the other cities. Missions were posted for up to four days. Other than the display of

todo items, the interface, job description, and instructions were identical in the two

conditions.

3.3.2 Results I: The Generated Itineraries

In the todo condition, all eight itineraries satisfied the stated quantitative con-

straints. Figure 3.5 provides four examples of planning missions and the correspond-

ing itineraries generated by Turkers. From the itineraries, it appears that Turkers not

only pay attention to the quantitative constraints, but also to the mission description,

for example by including educational activities for the kids on a family vacation to

Washington DC.
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(a) Mother/Daughter NYC (b) Chicago with young children

(c) Vegas with buddies (d) Family in DC

Figure 3.5: Experiment: planning missions and the corresponding itineraries gener-
ated by the crowd in the todo items condition

Table 3.1 summarizes, for each of the examples shown in Figure 3.5, statistics

about the final itineraries, the types of edits Turkers made, and the amount of money

paid to workers. We see that the final itineraries contain original ideas from multiple

workers. Turkers generated just over twice as many ideas for activities as are in

the final itineraries, and generally used notes sparingly. When notes were added,

they provided commentary on alternative suggestions (“They are a better place then

Pasty’s by far, and have better service, plus that perfect dessert.”), noted errors in

activities (“Barbary Coast isn’t called ‘Barbary Coast’ anymore”), presented general
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NYC Chicago Las Vegas DC
# unique workers 17 15 16 21
# workers with winning ideas 6 5 7 8
# activities in brainstream 35 16 18 28
# activities in itinerary 11 10 11 13
# edits in brainstream 50 54 43 57
# edits in itinerary 193 140 75 154
# notes in brainstream 1 0 9 1
# of HITs 64 31 47 50
Total cost $9.60 $4.65 $7.05 $7.50

Table 3.1: Summary statistics about the final itineraries of the examples shown in
Figure 3.5, including contributions by and payments to Turkers. Winning ideas are
activity suggestions that are in the final itinerary.

advice (“You can buy a MealTicket which will allow you to eat free at many places.”),

or pointed out problems with the plan (“why are we eating so much dinner?”).

3.3.3 Results II: Impact of Todo Items

Results show that when prompting workers with todo items, quantitative con-

straints are satisfied significantly more quickly than when todo items are not dis-

played. We measure the speed at which constraints are satisfied in number of HITs

performed. One worker in the no todo condition attempted to game the system by

submitting multiple HITs for a single piece of work (e.g., by adding an activity, fill-

ing in its details, and placing it into the itinerary in three separate HITs). For this

worker, only the itinerary-changing HITs were counted, but for all other workers, all

HITs were counted.

We make three observations. First, we found a significant di↵erence (t(7) = 3.65,

p = 0.0082) in the number of HITs it took to satisfy (for the first time) all of the stated

quantitative constraints between the todo condition (µ = 16.5, � = 9.65) and the no
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Figure 3.6: Number of HITs required to satisfy all quantitative and system generated
time constraints for each city in the todo and no todo conditions. For cities marked
by an asterisk, itineraries in the no todo condition still had violated constraints; in
such cases we reported the number of HITs thus far.

todo condition (µ = 39.5, � = 14.8).2 See Figure 3.6 for a city-by-city breakdown.

Second, there is also a significant di↵erence (t(7) = 4.247, p = 0.0038) in the

number of HITs it took to satisfy all constraints for the first time (this includes

system generated time constraints) between the todo condition (µ = 22.5, � = 8.5)

and the no todo condition (µ = 45.38, � = 13.9).

Finally, as constraints can be violated and satisfied repeatedly throughout the

planning process, we sought to understand how quickly constraints are satisfied on

average. We introduce the notion of the violation duration of a constraint, which is the

number of HITs it takes for a constraint to be satisfied by the itinerary since it was last

violated (which could be when it was first introduced). The average violation duration

of quantitative constraints is shorter for the todo condition (µ = 5.64, � = 6.34) than

for the no todo condition (µ = 10.5, � = 10.97); the result is statistically significant

2In some cases for the no todo condition, no itinerary satisfied all the stated requirements in the
course of the experiment. In such cases the number of HITs completed thus far was used as a lower
bound for comparison.
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Figure 3.7: Cumulative distribution of the violation duration of constraints in the
todo versus no todo conditions, showing the fraction of constraints satisfied after at
most k HITs since the time it was last violated.

(t(134) = 3.206, p = 0.0017).

Figure 3.7 shows the cumulative distribution of the violation durations of con-

straints in the todo versus no todo conditions. We observe that for any violation

duration we may consider (in number of HITs), a larger fraction of the constraints

are satisfied within that duration in the todo condition than the no todo condition.

We also see that more than half of all violated constraints were satisfied after three

or fewer HITs in the todo condition.

Figure 3.8 shows, for the todo versus no todo conditions, the rate at which each

constraint gets satisfied as workers contribute to the planning e↵ort for the Seattle

and Chicago planning missions. We observe that constraints were satisfied much more

quickly in the todo condition. The Chicago case is particularly interesting. In the

todo condition, a worker violated a previously satisfied constraint while editing and

proceeded to make successive edits that led to the satisfaction of all constraints. In the

no todo condition, a satisfied constraint was violated and then left unaddressed. This

example illustrates the power of immediate feedback. When an edit to the itinerary

violates some constraint(s), the automatically generated todo items are able to not
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(d) Chicago with no todo items

Figure 3.8: The unsatisfied constraints during the planning process for the Seattle
and Chicago missions. The height of each bar indicates the number of constraints
unsatisfied after k HITs. Each colored segment represents a particular quantitative
constraint, and its height indicates the extent to which it is violated. The black
segment represents the percent by which the itinerary is over time or under time
(when it is greater or less than 5%).

only alert workers to what needs fixing, but also make them aware that their edits

have a direct e↵ect on the satisfaction of constraints associated with the planning

mission.

3.3.4 Results III: Editing Patterns

Having shown that todo items play an important role in focusing the crowd’s e↵ort

towards satisfying the quantitative constraints, we turn to investigate the crowd’s

work process while using Mobi in the todo condition. In particular, we look for

evidence of collaborative behavior from the crowd and examine the way that they

plan using the current context of the plan.
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We focus first on the process of generating ideas for activities. We observe that

roughly half (52%) of the contributions to the brainstream contain new suggestions

while the other half (48%) are edits to existing ideas in the itinerary. Of the edits,

72% are edits on ideas that originated from someone other than the person editing,

which suggests that workers are working o↵ others’ contributions when they refine

ideas and the itinerary. When editing an activity, we see that edits are mostly to

an activity’s duration (80%), but there are also edits to change titles/descriptions

(7%) and to correct an activity’s location (12%). Edits to the title, description, and

location are encouraging to see as they suggest that the brainstream and itinerary

viewer are providing means for users to discover and improve existing ideas.

Turning to the patterns of itinerary edits, we observe that while most of the con-

tributions come from adding (31%) and reordering activities (32%), workers also edit

existing ideas (22%) and remove activities (14%). This is encouraging to see because

workers are using the di↵erent actions available to them to improve the itinerary as

they see fit. When tasks are left to run after the quantitative constraints are all

satisfied, we observe that itineraries continue to evolve; workers replace activities

in the itinerary with other activities, reorder the itinerary, edit existing items, and

so on. While constraints may be violated during such edits, todo items reminded

workers of such violations and violated constraints were quickly satisfied again (e.g.,

see Figure 3.8(c)). Workers are encouraged to continuously generate new ideas and

incorporate them into the itinerary both because we pay them for such contributions

and because Mobi displays a todo item that asks workers to continue improving the

itinerary whenever all quantitative constraints are met.
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We saw very few Turkers who blatantly tried to game the system. The kinds of

gaming behavior we did observe generally fell into two categories. In one, a Turker

underspecifies an activity, either by creating an activity without filling in its descrip-

tion and location, or by adding a note containing a suggestion for an activity instead

of just adding the suggested activity. In the other, a Turker would fully specify an

activity, but use up to three HITs to do so—by spending a HIT on creating the activ-

ity, another to edit its details, and another to add it to the itinerary—when all this

can be accomplished with a single “add activity” action.

While it is certainly useful to consider refinements that would curb such behaviors

(e.g., by requiring activities to contain descriptions; by not allowing workers to submit

HITs in which they have only edited their own ideas; etc.), such gaming behaviors

from a few Turkers did not seem to have a negative influence on the planning processes

nor the resulting solutions. In particular, we saw that poorly formed ideas were simply

ignored, removed from the itinerary, or edited by another worker who discovered them

via the autocomplete search box in the brainstream, all of which occurred as natural

parts of the iterative process through which workers improved the itinerary.

3.4 End-to-End User Study

Having seen that workers can resolve quantitative constraints e↵ectively using

Mobi, we conducted a user study to evaluate how well the generated itineraries satisfy

not only quantitative constraints, but also the stated qualitative constraints, from the

perspective of requesters.
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3.4.1 Method

We recruited 10 subjects from university mailing lists to participate in the study.

Individuals were eligible if they were actually planning a forthcoming trip to a ma-

jor U.S. city. Recruited subjects were a mix of undergraduate students, graduate

students, and research scientists. Subjects were instructed to describe their planning

mission, which includes qualitative and quantitative preferences and constraints. Par-

ticipants were given unlimited access to Mobi for a week, during which they were free

to modify their planning mission and participate in the planning process. Missions

were crowdsourced on Mechanical Turk as was done in the todo versus no todo exper-

iment. At the end of the study, subjects completed a questionnaire, which asked them

to evaluate the final itinerary and to describe their experience using Mobi. Subjects

each received a $30 Amazon Gift Card for their participation.

The trip destinations specified by the users included Boston, New York City, San

Francisco, Las Vegas, Orlando, and Washington DC. The planning missions varied

in length and specificity. Figure 3.9 provides two examples of user missions and the

generated itineraries.

3.4.2 Results

To assess how well the generated itineraries satisfy the users’ requirements, we

consider three measures of the quality of an itinerary, namely the extent to which

it (1) contains activities that the requester likes, (2) satisfies the qualitative and

quantitative constraints specified in the planning mission, and (3) serves its purpose

as a plan that is feasible, useful, and executable in real life.
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(a) Subject 1: Las Vegas (b) Subject 2: Orlando

Figure 3.9: User study: planning missions and corresponding itineraries generated by
the crowd

1. Do itineraries contain activities that the requesters like?

Users were shown information about each of the itinerary activities (title, descrip-

tion, start time, end time, duration) and asked to rate how much they think they

would enjoy each activity on a 5-point scale (1=“hate it”, 5=“love it”).

Figure 3.10 shows a histogram of the activity ratings across all 10 participants.

The mean rating was 4.03 (� = 0.44). Users also mentioned that the activities are

diverse, interesting, and often unknown to them prior to using Mobi.

2. Do itineraries satisfy the qualitative and quantitative constraints specified in

the planning mission?

All of the users answered that their itinerary fulfilled most or all of the require-

ments they had specified. Some users noted specific activities that they did not like,

such as one who commented “I just happen to be afraid of bungee jumping because

it seems so unsafe, but a similar activity would be fun” and another who commented

“I am under age so the wine thing would not be great for me but everything else
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Figure 3.10: Histogram of activity ratings

sounds great.” Another user complained about too many activities: “There was far

far far too much packed into a single day, but the ideas were all totally interesting.”

Yet another user felt they were visiting too many parts of a city in one day: “For the

most part, it was a good mix of things to do. I was not expecting to travel so much

uptown/downtown in one day though.”

These problems can be explained in part by the fact that some constraints, such

as the notion that an itinerary shouldn’t be too packed, are assumed or missed and

therefore not explicitly stated by the users. One potential solution is for requesters

to evaluate the itineraries as they are being created and add the missing constraints

to the planning mission. In fact, as a preliminary test, we took two users’ feedback

and entered them as todo items (i.e., “Let’s just stay midtown and remove downtown

activities,” “The harbor island suggestions are great but one island would be enough.

Please adjust time durations accordingly so the day is not so packed.”). We observe

that after just a few HITs, workers have already addressed the issue by removing

o↵ending activities, reordering activities (so that meals occur at reasonably hours),
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and adding additional activities (replacing a concert downtown with a Broadway show

in midtown).

3. Are the itineraries feasible, useful, and executable in real-life settings?

We asked users if they would or did use the itinerary in real-life. All users expressed

that they would use the itinerary as is, some version of the itinerary, or selected ideas

from the itinerary. When asked “If Mobi were made available for general use, how

likely would you want to use such a tool again for recruiting the crowd to help you

plan a trip?”, 7 out of 10 users answered likely or very likely, 2 answered neutral and

only 1 answered unlikely.

Three users actually followed the itinerary or used the ideas in the itinerary in

their real-life trips. One user reported that “having other people involved in the idea-

creation process was extremely helpful. It sparked all sorts of ideas that I kept in the

back of my head throughout the weekend.” Another user remarked that his “trip was

mostly in the plan,” although his restaurant plans changed during the trip.

We found a dichotomy of users: those who are interested in obtaining a fully-

specified itinerary and those who are interested in a loose itinerary that contains an

unordered set of suggested activities that leaves room for exploration. A possible

solution is to allow requesters to choose between a fully specified or loose itinerary,

which in turn translate into constraints that specify the maximum number of activities

in the itinerary, the amount of bu↵er time between activities, and the extent to which

activities need to be ordered.

One of the most frequently mentioned benefits of Mobi is that both the idea

generation and the planning are fully automated, thereby “integrating all the factors
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one would consider in planning an itinerary,” yet making “the time spent creating the

plan minimal.” Most users (7 out of 10) reported that they were comfortable with

an anonymous crowd planning their trip. Furthermore, results show that requesters

mostly left the planning up to the crowd. In particular, 3 out of 10 users reported that

they never or rarely checked on the progress of the itinerary, 5 did so occasionally,

and only 2 did so frequently. Likewise, 7 out of 10 users said that they never went

back to modify the mission details or add notes. As one user noted: “the process

seemed to work smoothly without my intervention.”

3.5 Discussion

Having demonstrated the e↵ectiveness of Mobi for helping the crowd to resolve

qualitative and quantitative constraints in the itinerary planning setting, we now

revisit the elements of Mobi’s design and discuss how these elements may in general

inform the design of systems that facilitate a crowd to tackle problems involving

global constraints.

Keeping the crowd, the solution, and the context together

Compared to the design of most other crowdsourcing systems for tackling complex

tasks, Mobi is distinguished in its use of a single structured interface through which

the crowd is exposed to the current solution and the global problem-solving context.

This unified view provides a shared context that allows contributors to coordinate and

communicate more e↵ectively with one another than approaches where participants

work on di↵erent subtasks in separate contexts.
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Interactions are less controlled, but still structured

Mobi allows workers to choose how they want to contribute to the task. In our

studies, we found that workers generate diverse sets of ideas, and make various types

of contributions while problem solving. This freedom is particularly important for

resolving global constraints as we do not know a priori the specific contributions that

are needed. Rather, contributions are context dependent. While interactions are less

controlled this way, they are still highly structured. The crowd selects from a well-

specified set of actions, todo items guide the crowd towards useful actions, and the

system provides real-time feedback on the e↵ects of actions.

A language for human-computer communication

In the background, Mobi’s automation computes routes and times, checks for

violated constraints, and generates todo items. Mobi understands, for example, when

all of the quantitative constraints are satisfied. This ability enables Mobi to take

actions such as prompting the crowd for future revisions and asking the crowd or

requester to check for potential problems. Mobi can do these things without knowing

what the constraints mean, because the inputs that it seeks from the crowd include

the categories of suggested activities. This information is su�cient for the system to

check for violated constraints and therefore assist in the planning process.

A fluid way to refine goals

With complex problems, requirements can change over time as ideas and partial

solutions stream in. In Mobi, a requester can add or revise requirements, write notes,
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or even directly alter the plan during the planning process. The crowd can react

to such changes just as they react to the current solution at any other point in the

planning process. The iterative nature of the task and the ease with which workers

can grasp the current solution and access alternative suggestions make it easy for the

crowd to see and respond to such changes.

3.6 Summary and Research Directions

To date, many human computation systems have relied on the assumption that

problems can be solved in an algorithmic manner, using explicit procedures that out-

line the operations that need to be done and how they are ordered. In this chapter, we

argue for an alternative crowdware approach, in which workers contribute to solving

a complex problem in a less controlled environment that allows them to view and

build upon each other’s ideas and to contribute as they wish, while system-generated

alerts and advice guide them towards a solution.

Using itinerary planning as a case study, we introduce Mobi, a system that draws

on groupware ideas and uses explicit processes such as the automatic generation of

todo items to generate itineraries that satisfy complex, interdependent constraints.

Our results show that constraints are resolved e�ciently using this design, and that

end user found that the generated itineraries satisfied their stated quantitative and

qualitative constraints.

On Mobi, we are interested in studying ways to handle the implied constraints

that are assumed or missed. The challenge is to make implied constraints visible so

they can be tackled like other constraints; possible approaches include having the
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crowd identify them, using automated procedures to detect and learn about such

constraints, and asking requesters to provide feedback. In a related direction, we can

also attempt to encapsulate qualitative constraints in todo items, which would allow

workers to see everything that needs work in one place. In addition, we envision rich

opportunities to integrate di↵erent types of automation into Mobi—to detect fail-

ures, handle uncertainties, incorporate richer forms of user preferences, and combine

automated and human planners in a synergistic way.

On crowdware more generally, we are interested in understanding how to focus the

crowd’s attention on not only resolving global constraints, but on taking actions that

are most likely to lead to high quality solutions. This may involve generalized uses of

todo items to focus the crowd’s attention and e↵ort on where they are mostly likely to

matter, for example by taking into account the potential value of possible refinements.

Such value judgments may be guided by heuristic evaluations made by the requester,

the crowd, or the automated system. Focusing the crowd on solution quality may also

involve taking steps to ensure that a solution is coherent and consistent, and is not

su↵ering from issues often associated with “design by committee.” Steps may include

explicitly promoting consistency checks, engaging the crowd in making high-level

judgments about the coherence of the solution, and having the crowd and automated

system make decisions about when to seek feedback from the requester.

In addition to these directions, there are opportunities to explore novel com-

binations of crowdware and workflow approaches that can enhance the ability of

participants to e↵ectively contribute to solving complex problems that are hard to

decompose. We elaborate on this direction in Chapter 9.



Chapter 4

Harnessing Crowd Abilities:

Control and Synthesis

Human computation algorithms tend to define an explicit sequence of steps in

which individuals in the crowd are recruited to complete subroutines within this pre-

defined process. But in the previous chapter we introduced Mobi, a system that allows

the crowd to shape the problem-solving process directly by contributing opportunis-

tically while being guided by system-generated alerts. In this chapter, we develop a

broader perspective on how the crowd can contribute to problem-solving e↵orts, by

considering opportunities for the crowd to guide the control flow of an algorithm and

generate plans that define the problem-solving process.

From a computational perspective, we envision that individuals in a crowd can

play diverse roles in an organized problem-solving process. People can not only serve

as data oracles at the endpoints of computation, but also as modules for decompos-

ing problems, controlling the algorithmic progression, and even generating plans and

88
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synthesizing programs for solving problems. From an organizational perspective, in-

dividuals in the crowd may take on roles beyond “doing the work”—including defining

and communicating subgoals, evaluating the value of current solutions, and routing

tasks to appropriate individuals. The crowd may also be made aware of time or other

resource constraints, and be asked to make tradeo↵s between further deliberation

versus taking time-critical actions.

In exploring new ways in which the crowd can contribute to problem solving, we

aim to derive principles and methods for crowdsourcing general computation, that can

enable general problem solving via human computation systems. By drawing on the

general intelligence of the crowd, we can enable the crowd to tackle more creative,

open-ended tasks, while also bringing about more e↵ective and e�cient problem-

solving processes. On the one hand, by contributing diverse knowledge, expertise,

and sensing capabilities, the crowd can potentially tackle complex problems that are

di�cult for individuals. On the other hand, as in our study of human computation

algorithms and crowdware, individuals in the crowd may only be briefly involved and

may contribute noisy solutions. Extending the crowd’s problem-solving abilities to

control, synthesis, and beyond will likewise have to account for limitations of the

crowd, and provide mechanisms to support e↵ective coordination.

Section 4.1 reviews related work in crowdsourcing and artificial intelligence. Sec-

tion 4.2 describes various ways the crowd may guide the control flow of an algorithm.

Focusing on the 8-puzzle as an illustrative example, we show how by passing context

a crowd can solve di�cult problem instances that the crowd struggles on when not

passing context. Section 4.3 explores using the crowd as a general purpose planner.
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We present CrowdPlan, a system that takes a high-level problem in natural language

as input and recruits a crowd to break down the problem into a simple plan, resulting

in a novel form of interaction for Web search. Section 4.4 closes the chapter with a

summary of results and discussion of research directions.

4.1 Related Work

In addition to CrowdPlan and Mobi, a number of recent human computation

systems have started to take advantage of the crowd’s ability to plan and execute

solutions. Boujarwah et al. [8] introduced a system for crowdsourcing social scripts

that consist of steps, obstacles, and solutions to complex social scenarios, which are

used to support social problem-solving skills for individuals with autism. Kokkalis et

al. [49] introduced TaskGenies, a crowd-powered task management system that pro-

vides action plans to help and encourage users to complete tasks. Kulkarni et al. [50]

introduced Turkomatic, a system that involves the crowd in concurrently planning

and executing plans for solving complex tasks. To synthesize a plan, Turkomatic

involves the crowd in making control decisions, by deciding whether to solve prob-

lems directly or to decompose them further. To ensure that worker-generated plans

are feasible, Turkomatic also allows requesters to intervene and guide the planning

and execution, suggesting interactions in which both the crowd and the requester

contribute to general problem solving.

Analogous to our study of general problem solving with crowds, the field of ar-

tificial intelligence also concerns itself with general problem solving, but from the

perspective of machine agents. Studies of metareasoning [36, 80] aim to design agents
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that can not only reason about specific problems, but also make decisions about what

to reason about, how long to deliberate, and when to take actions. Adopting the view

that we only have bounded time and computational resources available, metareason-

ing procedures aim to make more e�cient use of resources for deliberation and action

through higher-level reasoning about the problem-solving process [37, 9]. Principles

and techniques for metareasoning may provide an interesting perspective for the de-

sign of metareasoning procedures for crowds, and may also be used more directly to

automatically control human computation processes or synthesize workflows. This

latter perspective is explored in more detail in Chapter 8.

4.2 Crowd as Controllers

In the process of problem solving, humans may have useful intuitions about how

best to proceed based on the current solution context. Below we describe a few

promising directions for engaging the crowd to guide the control flow of an algorithm:

• Decompose versus solve

In Chapter 2, we introduced divide-and-conquer as a useful design pattern for

decomposing a problem into subproblems, and for composing solutions of sub-

problems into a solution. For open-ended tasks in which the crowd performs the

decomposition, the di�culty of resulting subtasks may be hard to determine a

priori. Instead of predetermining how much a problem should be decomposed

before requesting a solution to a subproblem, it may be helpful to give the crowd

the option to either solve a problem completely, or to decompose the problem
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for the crowd to then solve or decompose further. The crowd’s decisions would

make implicit tradeo↵s between the costs of di↵erent stages of computation, po-

tentially enabling more e�cient problem solving while also allowing individuals

to make decisions based on how much e↵ort they are willing and able to con-

tribute. For example, Zhang et al. [105] introduced a system called TurkSort,

which crowdsourced tasks from a quicksort algorithm to Mechanical Turk work-

ers who contributed by finding pivots, partitioning, or sorting, at their choosing.

By giving workers the choice of sorting the current list or decomposing the list

further, the base case of the recursion was defined implicitly by workers’ deci-

sions. As another example, when synthesizing a workflow for solving a problem,

Turkomatic [50] workers were asked to judge whether the current price for a task

is fair, and if not to decompose it into simpler tasks, with this process repeated

recursively.

• Transmitting solution context and subgoals

As part of problem solving, some computational methods track and pass param-

eters on local and global states and on measures of progress. Human compu-

tation may face similar challenges with sharing context among workers about

problem-solving strategy and state, particularly when the computation is di-

vided into small pieces performed by many workers. Unless a decomposition is

defined or context about what work remains is shared, it may be hard for people

to contribute e↵ectively. For example, in the Mobi experiment in Section 3.3,

we showed that the absence of todo items significantly increased the amount of

time taken to resolve constraints. While we can sometimes rely on the system to
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provide the necessary context, we can also engage the crowd in sharing solution

context and subgoals. Such actions may enable more e�cient problem solving,

by helping subsequent contributors to make better decisions and allowing good

problem-solving strategies to be passed forward.

• Controlling search processes

Tasks like itinerary planning can be viewed as search problems, in which the

crowd is iterating on the current itinerary in search for an e↵ective plan from a

large space of possible plans. In this and other search problems, the ability to

guide the search process towards good neighborhoods and to backtrack when

necessary are important components of an e↵ective search method. With a

human computation approach to these problems, people can assess the current

solution state, decide which neighborhood(s) to search in, and backtrack when

further improvements from the current state are unlikely.

4.2.1 Case Study: 8-Puzzle

To illustrate how engaging the crowd in control can lead to more e↵ective problem

solving, we present a study of the 8-puzzle. In the 8-puzzle, a 3x3 board holds eight

tiles numbered from 1 through 8. The goal is to slide tiles on the board until the

numbers on the tiles are in numerical order. To understand how workers may deal

with limited problem-solving context, we allow each worker to make just one move.

This simple setting serves as a model for more complex problems we may wish to

crowdsource, like writing an article or a piece of code, where a crowd contributes

iteratively with each worker expected to make only a small contribution.
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In the 8-puzzle example, a worker needs to know enough about what they should

work on to make e↵ective progress on a subgoal at hand, and know how the subgoal

fits within the overall aim. Given limited context, workers may get stuck on di�cult

board positions. Thrashing can occur with successive contributions revisiting the

same states. One can imagine allowing workers to discuss strategies and pass the

entire discussion from worker to worker, but if the cost of understanding the context

dominates the time that a worker is willing to contribute, this kind of collaboration

may become costly, ine↵ective, or even impossible.

We seek to understand whether it is possible to pass along a small amount of

context from worker to worker—with no formal agreements on subgoals—while still

making progress towards the goal. To do this, we designed a task in which each worker

is provided with the last person’s move and their short explanation for making that

move. The worker is asked to decide on the next move, and similarly to provide a

short explanation for their move. Figure 4.1 shows the workers’ task interface.

In an experiment, we compared the performance of the crowd on this task with

a version of the task in which workers were only provided with the current board

position and not the last worker’s move and explanation. Instructions for the two

settings are otherwise identical. We recruited workers on Mechanical Turk (Turkers),

who were each paid 5 cents per move. To prevent the same worker from making

consecutive moves and dominating the problem solving, we only allowed a worker to

return to a particular puzzle after five moves have been made by other workers.

We consider 20 problem instances, divided evenly into “medium” and “hard” dif-

ficulty, as determined by the minimum number of steps required to reach the goal
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Figure 4.1: Task interface for an iterative step in the 8-puzzle game, where each
Turker is shown the last Turker’s move and explanation for that move. Here the
previous Turker moved the 7 tile and recommended the next sequence of moves.

configuration from the initial board configuration. Medium instances required be-

tween 12 to 16 steps, while hard instances required between 22 to 26 steps. We

allowed each instance to run until the puzzle was solved or for at most 100 steps.

Our results show that in the condition with context passing, all puzzles were

solved before 100 steps were reached. In the condition without context passing, 9 of

the 10 puzzles were solved for medium di�culty puzzles, and only 5 of the 10 puzzles

were solved for hard di�culty puzzles. In addition to completing more puzzles, con-
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text passing also reduced the number of iterations Turkers took to complete puzzles.

Considering all instances, a Wilcoxon test shows a significant di↵erence (z = -2.61,

p < 0.01) between the number of steps before a puzzle is solved (or stopped after 100

steps) in the context passing condition (µ = 38.6) and the no context passing baseline

(µ = 55.9).

In looking through the problem-solving process, it is apparent that communication

can be very useful in some instances. See Figure 4.1, where a previous Turker iden-

tified a path forward and noted it for the next Turker. Had he not contributed that

action and highlighted the path, the problem would likely have been more di�cult to

solve and more steps would have been taken. The ability to pass on context gives the

next player a better idea of how to proceed, raising the probability that progress will

be made toward the solution. We also observe that Turkers sometimes passed on the

advice from previous players that they deemed useful, while at other times suggested

alternative moves and directions when they found suggestions unhelpful.

4.3 Towards Human Program Synthesis

As the crowd engages in algorithmic control, humans are no longer limited to

providing outputs for predefined modules, but can fill in parameters of the algorithm

itself and make evaluative decisions to define the best path through a solution space.

An interesting question is whether a crowd can go beyond algorithm control towards

the notion of synthesis. In machine computation, program synthesis considers the use

of appropriate design tactics to systematically derive a program based on a problem

specification. For example, the synthesis of a divide-and-conquer algorithm [86] may
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involve the derivation of a tree of specifications, where leaves in the tree represent

subproblems for which solutions can be readily provided, and instructions for recom-

position are also derived. Taking the analogy to the crowd, we can seek to enlist a

crowd in both program synthesis and program execution. By considering problems

that the crowd is well-suited for, we can engage the crowd to construct an overall

plan for the problem-solving process and to execute the plan. Such plans can in-

clude decomposing a problem into subproblems, solving the subproblems, and then

recomposing solutions to subproblems into a solution.

4.3.1 Case Study: Collaborative Planning for Web Search

As a first step towards program synthesis with a crowd, we consider an application

to Web search. Web search is a di�cult AI problem. To date, research on Web

search has focused primarily on improving the relevance of search results to a query.

However, people use the Web not only to retrieve relevant information, but to solve

short-term or long-term problems that arise in their everyday lives. While current

search engines are able to provide relevant information in response to well-specified

queries, the heavy burden of actually solving a problem (e.g., figuring out what steps

to take, how to accomplish these steps, and what queries to enter to find helpful

resources) is placed entirely on the user. For a user with a mission in mind, e.g.,

“I want to get out more,” or “I need to manage my inbox better,” a typical search

scenario today would involve the user digging through a set of blogs, opinion or

“how-to” articles on the Web in order to identify important subproblems, and then

submitting multiple search queries to find resources for addressing each subproblem.



Chapter 4: Harnessing Crowd Abilities: Control and Synthesis 98

We envision the next generation of search engines to more closely resemble inter-

active planning systems. They would be able to take in high-level mission statements

(“I want to . . .”) as input and directly generate plans to achieve these missions. For

example, a simple plan may detail specific steps to take, provide explanations for why

these steps are important, and return relevant resources for accomplishing each step.

A more complex plan may even include conditional branches and recourse decisions,

for example to handle situations when a step does not work as intended.

Unfortunately, the gap between the capabilities of current search engines and the

envisioned next-generation search engines is huge. A system would have to not only

understand natural language missions, but also be equipped with large amounts of

common-sense and real-world knowledge about solving problems of interest.

To fill this gap, we introduce CrowdPlan, a human computation algorithm that

takes a high-level mission as input and returns a simple plan that captures the impor-

tant aspects of the user’s problem as output. CrowdPlan leverages human intelligence

to decompose a mission into low-level goals, which are then mapped into queries and

passed onto existing search engines.1 The output is a simple plan consisting of a set

of goals for tackling di↵erent aspects of the mission, along with search results tailored

to each goal. For example, the high-level mission “I want to live a more healthy life”

can be decomposed into a variety of goals, including “stop smoking,” “eat healthier

foods,” “exercise,” “drink less alcohol,” “spend time with family,” and “sleep more.”

Each of these goals, in turn, can be supported by one or more search queries. For

1We adopt the definitions in Jones and Klinkner [42], and define a goal as “an atomic information
need, resulting in one or more queries” and a mission as “a set of related information needs, resulting
in one or more goals.”
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example, “exercise” can be supported by queries such as “running shoes,” “best bike

routes,” and “personal trainer.”

CrowdPlan

The CrowdPlan algorithm takes a high-level user mission m and generates a simple

plan Pm for accomplishing the mission. A simple plan consists of a set of tuples

(gi,Ri), where gi is a goal relevant to the mission and Ri is a set of resources,

e.g., search results, associated with the goal gi. Figure 4.2 depicts the CrowdPlan

algorithm, showing the human-driven and machine-driven operations in grey and

white boxes respectively. These operations include:

• decompose: given a high-level mission m and a set of previous goals {g1, . . . gk},

this operation generates an additional goal gk+1 that is relevant for the mission,

but di↵erent from already stated goals.

• rewrite: given a high-level mission m and a goal gi, this operation generates a

search query qi for finding web resources that help to achieve the goal gi.

• assess: given a high-level mission m and a set of tuples (gi, qi), i = 1 . . . n, this

operation returns an assessment vector ~a = {0, 1}n where bit i indicates whether

the search query qi is likely to return good search results towards accomplishing

goal gi.

• filter: given assessment vectors ~a1, . . . ,~aL provided by L workers, this operation

aggregates the votes and returns a set of the highest quality search queries to

retain.
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Figure 4.2: CrowdPlan algorithm

• search: given a retained search query qj, this operation retrieves a set of search

results Rj associated with the query.

• assemble: this operation returns a simple plan that consists of a set of tuples

(gj,Rj) to present to the user. Note that this plan can be presented to the user

using di↵erent forms of visualization.
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Each of the human-driven operations (shown in grey in Figure 4.2) – decompose,

rewrite, and assess – is associated with a small task that is distributed to Turkers.2

The decompose and rewrite operations are combined into a single HIT. A worker is

given a high-level mission and a set of existing goals, and is paid $0.10 to first generate

an additional goal relevant to the mission and then rewrite the goal as a search query.

Combining these two consecutive operations into the same HIT simplifies the problem

by allowing a Turker to work o↵ his or her own goal when formulating a query (instead

of having to interpret and rewrite someone else’s).3 For each mission, we obtain up

to 10 goal-query pairs. The assess operation is associated with a HIT that pays a

worker $0.10 to cross out any search queries that are unlikely to take a step towards

accomplishing the mission and discuss how useful the remaining queries are. Each

search query is clickable and links directly to a webpage containing the search results

returned by Google for that query.

The machine-driven operations include filter, search and assemble. The filter op-

eration eliminates potentially problematic search queries as follows. Each query is

assigned a removal score sq = nq + vnq � vpq, where nq is the number of people who

gave a negative assessment for that query, vnq is the number of people who reviewed

the search query (by clicking on the link to bring up the search results) before giving a

2We envision that the CrowdPlan algorithm can eventually be embedded as part of collaborative
planning websites that have access to tens of thousands of human volunteers; but for now, we use
Mechanical Turk as a platform to recruit human subjects for our experiments.

3Note that in the PlateMate algorithm (Section 2.3.1), we purposely split up the Identify step
into two tasks, one for describing food items and another for matching items to a nutrition database.
Since these two tasks are conceptually di↵erent and can be performed by di↵erent workers, keeping
them separate simplifies the problem solving. In contrast, combining the decompose and rewrite
operations in CrowdPlan allows an individual expressing a goal to continue on that thought to suggest
a query, which is natural and simpler than having people interpret goals that others propose.
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negative assessment for that query, and vpq is the number of people who reviewed the

search query before giving a positive assessment for the query. By giving more weight

to workers who have actually reviewed the search query carefully before providing an

assessment, this scoring scheme incorporates not only workers’ explicit assessments

but also implicit measures of their confidence. We request five assess HITs per mis-

sion and filter out a query if its score is � 3, which represents a confidence-weighted

majority decision. The remaining queries are ranked by their scores in ascending

order.

The search operation uses the Google Search API to retrieve eight search results

for each query. The assemble operation then puts together a simple plan, consisting

of goals and search results, to display to the user. This step can either collect search

results into a list to be displayed, as they would be in a standard search engine,

or provide a visualizer for navigating the di↵erent results for each goal (e.g., see

Figure 4.4(b) on page 106).

The design choices we made in creating this particular algorithm were influenced

heavily by our observations about how workers responded to the task. For exam-

ple, the decompose operation could have followed a top-down approach. Workers

would first provide a coarse representation of the mission (e.g., “I want to throw a

Thanksgiving dinner party”) by naming a few goals that encompass the entire solution

(e.g., “plan activities,” “invite people,” and “cook dinner”), then provide successively

finer-grained subgoals to accomplish each of the goals. However, in our pilot study,

we found that Turkers did not operate at that level of abstraction and often provided

goals that did not require further decomposition. Therefore, we made the decompose
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New Year’s Resolutions / Life Goals
1 cook at home more often
2 manage my inbox better
3 become healthier by working out more
4 run a marathon
5 find an academic job in a good research university in the US
6 become a competitive amateur triathlete.
7 be a good (new) mother
8 start song writing
9 get into petroleum engineering/natural gas field

10 get outside more
11 take a trip to the space
12 be happier
13 lose 80 pounds
14 keep in better touch with high school friends

Concrete Tasks
1 choose a wedding DJ
2 book a great honeymoon for August 7-14
3 figure out where to go on a week-long sailing vacation with nine friends
4 buy a new pair of dress pants
5 survive the Jan-Feb crazy conference deadlines
6 start exercising and follow an appropriate training program

(to become a competitive amateur triathlete)
7 finish the bathroom and laundry room in our basement
8 see if Honda will fix my seatbelt for free
9 kick my friend in the arse

10 find a place to live in Toronto
11 finish Need For Speed Hot Pursuit game
12 shower daily
13 go to the market and buy groceries
14 change address on my car insurance policy

Figure 4.3: Mission statements submitted by subjects

operation more akin to an iterative, brainstorming task in which workers are asked

to come up with concrete goals towards accomplishing the mission.

The algorithm is implemented in Javascript and uses TurKit [60] to interface with

Mechanical Turk.



Chapter 4: Harnessing Crowd Abilities: Control and Synthesis 104

Evaluation

In order to evaluate how well our system can answer high-level queries, we re-

cruited a convenient sample of 14 subjects to each give us two mission statements.

One mission statement should be in the form of a new year resolution or life goal,

and the other should be a concrete task that they want to accomplish. Subjects were

mostly recent college graduates who did not major in computer science, and were told

that we were working on an information retrieval system that can help answer high-

level search queries. They were told that their missions may be shown publicly, but

did not know that human computation was involved. Figure 4.3 shows the high-level

missions we received, which range from very concrete, actionable tasks (e.g., “change

address on my car insurance policy”) to less specific, long-term aspirations (e.g., “be

happier”).

One of the benefits of the simple plans generated by CrowdPlan is that they

provide an explanation (in the form of goals) for the search results returned to the

user. To study the e↵ect of explanations, for each mission, we asked 10 Turkers to rate

the relevance of the CrowdPlan search results on a 4-point scale (0=“not helpful”,

3=“helpful”). Half of the Turkers were given explanations and the other half were

not. Workers were paid $0.20 per HIT.

Results show that when given explanations, workers judged the search results to

be more relevant. We observe a significant di↵erence (t(27) = 2.96, p < 0.01) in the

average relevance score between the given explanations (µ = 1.93, � = 0.43) and

the no explanations (µ = 1.75, � = 0.41) conditions. We also observe a significant

di↵erence (t(27) = 3.03, p < 0.01) in the discounted cumulative gain [41] between the
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given explanations (µ = 9.7, � = 2.25) and the no explanations (µ = 8.72, � = 2.24)

conditions.

In looking through the search results, we find that without explanations, the steps

for solving a particular problem sometimes appear tangential or even irrelevant. For

example, one of the suggested queries for spending time outdoors is “ALTA,” which

refers to a non-profit tennis organization. The goal that is associated with this query

is actually “take up tennis.” Without this explanation, it is di�cult for the user

to know why the search result for ALTA would be relevant to his or her high-level

mission.

In light of this observation, we created a list-view visualization of the simple

plan (see Figure 4.4(b)), which displays the decomposed goals for the mission, the

search query associated with each goal, and a short list of five search results. To

evaluate the e↵ectiveness of this interface, we asked our 14 subjects to spend three

minutes using a standard search engine (Figure 4.4(a)) and then a simple plan in

list view (Figure 4.4(b)) to find web resources to help them achieve their missions.

This ordering allowed users to search on their own first, without having seen (and be

biased by), the goals in simple plans. We then asked subjects to compare the two

interfaces in terms of how well each interface helped them accomplish their missions.4

We found a split in opinion: seven subjects preferred the simple plan interface over

the standard interface, and the other seven preferred the standard interface over the

simple plan interface. Subjects who preferred the standard interface commented that

it was more “straightforward” to use and generated more “one-stop” search results

4A reader interested in additional user studies on CrowdPlan can refer to Law and Zhang [53].
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(a) Standard search

(b) Simple plan in list view for the mission “start song writing”

Figure 4.4: Standard Search versus Simple Plan

(i.e., general purpose websites with links to resources), while simple plans generated

some search results that were irrelevant to what they were looking for specifically.

Here are some comments:

– I like the idea behind simple plans, but I find it more straightforward to use a

regular search tool.
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– “The standard search tool was better because I knew enough about what I

wanted that I could type in more specific searches.”

– “I think many good websites will give me a one-stop shop for marathon in-

formation. The simple plan was fairly comprehensive although perhaps too

specific.”

In contrast, subjects who preferred simple plans over standard search results had

the following comments:

– “The simple plan actually organized my search for me, into discrete and doable

steps. The standard search tool left me to do all the creative parsing and

generation of search terms. I felt that the simple plan gave me a roadmap to

the entire space by my mentioning something in that space.”

– “The simple plan gave me some good ideas for concrete steps to take that would

help me accomplish my goal. Therefore, the search queries were more focused,

and the overall process more e↵ective.”

– “The simple plan gave me a birds-eye view of useful search queries from which to

pick. the recommendations were really useful. My reaction to some of them was

‘oh, I didn’t think of that. good point!’ The simple plan solves to some degree

the problem of unknown unknown, which is that in order to find something you

need to know you need it. This problem makes the standard interface of limited

use, because you need to know a priori what you have to do in order to find

instructions on how to do it. But the simple plan, being broader in its results,

suggests things you didn’t think of.”
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These comments are revealing for several reasons. First, they suggest that not

all missions require decomposition. For some missions, a standard search engine may

already be quite good at retrieving relevant results for well-specified search queries

that rephrase a mission statement. Second, they suggest that simple plans can be

e↵ective in three ways—making users aware of aspects of the mission they had not

originally thought of, providing an organized roadmap of relevant goals, and suggest-

ing concrete, actionable steps towards accomplishing the mission.

4.4 Discussion

The 8-puzzle experiment and the CrowdPlan system show that having crowds

guide the problem-solving process and synthesize plans can lead to e↵ective solutions

and novel applications. In constructing interfaces, workflows, and communication

mechanisms that involve the crowd in more general problem solving, we remain sensi-

tive to the concern that individuals in the crowd may only make small contributions

and that some contributions may be noisy. Understanding how to design e↵ective pat-

terns of interactions for control and synthesis is an important area for future research,

and should draw on our understanding of the crowd’s ability to perform control and

synthesis related actions such as suggesting subgoals and collating ideas.

We find that in both worker-worker and worker-requester interactions, being able

to e↵ectively share and present problem-solving context is crucial. In the 8-puzzle, we

observed that short messages about problem-solving strategies were easy to process

and of high value when good paths were identified. We saw examples of e↵ective

reuse when messages were edited and passed on, and also examples in which workers
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identified new strategies when they found suggestions unhelpful. For workers to make

such evaluative decisions and act e↵ectively, the problem-solving context provided by

workers and the system needs to be easily understandable.

In CrowdPlan, we found that search results were judged to be significantly more

relevant when presented alongside the goals for which they were generated. As Crowd-

Plan tends to return search results covering a diverse set of issues related to the

mission, a potential drawback of the increased diversity is decreased comprehensibil-

ity. This suggests that adding additional steps to the CrowdPlan algorithm aimed

at improving clarity may improve the usability of the system. From our subjects, we

also learned that CrowdPlan sometimes missed out on useful context that was known

to the requester but not shared with the workers. As an example, for the mission

“I want to get outside more,” CrowdPlan returned search results for taking up gar-

dening, birdwatching, taking daily walks, geocaching, and adopting a dog. But when

presented with these results, the subject commented that he was looking for “websites

geared toward more active outdoor activities in natural surroundings.” This suggests

that sharing additional context (e.g., allowing for richer missions as in Mobi), or al-

lowing for more back-and-forth between the requester and the workers, may enable

CrowdPlan and other collaborative planning systems to better tailor solutions to each

user.

As we move toward crowdsourcing general computation, the notion of expertise

becomes more prominent as the roles people play become more diverse and specialized.

The ability to identify expertise and reward individuals for providing meta-expertise

(e.g., controlling the algorithmic process, routing to others who are experts), may
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allow us to solve problems that we otherwise would not be able to solve with a crowd.

The next chapter introduces methods for task routing, that aim to harness the ability

of people to both contribute to a solution and guide the problem-solving process by

routing tasks to others who they believe can e↵ectively solve and route.



Chapter 5

Task Routing

Engaging a crowd to tackle complex tasks relies not only on e↵ective coordina-

tion, but on recruiting individuals with relevant expertise to join the problem-solving

e↵ort. One approach for bringing expertise to tasks is to pool knowledge about peo-

ple’s competencies and preferences and assign tasks in a centralized manner. Another

approach is to rely on individuals in a system to select tasks themselves. Both ap-

proaches have flaws. In the former, a system may not know which individuals have the

required expertise. In the latter, while individuals are often able to gauge their own

expertise, they may not know which tasks best match their respective competencies.

In social networks, an individual’s knowledge extends beyond their own expertise

on tasks and topics to knowledge about the expertise of others. Members of a social

network may know who among their friends can best answer a particular question

or provide valuable opinions on a topic of discussion. Even in situations where an

individual cannot identify an expert who can best contribute to a task, they may know

people who would likely know experts. They may also be able to identify subsets of

111
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individuals who share a particular interest, among whom the requisite expertise is

likely to exist.

We are interested in principles and methods for task routing that draw on the

distributed intelligence of individuals across a social network. The idea is to harness

the ability of people to contribute to a solution and route tasks to others who they

believe can e↵ectively solve and route. Task routing provides a paradigm for problem

solving in which individuals in a crowd become engaged with tasks based on their

peers’ assessments of their expertise. On the task level, e↵ective task routing aims

to take advantage of people’s knowledge about solving problems as well as people’s

knowledge about others’ abilities to contribute. People make routing decisions in

a peer-to-peer manner, and the system rewards participants for their contributions,

both direct and indirect through routing. On the organizational level, task routing

may provide a means for bringing tasks to individuals e↵ectively, where people’s

routing decisions take into account not only an individual’s expertise on the particular

task, but also their ability to contribute as a router.

In this chapter, we focus on the special case in which the task is to obtain an

accurate probability assessment about an uncertain event. The task is passed among

individuals in a network, and each participant can update the posterior probability

and forward the task to a neighbor. We introduce routing scoring rules for incentiviz-

ing contributions. Given an assumption of common knowledge about the network

structure and the amount of information held by everyone in the network, truthful

reporting of posterior probability assessments and optimal routing can be obtained

in a Perfect Bayesian Equilibrium. While this result is theoretically sound, optimal
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routing is NP-hard, which suggests that people may have di�culty computing rout-

ing decisions in practice. The common knowledge assumption is also unlikely to hold

for large social networks, where each person’s information about the competencies of

others is limited to a local neighborhood (e.g., friends, and perhaps friends of friends).

To address these concerns, we consider designing incentive schemes for task routing

problems where knowledge about the network structure and others’ abilities is limited

to an individual’s local neighborhood. The main contribution is the introduction of a

family of local routing rules, that isolate simple routing decisions in equilibrium under

local knowledge about others’ expertise and take advantage of such local knowledge

to promote e↵ective routing decisions. We achieve this by incentivizing participants

to make routing decisions based on short, locally optimal paths that can be com-

puted easily using local knowledge. In essence, we design incentive schemes that

explicitly enable equilibrium behavior for which the inference required of participants

is tractable.1

We provide a full characterization of local routing rules, and show that they are

the only routing scoring rules that induce truthful equilibria in which best responses

are invariant to knowledge outside of a local neighborhood. Simulation results demon-

strate that equilibrium routing strategies based on local routing rules lead to e↵ective

information aggregation.

1This is analogous to the role of strategy-proofness in simplifying strategic problems facing agents
in mechanism design [71].
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5.1 Related Work

Methods for automated and manual routing of tasks have been employed in

real world online networks. For example, question-answering services such as Aard-

vark [31] allow a user to ask questions in natural language, which the system interprets

and automatically routes to appropriate individuals in the user’s social graph based

on an assessment of who is best able and willing to provide an answer. Aardvark

also allows for peer routing; a user can manually route questions to others, which en-

ables the system to reach users outside its fund of knowledge about people and their

expertise. Aardvark does not explicitly reward contributions, and instead relies on

people’s goodwill and social connections. In studying incentive mechanisms for task

routing, we are exploring how properly rewarding participants for their contributions

can help promote contributions to problem solving and routing more broadly.

Leveraging individuals’ abilities to both solve and spread the word about the task

was a key component of the winning team’s strategy in the DARPA Red Balloon

Challenge [73]. The task was to find large helium-filled balloons placed in ten undis-

closed locations across the continental United States. The winning team introduced

an incentive mechanism that uses a limited budget to incentivize individuals to look

for balloons and to let their friends know about the task.2 This mechanism aims to

induce participants to broadcast the task to everyone they know, and is well-suited

for one-o↵, high-stake scenarios such as search and rescue operations for which the

benefit of reaching a large audience significantly outweighs the cost of people’s atten-

2The interested reader may refer to Emek et al. [26], Douceur and Moscibroda [22], and Drucker
and Fleischer [24] for related theoretical analysis, and related work on query incentive networks [48,
4, 19] that analyze games in which players split rewards to recruit others to answer a query.
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tion. In contrast, the mechanisms in our work aim to leverage the expertise within a

network by bringing to people’s attention the tasks that they can best contribute to.

These mechanisms are well-suited for e�ciently processing a stream of tasks, without

overloading people with information on every task.

The problem of task routing is also related to the problem of decentralized search

on networks, in which the goal is to find a target node quickly through local routing

decisions [92, 21, 99, 47, 1]. In such work, the goal is to identify a single target node

representing a particular individual. While this di↵ers from our task routing problem,

the results still provide theoretical and experimental support for the prospect that

routing decisions with local information may have e↵ective global performance.

One can view routing scoring rules as an extension of market scoring rules [29],

which provide proper incentives for individuals participating in a prediction market

to improve probability estimates by contributing additional information. The ma-

jor di↵erence between task routing and a prediction market is in who takes on the

burden of identifying expertise. While a prediction market places the responsibility

on individuals to find prediction tasks for which they have useful information, task

routing incentivizes individuals to notify others with appropriate expertise who may

otherwise be unaware of the task.

5.2 Task Routing for Prediction Tasks

To formalize the setting, consider a single prediction task T , for which we would

like to gather an accurate probability assessment of the true state ! 2 ⌦. The

probability assessment task can be for any state of the world that will be revealed
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later in time, e.g., “Will it snow next Tuesday in Boston?” or “Will the Boston

Celtics win the NBA championship this year?” We consider discrete state spaces,

and assume without loss of generality a binary state space, such that ⌦ = {Y, N}.3

Consider a routing game with n players, where each player is represented by a node

on the routing graph G = (V, E). Edges in the graph may be directed or undirected,

and indicate whether a particular player can route the task to another player. The

task is initially assigned to a source player named player 1, with later players on a

routing path numbered sequentially. The source player may be determined by the

system or by the individual posting the task. The source player is asked to update

the probability of state Y from the prior probability p0 to some probability p1, and

in addition, to route the task to a neighbor. The selected neighbor is then asked to

update the assessment p1 to p2 and route the task to a neighbor, and so on, until the

game ends after a prespecified number of rounds R, when a final assessment must

be made. We assume players receiving the task are provided with a list of people

who have participated so far, as well as the number of rounds that remain. Players

are allowed to route to players who have participated thus far, but know that past

participants may not have any additional information to contribute and may only

be able to help with routing. Our goal is to arrive at an accurate assessment after

R rounds by designing incentive mechanisms that will induce each player to update

probability assessments truthfully and route the task to other players that can best

refine the prediction.

3For an event with more than two states, the task is to gather a probability vector with a
likelihood assigned to each state. We can handle such events by using multi-class versions of proper
scoring rules, and all of our results extend straightforwardly.
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We model players’ knowledge about the task as follows: the true state of the world

is drawn according to the probability distribution Pr(Y ) = p0 and Pr(N) = 1 � p0,

which is common knowledge to all players. While no player observes the true state

directly, each player may receive additional information about the true state. To

model this state of a↵airs, each player privately observes the outcome of some number

of coin flips drawn according to a commonly known distribution that depends on the

true state. Di↵erent players may observe di↵erent numbers of coin flips, where players

observing more coin flips are a priori more knowledgeable.

Formally, we represent player i’s signal ci as a random bit vector of length li,

where bit cik is a random variable over the outcome of the k-th coin flip observed by

player i. We assume the value of bits of signal are conditionally independent given

the true state, and drawn from the same distribution (known to all players) for all

players and all bits, such that Pr(cik = H|!) = Pr(cjm = H|!) for all players i, j, bits

k,m, and realization H (head). Each bit of signal is assumed to be informative, that

is, Pr(cik = H|! = Y ) 6= Pr(cik = H|! = N) for all i, k. We also assume that bits

of signal are distinct, that is, Pr(! = o|cik = H) 6= Pr(! = o|cik = T ) for all i, k, o,

where H is heads and T is tails.4 We assume the realization of each player’s signal is

private, and make di↵erent assumptions about the knowledge of a player about the

number of coin flips of another player.

With conditionally independent signals, each player can properly update the pos-

terior probability without having to know the signals of previous players or their

4These assumptions rule out degenerate cases and can be made without loss of generality. A
signal that is not informative can be removed from the signal space, and two signals that are not
distinct can be treated as the same signal.
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length, as long as previous updates were done truthfully [14]. The posterior incor-

porates, and su�ciently summarizes, all information collected thus far. To perform

updates, players need to only know the signal distribution with respect to their own

signal, which we assume is known to all players. This is useful practically in that

players do not have to keep track of nor communicate their signals, and can simply

report an updated posterior probability.

5.3 Routing Scoring Rules

With rational, self-interested players who have no intrinsic value (or cost) for

solving or routing a particular task, ensuring e↵ective task routing requires mecha-

nisms that will incentivize players to both truthfully update posterior probabilities

and route tasks to individuals who can best refine the predictions of the tasks. In this

section, we review strictly proper scoring rules and market scoring rules for incen-

tivizing truthful reports, and introduce routing scoring rules, which also incentivize

e↵ective routing decisions.

In the forecasting literature, strictly proper scoring rules [83] are mechanisms that

strictly incentivize a forecaster to truthfully reveal his subjective probability of an

event, typically under the assumption that participants are risk neutral. The outcome

of the event is assumed to be observable in the future, and payments are conditioned

on the outcome. A well-known strictly proper scoring rule is the quadratic scoring

rule, under which a player reporting probability q for state Y is rewarded 1� (1� q)2

when the true state is Y and 1 � q2 when the true state is N . Other well-known

strictly proper scoring rules include the logarithmic and spherical scoring rules. Any
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strictly proper scoring rule can be scaled or normalized via linear transformations to

form another strictly proper scoring rule [7].

Market scoring rules [29] extend strictly proper scoring rules to settings where we

wish to aggregate information across multiple people. Given a sequence of reports,

player i reporting pi is rewarded si � si�1, where si denotes the score of player i as

computed by some strictly proper scoring rule applied to this player’s report. Note

that since strictly proper scoring rules incentivize accurate reports, a player’s reward

under a market scoring rule is positive if and only if he improves the prediction.

Building on market scoring rules, we introduce routing scoring rules to incentivize

accurate predictions, along with e↵ective routing decisions.

Definition 5.1. A routing scoring rule defines a sequence of positive integers k1,

. . ., kR�1, which rewards players i 2 {1, . . . , R� 1} on the routing path:

(1� ↵)si + ↵si+k
i

� si�1 (5.1)

where si is the score under an arbitrary strictly proper scoring rule, ↵ 2 (0, 1) is a

constant, and i + ki  R for all players i. Player R reports but does not route and is

paid sR � sR�1.

In a routing scoring rule, player i’s payment is based on the marginal value the

player provides for refining the prediction, as measured by a combination of his report

and the report of the player who receives the task ki steps after him, relative to the

report of the player just before him. For player 1, s0 denotes the score computed with

respect to the prior p0. Each player i can be paid for up to R�i steps forward, and the

final player R does not route and is paid by the market scoring rule sR�sR�1. Players
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who participate multiple times within a routing game are paid based on the routing

scoring rule the first time they receive the task, and paid by the market scoring rule

in any subsequent interactions.5

Intuitively, routing scoring rules reward players who are experts as well as players

who are knowledgeable about the expertise of other players. We introduce several

routing scoring rules of particular interest. We first consider the myopic routing

scoring rule (MRSR), which sets ki = 1 for all players i < R. This routing scoring

rule aims to reward a player for submitting accurate probability assessments and

routing in a greedy manner to the adjacent player who can most accurately refine the

probability assessment.

Lemma 5.1. Consider a routing game in which each player participates at most once.

The total payment from the system with MRSR is sR � s0 + ↵(sR � s1).

The lemma follows from taking telescoping sums, and states that, for MRSR,

the center needs to only pay for the di↵erence between the final assessment and the

initial assessment, since each player is only paid for the additional information they

provide and their routing decision. The expression is familiar from market scoring

rules, containing just an additional term due to routing payments.

We can extend the MRSR to reward players’ routing decisions based on the ac-

curacy of information after ki = min(k,R � i) more players have provided their

information. The k-step routing scoring rule (kRSR) rewards a player based on his

report, as well as the eventual consequence of his routing decision k steps into the

5For the local knowledge settings we consider later in the chapter, this avoids situations in which
a player may try to hold on to a task by making suboptimal routing decisions that lead to their
being routed the task again, with the intent of earning multiple routing payments beyond the first.
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future. Unlike MRSR, kRSR rewards players for routing to players who may not have

information themselves, but who are still able to route to others who do.

In particular, when player i’s routing payment is based on player R’s score, that

is, i + ki = R, for all i, we call this the path-rewarding routing scoring rule (PRSR).

As its name suggests, this routing scoring rule seeks to focus a player’s attention on

the final consequence of his routing decision, judged at the end of the game.

The choice of routing scoring rule a↵ects players’ routing decisions in equilibrium,

which in turn a↵ect how much information is aggregated. To formally establish the

connection between a player’s score and the amount of information aggregated, we

show that the expected score is strictly increasing in the total number of coin flips

collected:

Lemma 5.2. Let S 0 and S 00 denote two possible sequences of players through the first

k rounds of the routing process that are identical up to player i < k. Assume all

players truthfully update posterior probabilities, and that player i knows the number

of bits lj for players i < j  k on S 0 and S 00. Let Ei
S[sk] denote player i’s expectation,

taken immediately after his own report, of the score after player k’s report in path S.

Ei
S0 [sk] > Ei

S00 [sk] holds if and only if
P

m2u(S0) lm >
P

n2u(S00) ln, where u(S) is the

(unique) set of players in S.

Proof. (sketch) Assume without loss of generality that there are a total of n coin flips

in S 0, and n + m coin flips in S 00, m > 0. The expected score of player k from S 00

consists of two (hypothetical) components: (a) the score he would get when giving a

prediction after receiving the first n coin flips, denoted s[n], and (b) the di↵erence in

the score he would get by changing his prediction after receiving the next m coin flips,
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denoted s[n+m] � s[n]. The expectation of the first part is the same as the expected

score of player k from S 0, and the expectation of the second component is always

non-negative given any strictly proper scoring rule.

Intuitively speaking, additional bits of information can only improve the accuracy

of the prediction in expectation. Since strictly proper scoring rules reward accuracy,

collecting more coin flips will lead to higher scores in expectation.

5.4 Common Knowledge

Having introduced routing scoring rules of interest, we consider an equilibrium

analysis of the associated routing game. We first consider the case where the net-

work structure and the number of coin flips li observed by each player i is common

knowledge. Note the actual signal realizations are still assumed private.

5.4.1 Clique Topology

Let us first consider the routing game on a clique, where each player can route

the task to any other player. Given the clique topology, an optimal routing algorithm

can just route myopically and collect as many coin flips as possible at each step. In

a clique, there is no opportunity cost for being greedy in this way. We have the

following equilibrium result:

Theorem 5.1. Assume the number of coin flips of each player is common knowledge

and that players are risk neutral. Consider a routing game in which the routing graph

is a clique, and let S>i denote the set of players who have yet to receive the task after
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i rounds. Under the myopic routing scoring rule, it is a Perfect Bayesian Equilibrium

(PBE) for each player i to truthfully update the posterior probability, and to route the

task to player i+1 2 argmaxm2S
>i

lm, with the belief that all other players update the

posterior probability truthfully.

Proof. (sketch) We show that no player wishes to deviate from the equilibrium strat-

egy, given the belief that all other players report truthfully. For any player i, we first

show that player i should honestly update the posterior beliefs by establishing that

(a) truthful reporting maximizes si, and that (b) for any player m who may be routed

the task, truthful reporting by player i maximizes the score sm. Note that for (a),

since si is based on a strictly proper scoring rule, truthful reporting maximizes the

expectation of si. For (b), the expected score of sm (from the perspective of player

i) is strictly greater when player i reports honestly because sm is based on a strictly

proper scoring rule. It is left to show that player i maximizes si+1 by routing to the

player in S>i with the most coin flips; this follows from Lemma 5.2.

5.4.2 General Networks

We now consider routing games on general networks with missing edges; e.g., only

managers can route tasks between teams and only friends can route to friends. We

can state the algorithmic problem of finding the optimal route in terms of collecting

coin flips:

Problem 5.1. Consider the routing graph G = (V, E), in which nodes are assigned

non-negative integer weights wi (coin flips). Given a starting node o, find a path of

length at most k such that the sum of weights on the path is maximized.
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Figure 5.1: A routing game for which myopic routing (along the bottom path) is
suboptimal. Numbers in nodes are the number of coin flips held by each player.

Note that a player can route to another player who has received the task before

(the path need not be simple), but no additional information is collected in subsequent

visits to the same player.

Immediately, we see that myopic routing will not always find the optimal solution

to Problem 5.1, as routing to the neighbor with the most coin flips does not consider

the e↵ect this can have on future routing decisions, and can now convey an oppor-

tunity cost. Figure 5.1 illustrates an example in which myopic routing would lead

player 1 and all subsequent players to route along the bottom path, while the optimal

solution requires players to route along the top path.

We can show that this problem is NP-hard for variable path length k:

Lemma 5.3. Problem 5.1 is NP-hard.

Proof. Consider a reduction from the Hamiltonian Path problem. Let all nodes have

weight 1, and set k = |V |. The solution path has total weight |V | if and only if all

nodes are visited within k steps, that is, a Hamiltonian Path exists.

While the problem is NP-hard for a variable path length k, for small constant k

the optimal path may be tractable to compute via exhaustive search.
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But intractability is not the only di�culty we face. Even if players can compute

the optimal path, we still need to find incentives that induce players to honestly

report their information and to route along the optimal path. The path-rewarding

routing scoring rule does just that.

Theorem 5.2. Assume the number of coin flips of each player is common knowledge

and that players are risk neutral. Let S>i denote the set of players who have yet to

receive the task after i rounds. Let Qi denote a solution to problem 5.1 for which

k = R � i, o = i, and wm = lm if m 2 S>i and wm = 0 otherwise. Under the

path-rewarding routing scoring rule, it is a PBE for each player i to truthfully update

the posterior probability and route the task to the next player in the path provided by

Qi, with the belief that all other players follow this strategy.6

Proof. (sketch) Using similar arguments as in the proof sketch for Theorem 5.1, we

show that no player wishes to deviate from the equilibrium strategy, given the belief

that all other players report truthfully. For any player i, we first show that player i

should honestly update the posterior beliefs by establishing that (a) truthful reporting

maximizes si, and (b) for any subsequent sequence of players i+1, . . . , R who may be

routed the task, truthful reporting by player i maximizes the score sR at the end. For

(a), since si is based on a strictly proper scoring rule, truthful reporting maximizes

the expectation of si. For (b), the expected score of sR (from the perspective of player

i) is strictly greater when player i reports honestly because sR is based on a strictly

proper scoring rule.

6In this setting, a player who participates multiple times does not receive, nor require, any
incentives for routing beyond the first time. This is because routing along an optimal path is
required for maximizing the expected score at the end of the game, which is the basis for a player’s
(first time) routing payment under the path-rewarding routing scoring rule.
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It is left to show that player i maximizes sR by routing to the next player in the

path provided by Qi; this follows from Lemma 5.2.

Since PRSR rewards each participant’s routing decision based on the final score,

it is in each participant’s interest to maximize the number of coin flips collected along

the entire routing path. We can show that reporting honestly and routing this way

is the only behavior that can be supported in equilibrium under PRSR:

Theorem 5.3. The set of PBE identified in Theorem 5.2 (corresponding to possible

ties in the solution to problem 5.1) are the only PBE of the routing game under PRSR.

Proof. (sketch) Given any routing path, by backward induction every player should

update the posterior probability truthfully because participants’ scores are computed

using a strictly proper scoring rule. Given that players update truthfully, by back-

wards induction every player i should route along the path identified by some solution

Qi because maximizing the number of coin flips collected maximizes the routing por-

tion of each player’s score (Lemma 5.2).

5.5 Local Common Knowledge

Although people may know one another’s expertise in small organizations, the

common knowledge assumption becomes unreasonable for larger organizations and

social networks. An individual will not necessarily know everyone else, and may only

have limited information about the expertise and connectivity of individuals outside

of a local neighborhood.
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We replace the common knowledge assumption with a requirement that individu-

als all attain the same minimal level of knowledge about each other’s expertise within

a local neighborhood of a particular size, defined by the number of hops between

participants. For example, all friends of a particular person are aware of his expertise

(one hop). Friends of his friends may also be aware (two hops).

Definition 5.2. A routing game satisfies the local common knowledge assump-

tion within m-hops if, for all nodes (individuals) i, (a) li is common knowledge

to all individuals connected to i via some path of length at most m, and (b) i knows

all paths of length at most m connecting i to other individuals, and this is common

knowledge.

For example, 1-hop local common knowledge assumes that all friends of a partic-

ular person know the person’s level of expertise, and 2-hop local common knowledge

extends this shared knowledge to his friends of friends. Note that the local common

knowledge assumption within m-hops is just a minimal requirement and does not

preclude a player from having more information.

Given that a player may only have m-hop local common knowledge, let’s consider

the problem facing such a player when deciding how to route to maximize the final

prediction quality after R steps. Routing optimally may require the player to use

the history of routing decisions to infer why certain people were not routed the task

(but could have been), based on which to perform inference about the amount of

information held by di↵erent people in the network. Furthermore, optimal routing

requires a player to make inferences about the values that can be generated from the

routing decisions of subsequent players beyond his locality. Not only is such reasoning
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complex and likely impractical, any equilibrium to induce optimal routing will likely

be fragile because it requires players to adopt priors over other players’ beliefs.

An attempt to avoid such issues may suggest rewarding players based on a m-

step routing rule whenever the local common knowledge assumption holds for m-

hops. The problem with this suggestion is that a player would still have to consider

the routing decisions of players outside his locality because maximizing his payo↵

requires considering the routing decisions of the chain of players within his locality.

For example, consider the two-step routing rule (see bottom of Figure 5.2). For any

player, the score two steps forward will depend in part on the routing decision of the

next player. But since the next player is paid for the score two steps forward (from

him), his routing decision will depend not only on the amount of information held by

the player after him, but also that player’s routing decision. Since each player has to

consider the routing decision of the next player, each player has to reason about the

future routing decisions of all players down the routing path, in order to just compute

the expected score after two steps.

This motivates the family of local routing rules, under which players’ strategies

in equilibrium rely only on computations based on local information. We define the

notion of a local strategy as follows:

Definition 5.3. A player i in a routing game adopts a m-local strategy if his

routing decision depends only on m-hop local common knowledge and is invariant to

any beliefs the player might have about players outside of his own locality.

Let us first consider the following local routing rule, designed to be useful with

2-hop local common knowledge:



Chapter 5: Task Routing 129

2" 1" 2" 1" 2"

2" 2" 2" 2" 2"

Figure 5.2: Illustration of the 2-1-2-1 and 2-step routing rules. Arrows depict depen-
dencies in routing payments.

Definition 5.4. The 2-1-2-1 routing rule is a routing scoring rule which sets ki = 2

if i is odd and i < R� 1, and ki = 1 otherwise.

The 2-1-2-1 routing rule incentivizes players to compute locally optimal paths

of length two (see top of Figure 5.2), which can be computed with local common

knowledge. As even-numbered players are paid based on the myopic routing scoring

rule, they will route to the available player with the most number of coin flips. Since

each odd-numbered player knows the number of coin flips that can be collected from

the next even-numbered player and the next odd-numbered player that is routed the

task, he can compute the best local path without regard to routing decisions beyond

his locality. Players still need to take into account which other players have already

participated, but no other inference based on history is necessary.

Expanding on the idea, we construct a class of routing scoring rules (e.g., MRSR,

2-1-2-1, 3-2-1-3-2-1, . . .) that incentivize players to compute locally optimal paths for

m-hop local common knowledge.

Definition 5.5. The m-hop routing rule is a routing scoring rule which sets ki =

min[m� (i� 1) mod m, R� i].
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The m-hop routing rule supports the following equilibrium behavior:

Theorem 5.4. Assume that players are risk neutral and m-hop local common knowl-

edge holds. Let S>i denote the set of players who have yet to receive the task after

i rounds. Let Qi denote a solution to problem 5.1 for which k = min[m � (i �

1) mod m, R � i], o = i, and wj = lj if j 2 S>i and wj = 0 otherwise. Under the

m-hop routing rule, it is a PBE for each player i to truthfully update the posterior

probability and route the task to the next player in the path provided by Qi, with the

belief that all other players follow this strategy.

Proof. (sketch) Using similar arguments as the proof sketch for Theorem 5.1, we can

show that players should truthfully update the posterior probability. To show player

i should route based on Qi, we first note that Qi is computable given m-hop local

common knowledge. Since Qi maximizes the number of coin flips collected in the

next k steps, Lemma 5.2 proves the point, and the theorem.

Unlike in the common knowledge setting under the path-rewarding routing scor-

ing rule, this equilibrium under the m-hop routing rule may not be unique. For a

player routing more than once, after the first time, the player is weakly indi↵erent

among all routing decisions because his payment reduces to the market scoring rule

for subsequent routing opportunities. Such a player need not route along a locally

optimal path in making subsequent routing decisions and this can a↵ect the equilib-

rium behavior of other players who may route the task back to this player. If we

wish to ensure that routing along a locally optimal path is a unique equilibrium, we

can modify the routing game slightly to prevent players from routing to other players
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who have already participated in the game.7

The main idea behind the m-hop routing rule is that each player can compute his

best routing action with respect to the decisions in his locality and without regard to

routing decisions beyond his locality. It turns out that this property can be satisfied

by other local routing rules as well. For example, when m = 3, the 3-1-1-3-1-1 routing

rule is one in which the first of three players in sequence is paid by the score three

steps forward, but the next two players are each paid myopically. Note that the first

player here can still compute his optimal routing decision using only local common

knowledge by computing the routing decisions of others in his locality via backwards

induction. We can thus characterize the entire family of local routing rules:

Definition 5.6. Given m-hop local common knowledge, the family of m-local rout-

ing rules consists of routing scoring rules defined with parameters k1, . . . , kR�1, that

satisfy ki+j + j  m for all i and 0  j < ki.

Generally, we can refer to these as local routing rules, dispensing with the m when

this detail is unimportant. The condition ensures that local routing rules can only

reward players whose routing decisions may a↵ect the payo↵ of an earlier player based

on the routing decisions of future players that are within m hops of that earlier player.

In other words, it considers the set of routing scoring rules for which the payment to

any player should only depend on the local information that player is guaranteed to

hold. For example, the 2-1-2-1 routing rule satisfies this condition for m = 2 because

7We can modify the routing game so that in cases when a player has no one to route to, no
routing payments will be assigned. The task is returned to the system which will randomly select
a new participant. Since players cannot participate twice in this modified game, uniqueness of the
equilibrium stated for the m-hop routing rule in Theorem 5.4, and more generally for local routing
rules in Theorem 5.5, can be recovered without requiring further assumptions. The argument is
similar to that in the proof of Theorem 5.3.
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for an odd i, ki  2  m and ki+1 + 1 = 2  m, and for an even i, ki = 1  m.

However, the two-step routing scoring rule violates the condition, because for all

i < R�2, ki+1 +1 = 3 > m. Note that the m-hop routing rule satisfies the condition,

since ki is set such that ki+j + j = m for all appropriate i and j in Definition 5.6.

We argue that using a local routing rule is necessary and su�cient for the existence

of an equilibrium under m-hop local common knowledge, in which participants follow

m-local, truthful strategies. We first show su�ciency:

Theorem 5.5. Assume that risk neutrality and m-hop local common knowledge holds.

For any node i and possible path ni+1, . . . , ni+k
i

from i, let the weights wj on node j

be lj if j has yet to be visited up until then, and 0 otherwise. For any m-local routing

rule, consider the following dynamic program:

V (nj+1, . . . , nj+k
j

|n1, . . . , nj) = max
j+1,...,j+k

j+1

[

k
j+1X

b=1

wj+b

+ V (nj+k
j+1+1, . . . , nj+k

j

|n1, . . . , nj+k
j+1)]

V (;|n1, . . . , nj+k
j

) = 0 8n1, . . . , nj+k
j

(5.2)

Let n⇤
i+1, . . . , n

⇤
i+k

i

= argmax V (ni+1, . . . , ni+k
i

|n1, . . . , ni) denote a solution of the

dynamic program. It is a PBE for each player i to truthfully update posterior proba-

bilities and to route the task to n⇤
i+1, with the belief that all other participants follow

this strategy.

Proof. (sketch) To prove the theorem, we first note that all players would truthfully

update the posterior probability along the path as we had previously argued, as

doing so maximizes the scores computed, based on a player’s own assessment and the

assessments collected from those routed the task via the routing payment. Second, as
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Figure 5.3: Routing game construction for the j = 0 case.

the variables and parameters of the dynamic program are only the nodes in paths of

length at most ki from i, and by the definition of local routing rules ki  m, players

follow m-local strategies. That is, the information that each player i needs to compute

the dynamic program is within m hops and thus known to player i. Finally, given

the routing decisions of others down the path, the number of coin flips collected is

by definition maximized by the routing decisions along the computed path. Applying

Lemma 5.2 proves the point, and the theorem.

Theorem 5.6. The only routing scoring rules that induce for every routing game

a truthful PBE (where players honestly update probability assessments) in m-local

strategies are local routing rules.

Proof. (sketch) Assume for sake of contradiction that there exists a routing scoring

rule that induces a truthful PBE for all routing games in m-local strategies but is not

a local routing rule. Since this routing scoring rule is not a local routing rule, there

must be some i in the sequence for which there exists some j such that ki+j + j > m,

0  j < ki. Consider the first such i and j.

First consider the case where j = 0. We construct a graph with two paths (top

and bottom), as shown in Figure 5.3.
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Based on the construction, consider two routing games G and G0. In game G the

coin flips held by U and V are 1.5✏ and 1.6✏ respectively, and in game G0 the coin

flips at U and V are reversed. Due to the violation of the condition for local routing

rules at i for j = 0, by construction U and V are more than m hops from player i. In

a PBE with m-local strategies, it is thus necessary for the routing decisions of player

i to be independent of the number of coin flips held by players at U and V , that is,

for the routing decision to be the same for these two games G and G0.

We show that player i’s best response to the equilibrium strategies of the other

participants depends on G or G0. For both games, using backwards induction, all

players strictly prefer to route the task forward (to the right) instead of backwards

at any given point in time and for any lookahead depth as induced by their routing

payment. This is because a player’s expected payment is based on the number of

coin flips collected and one can always collect more coin flips in the forward direction

(for any player, going backwards would necessitate visiting a node that’s been visited

before with no new coin flips to share). Since in game G player i would collect

more coin flips by routing up due to the higher value at U over V and the reverse

is true in game G0, player i’s best response would be di↵erent, which contradicts our

assumption.

Now consider the case where j > 0. We construct a graph with three paths (top,

middle, and bottom), as shown in Figure 5.4.

Based on the construction, consider two routing games G00 and G000. In game G00

the coin flips held by A, B, and C are ✏, ✏, and ✏ respectively, and in game G000 are

✏, 1.7✏, and 1.7✏, respectively. Due to the violation of the condition for local routing
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Figure 5.4: Routing game construction for the j > 0 case.

rules, by construction A, B, and C are more than m hops from player i. In a PBE

with m-local strategies, it is thus necessary for the routing decisions of player i to be

independent of the number of coin flips held by players at A, B, and C, that is, for

the routing decision to be the same for G00 and G000.

We show that player i’s best response to the equilibrium strategies of the other

players depends on G00 or G000. We first consider game G00. Using backwards induction,

note that each player must strictly prefer to route the task forward (to the right)

instead of backwards at all times, regardless of the lookahead induced by their routing

payment. This is because a player’s expected payment is based on the number of coin

flips collected and, as before, one can always collect more coin flips in the forward

direction (as going backwards necessitates visiting a node that’s been visited before).

In this case, the top player at i+ j would route up because the i+ ki-th player would

have more coin flips (1.6✏) and is within the scope of the routing payment. Given

knowledge of the values at A and B, it is thus strictly better for player i to route up

in G00.

Consider now game G000. By backwards induction, each player strictly prefers to

route forward because doing so guarantees the largest payment along the way for any
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lookahead. The top player at i + j will route along the middle path in equilibrium

because he would receive ✏ + 1.7✏ from coin flips at the middle path of i + ki and

i+ j + ki+j versus the 1.6✏ + ✏ along the top path. In this case, player i would rather

route down instead of up because it would collect 0.5✏ more coin flips due to the 1.5✏

at i+ki on the bottom path. However, since player i’s best response routing decision

should be the same for game G00 and G000, we have a contradiction.

5.6 Simulations and Results

The equilibrium strategies induced by local routing rules can be viewed as pro-

viding a heuristic algorithm for computing an optimal route over a network. We now

demonstrate via simulations that routing decisions based on local rules can e↵ectively

aggregate information as a task is routed through the network.

We consider connected random graphs with 100 nodes and average degree d 2

{4, 10}, generated using the Watts-Strogatz model [100]. By varying the re-wiring

probability �, the model allows us to generate graphs that interpolate between a reg-

ular lattice (� = 0) and a G(n, p) random graph (� = 1), with small-world networks

emerging at intermediate values of �. We associate each node with a number of coin

flips. Coin flips are drawn independently either discretely from U[1,10] or from a

skewed distribution where the value is 1 with probability 0.9 and 46 with probability

0.1. The two distributions have equal mean (5.5), but the skewed distribution more

closely resembles a setting where there are few experts. For graphs generated in this

manner, we simulate player strategies under local routing rules (MRSR, and m-hop

with m = 2, m = 3) by computing local paths in the manner noted in Theorem 5.4,
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d = 4 d = 10

� Dist. MRSR m=2 m=3 MRSR m=2 m=3

.03 U 69 71 72 83 84 85
0.1 U 71 72 75 85 86 87
1.0 U 76 78 80 89 89 90
.03 S 80 87 104 150 183 227
0.1 S 88 109 146 181 226 259
1.0 S 120 155 183 227 258 278

Table 5.1: Comparison of routing performance based on the average number of coin
flips collected after 10 steps. Values represent averages over 100 trials. We considered
connected Watts-Strogatz graphs based on uniform (U) and skewed (S) coin flip
distributions with fixed mean (5.5). In all cases, routing based on local routing rules
collected significantly more coin flips than the 55 coin flips (upper bound) we would
expect to collect from routing randomly.

where revisited nodes are treated as having no value. As a baseline, we consider a

random routing rule that routes to a random neighbor, and whenever possible, to a

random neighbor who has yet to be assigned the task. Note that the expected per-

formance of the baseline is bounded by 5.5 coin flips per round, as we would expect

from randomly picking unvisited nodes in the graph.

Table 5.1 shows the average number of coin flips collected after 10 steps by players

following local routing rules on graphs with varying �, average degree, and coin flip

distribution over 100 trials (standard errors are small and hence not reported). We

see that routing rules are particularly e↵ective in cases where there are few experts

(S), and when the graph has a su�ciently high connectivity (higher d and �) such

that paths exist through which experts can be routed the task. But even in cases

with uniformly distributed coin flips (U) and low average degree (d = 4), local routing

rules collect significantly more coin flips than the upper bound of 55 we would expect
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Figure 5.5: Comparison of routing performance based on the average number of coin
flips collected for graphs with � = 0.1, d = 10, and skewed coin flip distributions. Val-
ues represent averages over 100 trials. Routing based on local routing rules collected
significantly more coin flips over fewer rounds than routing based on the random
routing rule.

from randomly choosing nodes. Despite connectivity constraints, paths still included

many high valued nodes (recall the max per node is 10).

The di↵erence in routing performance among local routing rules is rather small for

uniformly distributed values, but is more significant when the distribution is skewed.

In this case, e↵ective routing may require finding short paths to experts who are not

neighbors. That said, this di↵erence shrinks for graphs with higher degree, as high-

value nodes become more reachable (recall that as graphs approach cliques, myopic

is optimal).

Figure 5.5 shows the average number of coin flips collected by local routing rules

as we progress through the routing game on graphs with � = 0.1, d = 10, and skewed

coin flip distributions. We see that routing based on local routing rules collected
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significantly more information over fewer rounds than routing based on the random

routing rule. For m � 2, the performance under the local routing rules are essen-

tially the same, suggesting that we can sometimes achieve near-optimal performance

globally with just two-hop local common knowledge.

With the random routing rule, we see that the rate of information aggregation

stays nearly constant throughout the routing game. Since the rule routes to new

players whenever possible, this suggests that the graph is well-connected and that new

players can often be routed the task even later in the game when many players have

already participated. With local routing rules, we see that the rate of information

aggregation eventually slows down, which denotes the point at which virtually all

experts have been routed the task.

5.7 Discussion

We consider the opportunity for incentivizing the joint refinement and routing of

tasks among people within a network, focusing on prediction tasks. We introduce and

study local routing rules which, in equilibrium, support people truthfully contributing

information and routing tasks based on simple computations that nevertheless lead

to e↵ective information aggregation.

In our analysis, we have assumed that bits of signal are conditionally independent.

But in some settings, players’ signals may be conditionally dependent, and accurate

predictions may depend on collecting the complementary information held by di↵erent

players. In this setting, our theoretical results continue to hold with small modifica-

tions. First, it is no longer su�cient to maintain a posterior estimate. Instead, we
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need to explicitly keep track of the information contained in players’ signals. Sec-

ond, we need to restrict players from participating more than once, or alternatively,

from being paid for their information beyond the first time. This prevents the type

of incentive issues that may occur in prediction markets, in which participants with

conditionally dependent signals may be better o↵ withholding some information until

complementary information has been reported to the market [14].

While local routing rules enable equilibrium behavior for which the inference re-

quired of participants is tractable, these rules still assume that participants are ratio-

nal in that they maximize their expected payo↵. In practice, participants can make

mistakes and route suboptimally. But even so, local routing rules may provide for a

robust design in which participants are incentivized towards making good decisions

even if their decisions are not optimal. Since local routing rules are based on strictly

proper scoring rules, which in our setting are accuracy-rewarding [51], more accurate

predictions will lead to strictly higher payo↵s. Furthermore, since the equilibrium is

constructed within local paths, any “mistakes” also remain local, and do not a↵ect

the routing decisions of later participants outside of local reach.

In crafting local routing rules, we demonstrated a means for designing incentives

that explicitly enable players to make simple computations in equilibrium. The key

idea is to ensure that players need only make decisions based on information they are

guaranteed to have. This requires that players’ routing payments are localized and

that any chains of reasoning are limited to within local neighborhoods. We believe

this idea generalizes beyond prediction tasks and can enable e↵ective solving and

routing over social networks in a variety of settings.
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There are many possible directions for future work on task routing. One direction

is to study routing performance under specialized network topologies and knowledge

distributions. Another direction is to extend our models to consider the intrinsic

value and cost for solving or routing. In this direction, we are also interested in

introducing communication or sensing mechanisms coupled with means of tracking

costs of acquiring information, in order to take into account and study the process

through which individuals make contributions.

We are interested in developing general principles and methods for solving and

routing with humans and machines, and in considering other types of meta-knowledge

participants may have about the expertise of others in a social network. In addition

to multiple opportunities to address task-level issues, there are also opportunities to

address organizational issues related to distributing streams of tasks in a manner that

takes into account people’s solving and routing abilities over a spectrum of tasks, as

well as participants’ changing levels of attention, motivation, and availability. We

elaborate on this direction in Chapter 9.



Chapter 6

Automated Environment Design

In the previous chapters, we introduced a number of designs for crowdsourcing

complex tasks that are e↵ective in recruiting individuals with relevant expertise to

join in problem solving and enabling coordination and collaboration. To promote

desired behaviors and outcomes, we focused on reasoning about the crowd’s abili-

ties, limitations, and work processes in order to construct workflows, interfaces, and

incentive mechanisms that are tailored to the characteristics of the crowd.

While we have focused thus far on the design of human computation systems,

understanding participants and their behavior is crucial for designing any social or

economic system. Participants have varied knowledge and abilities, interests and

motivations, availability, and decision-making processes. Together with the decision

environment, these elements influence participants’ decisions on what actions to take.

Designers can draw on what they know, but do not typically have a complete under-

standing of participants and cannot always predict their behavior. For this reason,

solving a computational environment design problem may require experimenting with

142
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alternative designs, and iterating to improve designs over time to better promote de-

sired behaviors.

The Internet provides a number of tools for designers that support a data-driven,

iterative design process. Frameworks, style sheets, and content management systems

make it easier to modify or extend existing designs. Web analytics software tracks

individual and group behaviors over time, and provides information on trends and

patterns in the data. Tools for A/B testing allow designers to put hypotheses to the

test, by measuring the performance of competing designs against defined objectives.

But despite having a rich set of tools, the process of discovering e↵ective designs is

still largely manual, tedious and ad hoc. Designers spend significant time and e↵ort

coming up with alternative designs, that may consist of small modifications geared

towards making immediate improvements. Without particular regard to gaining a

deeper understanding of participants or of potential interactions among design ele-

ments, this may lead to an experimentation process that tries to hill-climb toward a

solution at a local, rather than global, maximum. Designers may miss out on parts of

the design space where better solutions exist, and ultimately fail to promote desired

behaviors and outcomes.

A more principled and automated approach to experimentation may lead to more

e↵ective designs more quickly, while requiring less manual e↵ort. Such an approach

may use observations of participant behaviors to not only evaluate competing de-

signs, but also to refine our understanding of participants’ abilities, motivations, and

decision-making processes. This knowledge may allow us to reason about the design

space more globally, and to discover designs that we would otherwise have missed. To
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reduce the amount of manual e↵ort required, and to discover e↵ective designs more

quickly, automated procedures can be employed to seamlessly combine domain knowl-

edge with machine-driven processes that optimize the choice of experiments and refine

existing models based on observed behavior. From the perspective of the designer,

an automated system may simply take as input a set of available interventions, the

objective of the designer, and a model of participants, and provide as output an in-

tervention that promotes actions and outcomes meeting the objective whenever such

interventions exist, or otherwise learn something new about participants.

In this chapter, we introduce a general approach for automated environment de-

sign. Section 6.1 presents a formal model of the automated environment design prob-

lem. Section 6.2 provides an active, indirect elicitation framework that automatically

drives an objective-oriented, iterative design process in which a system indirectly

learns about participants based on observations of participant behavior in response

to experiments chosen based on current knowledge. Section 6.3 introduces the prob-

lem of policy teaching as a case study, in which an interested party aims to provide

limited rewards to induce an agent in a sequential-decision setting to follow a desired

policy. We construct an active, indirect elicitation algorithm, that without prior

knowledge of the agent’s reward function, is guaranteed to discover rewards in a con-

strained reward space that elicit the desired policy after few interactions, as long as

such rewards exist. Section 6.4 describes how our methods and results may generalize

to other automated environment design problems, and discusses our assumptions as

well as alternative models and approaches for automated environment design.
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6.1 Model for Automated Environment Design

We consider situations in which an automated system, which we refer to as an

interested party, seeks to design or modify aspects of a social or economic system on

the Internet with the intent of eliciting desired actions and outcomes. For simplicity

of notation and without loss of generality, we model participants in a system as if they

were a single agent.1 A model for an automated environment design problem consists

of a decision environment, an agent model, an environment change, an admissibility

condition, an environment transition function, and a goal function. Below we define

these components, and present static and dynamic formulations of the problem.

Consider an agent who acts in a decision environment e 2 E based on his agent

model M = {✓, f, ⇤}, which consists of the model parameters ✓ 2 I; the agent func-

tion f : I ⇥ E ! 2X , where X is the decision space; and the actuation function

⇤ : X ⇥ E ! O, where O is the output space. The model parameters represent the

agent’s preferences and capabilities, and contains information private to the agent.

The agent function takes the model parameters and environment as input and iden-

tifies (perhaps multiple, equivalent) decisions, which describe how the agent plans

to act in the environment. The actuation function takes the agent’s decision and

the environment and provides an output representing the agent’s actual actions in

the environment. Although described here as deterministic for expositional clarity,

the actuation function need not in general map a decision to an output deterministi-

cally, and may instead sample from a distribution over actions. Furthermore, while

1Interactions among participants can be captured by having the agent model take into account
how participants in a decision environment may interact and make decisions based on other partic-
ipants’ actions.
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the agent’s actions may sometimes reveal the agent’s exact decision, we assume that

decisions are not directly observable.

We make a couple of assumptions about the agent model. First, we assume

that the agent fully perceives the decision environment and makes decisions with

respect to that knowledge.2 Second, we assume that f and ⇤ are fixed and known

to the interested party. This abstraction implies that if the interested party had full

knowledge of the agent’s model parameters, he would be able to predict the agent’s

decisions and a distribution over agent actions in the designed environment. Third,

we assume the agent can compute f on any input he encounters, such that any

computational limitations of the agent is embedded within f . Lastly, we assume that

the agent makes a single decision x 2 f(✓, e) when f returns a non-singleton set of

decisions, with this tie-breaking rule a priori unknown to the interested party.

Having described the agent model, we turn to consider the interested party’s

problem. We assume the presence of a base environment e0, which the interested party

can modify via an environment change � 2�. The environment transition function

F : E ⇥� ! E takes the base environment e0 and an environment change as input

and outputs a modified environment. We assume this function is deterministic and

known to the interested party. Furthermore, we assume that once the environment is

modified, the agent acts with respect to a decision in the modified environment. Since

the environment enters as input into the agent function, modifying the environment

may influence the agent’s decision and actions. We assume that the interested party

fully perceives the environment, and can observe the agent’s actions.

2Alternatively, one can define f based on the agent’s perceptual inputs as opposed to the envi-
ronment. For sake of exposition we do not explicitly model the agent’s perception.
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We assume that the agent is myopic with respect to environment changes. That

is, the agent follows his agent function and does not reason about future changes

to the environment when making current decisions. This seems reasonable in social

and economic systems on the Web, in which there are large numbers of users, most

of whom tend to use services as desired without reasoning about how systems may

change in the future. Furthermore, as design decisions tend to be guided by the

behaviors of many users, a single individual’s actions are unlikely to a↵ect a system’s

(re)design. That said, it is generally possible for users to take actions with the intent

of influencing environment changes; we elaborate on this issue later in the chapter.

Given a set X 2 2X of agent decisions that may result from an environment change,

the admissible set admissible(X) ✓ � characterizes the space of allowable environ-

ment changes. Admissibility conditions can model the interested party’s design costs

and constraints, both of which may potentially depend on the agent’s decisions. For

example, an environment change that rewards user actions may be infeasible if agent

decisions in the modified environment lead to actions that require the interested party

to issue more rewards than he has available. We assume the admissible set always

contains a null element �, corresponding to no environment change.

Finally, we define the goal of the interested party. The goal function G : X ⇥

� ⇥ I ⇥ E ! < takes the agent’s decision under the modified environment, the

environment change, the agent’s model parameters, and the modified environment

as input and outputs the value to the interested party.3 The goal may depend on

3Since the agent’s decision is not directly observable, in practice an interested party may use
samples of observed actions to evaluate admissibility and goal conditions. Since the agent’s model
parameters are also private to the agent, the interested party may need to evaluate the goal function
with respect to beliefs about the actual model parameters.
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Environment a Web 2.0 site
Agent model parameters preferences over site modules; time available

to spend online
Agent function decision on what to do on the site based on

interest and availability
Actuation function actual user actions on the site based on user

decisions
Environment change adding, removing, and moving modules in

the user interface
Admissibility condition limit to changes within template; keep main

components centered and visible
Environment transition function describes how the user interface changes
Goal function retention rate among new users; the volume

of content contributed

Table 6.1: An example showing the various components of a computational envi-
ronment design problem in which an interested party wishes to redesign the user
interface of a Web 2.0 site to improve retention rate and increase the volume of user
contributions.

(a) the agent’s decision because it determines (the distribution over) agent actions

and outcomes; (b) the environment change because this may come at a cost; (c) the

model parameters because the designer may wish to consider the value to the agent;

and (d) the modified environment because the interested party may value the agent’s

decisions di↵erently in di↵erent environments.

To get a sense of how the model applies to computational environment design

problems we may encounter in practice, see Table 6.1, which illustrates the various

components of a computational environment design problem in which an interested

party wishes to design the user interface of a Web 2.0 site to improve retention and

increase the volume of user contributions.
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6.1.1 Static Formulation

As a special case, we first present the static formulation of the automated envi-

ronment design problem, in which we assume that the agent’s model parameters are

known to the interested party. The goal is to find an admissible � such that the

agent’s elicited behavior in the modified environment maximizes the goal function G.

Since the interested party already knows the agent function and the environment, we

can think of the interested party’s problem as a one-shot optimization problem.

In the case of multiple possible decisions in the range of the agent function, the

agent may not select the one desired by the interested party. To be certain that the

agent selects decisions desired by the interested party, our formulation assumes that

the agent selects the worst possible decision for the interested party’s goal function:

Definition 6.1. Given an environment e, the static computational environment de-

sign problem is an optimization problem to find an environment change � that max-

imizes the interested party’s goal function in the worst case:

max
�

[min
x

T

G(xT , �, ✓, e0)] (6.1a)

subject to: e0 = F(e, �) (6.1b)

xT 2 f(✓, e0) (6.1c)

� 2 admissible(f(✓, e0)) (6.1d)

In the case that the agent function outputs singleton decision sets, the objective of the

optimization simplifies to max� G(xT , �, ✓, e0).

The constraints ensure that e0 is the modified environment (6.1b), that the model

parameters and modified environment induce some decision xT (6.1c), and that the
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environment change is admissible with respect to all possible agent decisions (6.1d)

consistent with the new environment.

6.1.2 The Dynamic Formulation

In the more interesting case, and the focus of this chapter, the agent’s model

parameters will initially be, at least partially, unknown to the interested party. Since

the agent function depends on both the environment and the model parameters, the

interested party may not be able to immediately identify admissible environment

changes that promote the desired behavior. To address this, the interested party can

experiment with alternative designs and have repeated interactions with the agent.

In each interaction, the interested party can modify the environment and observe the

agent’s actions in the modified environment.

Observations and measurements can inform which experiments to conduct in sub-

sequent interactions, and the goal is to arrive at e↵ective designs quickly. An example

objective may be to induce desired decisions after few interactions, without being

concerned about the cost of experimentation. Given a target goal value G, we can

represent this objective as minimizing the number of rounds until we find an admissi-

ble � that induces a decision environment e0 in which the agent’s decision xT satisfies

G(xT , �, ✓, e0) � G.

More generally, we can imagine that in the midst of experimentation, the inter-

ested party is (in a separate process) using the results of experimentation to deploy

environment changes. Deployed designs may be designs from past experiments or new

designs that are computed using currently available information. Viewed this way,
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the interested party may wish to maximize one of several objectives that represent the

exploration and exploitation tradeo↵ of having e↵ective designs to deploy now versus

later. For any point along this spectrum, the goal is to design experiments that max-

imize some measure of the expected goal value derived from deploying environment

changes now and in the future. Di↵erent objectives weigh the value derived from

experimentation di↵erently, depending on when particular designs are discovered and

deployed.

6.2 An Active, Indirect Elicitation Framework

Solving the dynamic formulation requires discovering e↵ective designs quickly. To

make e�cient use of experiments, we can draw on observations and measurements

to not only evaluate competing designs, but to refine our understanding of model

parameters guiding the agent’s behavior. For example, one can infer from observing

consumer purchases and worker performance on tasks information about the under-

lying preferences and abilities that guide the person’s decisions and actions. As an

agent makes decisions in di↵erent environments with respect to his actual model pa-

rameters, we can use observed behavior to make inferences about the space of model

parameters consistent with observations. Even without identifying the agent’s actual

model parameters, such information and knowledge may allow us to better predict

how an agent will respond to di↵erent designs. This enables us to reason more e↵ec-

tively about the design space.

Taking advantage of this insight, we introduce an active, indirect elicitation frame-

work that drives an automated, iterative design process that interleaves optimiza-
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Figure 6.1: The active, indirect elicitation framework combines optimizing exper-
iments based on current knowledge of model parameters with indirect learning of
model parameters based on observed behavior.

tion of appropriate experiments with indirect learning of model parameters (see Fig-

ure 6.1). In each round, an experiment is designed using knowledge of the agent’s

model parameters, and seeks to derive new information from observing potential

agent actions in the modified environment. Following an interaction, the knowledge

of model parameters is refined by making inferences based on observed behavior.

Since the goal is ultimately to elicit desired actions, experiments should be selected

with the interested party’s objective in mind, and not just for the sake of learning

about the agent’s underlying model parameters.

An algorithm based on the active, indirect elicitation framework contains two

components: an inference procedure and an elicitation strategy. An inference pro-

cedure updates the interested party’s beliefs about the actual model parameters, by

incorporating new observations from experiments. Let H denote the history of past

elicitation rounds, such that (ot, et) 2 H denotes observed actions ot in environment

et in round t. For all observations (ot, et) 2 H, the agent’s actual model parameters

✓⇤ must satisfy f(✓⇤, et) = xt, where xt is the agent’s decision in round t that, through

the actuation function ⇤(xt, et), led to the observed output ot. By making inferences

based on the relationships among these components, the inference procedure allows
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us to refine our beliefs about ✓⇤ over time. Indirectly, this enables us to better predict

the agent’s decisions and actions in response to di↵erent environment changes.

The elicitation strategy optimizes for experiments based on our beliefs, as provided

by the inference procedure using the history H. Depending on the interested party’s

objective, the elicitation strategy may focus on obtaining information that would most

immediately lead to an improved design, or be more forward looking by taking into

consideration the potential value that can be derived in the future from information

learned now.

6.3 Case Study: Policy Teaching

For an algorithm based on the active, indirect elicitation framework to be practi-

cally useful, the inference procedure and elicitation function must be computationally

tractable and help to discover e↵ective designs quickly. To illustrate how the active,

indirect elicitation framework can be applied to a specific automated environment

design problem, we consider as a case study the problem of policy teaching.

Policy teaching considers a Markov Decision Process (MDP) setting in which an

interested party can associate rewards with world states to a↵ect an agent’s policy.

The interested party can observe the agent’s decisions in response to provided incen-

tives, but generally does not know the agent’s reward function. The interested party

can interact multiple times with the agent, but cannot directly impose actions on the

agent. The goal of the interested party is to quickly identify feasible incentives (i.e.,

rewards from a constrained reward space) that induce the agent to follow a desired

behavior or policy, when this is possible.
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Policy teaching models situations on the Web in which an interested party can

modulate costs and rewards in attempt to elicit desired actions. For example, a

retailer such as Amazon may want customers to make frequent purchases and write

product reviews, and may be willing to provide discounts on products and recognize

top reviewers. Question-and-answer sites such as Yahoo! Answers and Stack Overflow

may want users to answer lingering questions and generally spend time on the site,

and can tweak their interfaces to make it easier to contribute (thus reducing the

cost of e↵ort) and o↵er points and badges as social rewards. Ad networks such as

Google AdSense may want publishers to design their web sites to facilitate e↵ective

advertising, and can o↵er a share of the ad revenue to entice a publisher to choose a

particular web layout.

We focus on the policy teaching problem in which the goal is to induce a fixed,

prespecified desired policy. Section 6.3.1 provides a model of this automated environ-

ment design problem. Section 6.3.2 shows that in the static case, the problem can be

formulated as a linear program. Section 6.3.3 considers the more likely case where the

agent’s reward function is unknown, and introduces an active, indirect elicitation al-

gorithm that is guaranteed to converge after a few rounds to discover rewards to apply

to states that induce the desired policy. To make the algorithm tractable, we apply

results from sampling in convex spaces [6] to arrive at a polynomial time algorithm

that maintains the same convergence guarantees with arbitrarily high probability.

Section 6.3.4 summarizes our results and discusses a few extensions.
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6.3.1 Model

The policy teaching problem considers an agent performing a sequential decision

task with respect to an infinite horizon MDP M = {S,A, R, P, �}, where S is a finite

set of states, A is a finite set of possible actions, R : S ! < is the reward function,

P : S ⇥ A ⇥ S ! [0, 1] is the transition function, and � 2 (0, 1) is the discount

factor. Given M , the agent’s decision problem is to choose actions for each state to

maximize the expected sum of discounted rewards. Let ⇡ denote a stationary policy,

such that ⇡(s) is the action the agent executes in state s. Given a policy ⇡, the value

function V ⇡(s) = R(s) + �
P

s02S P (s, ⇡(s), s0)V ⇡(s0) captures the expected sum of

discounted rewards from state s. Similarly, the Q function captures the value of

taking an action a and following the policy ⇡ in future states, such that Q⇡(s, a) =

R(s) + �
P

s02S P (s, a, s0)V ⇡(s0). By Bellman optimality [76], an optimal policy ⇡⇤

maximizes the Q function in every state, such that ⇡⇤(s) 2 arg maxa2A Q⇡⇤
(s, a). We

assume the agent can compute an optimal policy of his MDP, and that his inherent

reward function R is persistent.4

We consider an interested party whose goal is to induce a prespecified target policy

⇡T . The interested party knows S, A, P , and �, but not the agent’s reward function

R. We assume that the interested party can observe the agent’s actions, and that

observed actions completely reveal the agent’s policy (decision). The interested party

can influence the agent’s reward function by providing incentives � : S ! <. We

assume that � a↵ects the agent’s reward function linearly, such that the agent plans

4Mapping back to the general model, the agent function in this setting forms the agent’s decision
by computing the optimal policy with respect to the MDP model M , which captures aspects of both
the environment and the agent’s model parameters.
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with respect to M 0 = {S,A,R + �, P, �} in the modified environment. Following our

base assumption that the agent is myopic with respect to environment changes, we

assume the agent is myopically rational and follows the optimal policy in the modified

environment.

To capture the idea that the interested party may only be able to provide limited

incentives, we define a notion of admissibility:5

Definition 6.2. An incentive function � : S ! < is admissible given budget Dmax

and �
max

with respect to a policy ⇡T if it satisfies the following linear constraints,

denoted � 2 admissible(⇡T ):

V ⇡
T

� (s) = �(s) + �Ps,⇡
T

(s)V
⇡

T

� ,8s 2 S Incentive value. (6.2)

V ⇡
T

� (start)  Dmax Limited spending. (6.3)

0  �(s)  �
max

,8s 2 S No punishments. (6.4)

The incentive value V ⇡
T

� (s) in Definition 6.2 captures the total sum of expected

discounted incentives provided to an agent following policy ⇡T starting from state s.

The limited spending constraint limits the total incentives provided to Dmax when the

agent performs ⇡T from the start state.6 The “no punishment” condition ensures that

only bounded, positive incentives are provided, which seems quite fitting in many of

the web domains that motivate this work.7 We focus primarily on finding admissible

5The general model allows admissibility conditions to be defined over a set of decisions, but here
we define it with respect to a single decision ⇡T . Given that the interested party’s goal is to induce
a single target policy, it is reasonable to assume that he would only be interested in discovering and
deploying incentives � that strictly induce ⇡T and are admissible with respect to ⇡T .

6The use of a single start state is without loss of generality, since it can be a dummy state whose
transitions represent a distribution over possible start states.

7Alternative definitions of admissibility are possible as well. Our methods are not specific to a
particular admissibility definition, so we will not pursue the issue further.
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incentives to elicit the desired policy quickly, and only consider minimizing cost as a

secondary objective.

6.3.2 The Known Rewards Case

To develop intuition, we first consider the static formulation in which the inter-

ested party knows the agent’s reward function. The policy teaching problem is to find

minimal admissible incentives that induce the desired policy ⇡T . To capture the space

of rewards that are consistent with a particular policy, we first define the concept of

inverse reinforcement learning (IRL) [68]:

Definition 6.3. Given a policy ⇡ and M�R = {S,A, P, �}, let {R : R 2 IRL⇡} denote

the set of reward functions for which ⇡ is optimal for the MDP M = {S,A, R, P, �}.

Furthermore, for ✏ > 0, let {R : R 2 IRL⇡
✏ } denote the set of rewards for which ⇡ is

uniquely optimal for M by a slack of at least ✏, such that Q⇡(s, ⇡(s)) � Q⇡(s, a) � ✏

for all s 2 S, a 2 A\⇡(s).

The policy teaching problem then aims to find incentives leading to a reward

function that is consistent with the desired policy:

Definition 6.4. Policy teaching with known rewards. Given an agent MDP

M = {S,A, R, P, �}, target policy ⇡T , incentive limits D
max

and �max, and ✏ > 0,

if there exists admissible � such that (R + �) 2 IRL⇡
T

✏ , find such a � to minimize

V ⇡
T

� (start).

The definition requires that the provided incentives strictly induce the desired

policy. This avoids scenarios in which an agent is indi↵erent among multiple optimal
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policies and may choose a policy other than that which is desired by the interested

party.

To solve this problem, we need to (1) locate the space of reward functions under

which ⇡T is uniquely optimal and (2) find an admissible incentive � that maps the

agent’s reward into this space. We apply a well-known result from inverse reinforce-

ment learning, which shows that the space of rewards consistent with a particular

(uniquely) optimal policy is given by a set of linear constraints:

Theorem 6.1. (Ng and Russell [68]) Given a policy ⇡ written as ⇡(s) ⌘ a1 and

M�R = {S,A, P, �}, R 2 IRL⇡ satisfies:

(Pa1 �Pa)(I� �Pa1)
�1R ⌫ 0 8a 2 A\a1 (6.5)

Furthermore, for ✏ > 0, R 2 IRL⇡
✏ satisfies:

(Pa1 �Pa)(I� �Pa1)
�1R ⌫ ✏ 8a 2 A\a1 (6.6)

where Pa is the transition function with respect to action a written in matrix form,

R is the reward function written in matrix form, and I is the identity matrix.

This theorem leads directly to our first result:

Theorem 6.2. The following linear program solves policy teaching with known re-

wards:

min
�

V ⇡
T

� (start) (6.7)

RT (s)��(s) = R(s) 8s (6.8)

((Pa1 �Pa)(I� �Pa1)
�1RT)[s] ⌫ ✏ 8s, a 2 A\a1 (6.9)

� 2 admissible(⇡T ) (6.10)
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where a1 ⌘ ⇡T (s) denotes the actions of the target policy, Pa is the transition function

with respect to action a written in matrix form, and RT is a reward function that

strictly induces ⇡T written in matrix form.

6.3.3 The Unknown Rewards Case

In most situations, the interested party will not know the agent’s reward function.

This leads to the following problem definition:

Definition 6.5. Policy teaching with unknown agent reward. Consider an

agent following a policy ⇡ with respect to an MDP M = {S,A, R, P, �}. An interested

party observes the agent’s policy, and knows M�R = {S,A, P, �} but not R. Given

target policy ⇡T , incentive limits D
max

and �max, and ✏ > 0, if there exists an admis-

sible � for which (R + �) 2 IRL⇡
T

✏ , find an admissible � and observe agent policy ⇡0

such that ⇡0 = ⇡T after few interactions.

We assume that direct queries about the agent’s preferences are unavailable and

that preference information must be inferred from observations of agent behavior.

This is often true on the Web. While firms such as Amazon and Facebook can

observe user actions, it may be considered intrusive for them to directly ask their

users for preference information. Doing so may disrupt from the user experience, and

users may question their motives.

We develop an algorithm based on the active, indirect elicitation framework,

wherein the space of potential agent rewards is narrowed by drawing additional IRL

constraints based on observations of agent behavior in response to provided incen-

tives. We assume the agent’s reward function is bounded in absolute value by Rmax
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in every state. Within these bounds, we maintain an “IRL space” of reward functions

that are consistent with observations and that have associated admissible incentive

functions that can strictly induce the desired policy with some minimal slack ✏ > 0.

At every iteration, the elicitation function makes a guess bR at the agent’s true

reward by choosing a point in the IRL space. If the guess is correct, providing the

associated incentives b� will strictly induce ⇡T . If instead the agent performs a policy

⇡0 6= ⇡T , we know that bR must not be the agent’s true reward R. Furthermore, we

know that R+ b� induces ⇡0, which allows the inference procedure to add the following

IRL constraints to the IRL space:

(Pa1 �Pa)(I� �Pa1)
�1(R + b�) ⌫ 0 8a 2 A\a1 (6.11)

where a1 ⌘ ⇡0(s) denotes the actions of the observed policy, Pa is the transition

function with respect to action a written in matrix form, b� is the incentive provided,

and R is the agent’s reward function written in matrix form.

IRL constraints contain |S||A| constraints on R and restrict the space of possible

rewards to the intersection of the previous IRL space and the convex polytope implied

by the added constraints. Since we are only interested in the agent’s reward for the

purpose of solving the policy teaching problem, we can stop the elicitation process

as soon as we observe the desired policy or as soon as the IRL space becomes empty

(declaring the problem impossible).

We use the following notation. All constraints are added to a constraint set K,

such that instantiations of variables satisfy all constraints in K. An instantiation of

a variable R is denoted as bR. Algorithm 6.1 gives the elicitation method.
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Algorithm 6.1 Active indirect elicitation for policy teaching
1: Consider agent policy ⇡, desired policy ⇡T , ✏ > 0

2: Variables R, RT , �; constraint set K = ;

3: Add R 2 IRL⇡, |R(s)|  Rmax 8s 2 S to K

4: Add RT 2 IRL⇡
T

✏ , � = RT �R to K

5: Add � 2 admissible(⇡T ) to K

6: loop

7: Find b�, bR, cRT satisfying all constraints in K

8: if no such values exist then

9: return FAILURE

10: else

11: Provide agent with incentive b�

12: Observe ⇡0

13: if ⇡0 = ⇡T then

14: return b�

15: else

16: Add (R + b�) 2 IRL⇡0
to K

Theorem 6.3. Algorithm 6.1 terminates in a finite number of steps with a solution to

the policy teaching problem with unknown rewards or returns FAILURE if no solution

exists, regardless of the elicitation function’s choice of bR and b� from K.

Proof. (sketch) The minimal slack ✏ over the target policy ensures that all points

within a closed hypercube of side length � = ✏(1��)
� �  centered at bR are eliminated
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by IRL constraints whenever ⇡T is not observed, for some arbitrarily small  > 0.8

Since the true reward is consistent with IRL constraints, by a pigeonhole argument,

only a finite number of such hypercubes of eliminated points can fit in the IRL space

before elicitation converges.

While convergence is a desirable property, in practice the algorithm is only useful

if it can induce the desired policy after few interactions. We develop an elicitation

strategy that guarantees fast convergence and can be computed tractably.

A Centroid-based Approach

Consider the IRL space at any round of the elicitation process. Since this set of

reward functions is characterized by linear constraints, it is convex. We can apply

the following result on cutting convex sets:

Theorem 6.4. (Grünbaum [28]) Any halfspace containing the centroid of a convex

set in <|S| contains at least 1
e of its volume.

By choosing the centroid of the IRL space of rewards for bR, any added IRL

constraint will cut o↵ at least a constant fraction of the IRL space’s volume:

Lemma 6.1. Let Bt
K denote the IRL space of reward functions implied by the con-

straints in K before the t-th iteration of Algorithm 6.1. Let ct denote the centroid

of Bt
K. Consider an elicitation strategy that picks bR = ct and any corresponding

admissible b� for which ( bR + b�) 2 IRL⇡
T

✏ . Providing b� will either induce ⇡T , or lead

to adding IRL constraints that eliminate at least 1
e of the volume of Bt

K, such that

vol(Bt+1
K )  (1� 1

e)vol(Bt
K).

8Throughout this section, a hypercube refers to a closed, axis-aligned hypercube.
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Lemma 6.1 implies that after a number of iterations logarithmic in the volume

of the IRL space, this volume can be made arbitrarily small. If we can provide

conditions under which the desired policy is elicited before the volume of the IRL

space falls below some threshold, we can guarantee logarithmic convergence.

One condition that leads to logarithmic convergence is to ensure that all points

within a small hypercube centered at the true reward are contained in the initial IRL

space and never removed by added IRL constraints (in cases where a solution exist).

If points within this hypercube are chosen for bR, the minimal slack over the target

policy ensures that ⇡T is elicited. Assuming this condition is satisfied, we can stop the

elicitation process after logarithmic rounds because we will either elicit the desired

policy before the volume of the IRL space drops below the volume of the hypercube,

or discover that the true agent reward must not be contained in the initial IRL space

and thus there are no possible solutions.9

Unfortunately, Algorithm 6.1 may not satisfy this condition because IRL con-

straints may potentially eliminate some points in the small hypercube centered at the

true reward Rtrue. For a reward guess bR and associated incentive b� that does not

induce the target policy, the observed policy ⇡0 will be optimal for Rtrue but need not

be optimal for all reward functions in the hypercube centered at Rtrue.

Nevertheless, we can modify our current algorithm to ensure that a hypercube

of points centered at Rtrue is never eliminated. Since Theorem 6.3 ensures that all

points within a closed hypercube of side length � centered at bR are eliminated by

added IRL constraints, by convexity there exists a separating hyperplane between

9Bertsimas and Vempala [6] used this general observation to formulate an algorithm for finding
a point in a convex set specified by a separation oracle with logarithmic queries.
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cR

H̄(⇡0, c�)

Rtrue

P (⇡0, c�)

(R + c�) 2 IRL⇡0

IRL space

Figure 6.2: A condition that ensures logarithmic convergence requires maintaining a
hypercube of points around the true reward Rtrue throughout the elicitation process.
The larger polyhedron in the figure represents the IRL space of rewards that have yet
to be falsified. Given an observation ⇡0 based on incentives b�, the IRL constraints
(R + b�) 2 IRL⇡0

represented by the smaller polyhedron may eliminate some points
within the hypercube of points centered at Rtrue. To avoid this, we find a separating
hyperplane P (⇡0, b�) between the hypercube centered at bR and the IRL constraints,
and shift P (⇡0, b�) towards bR until it is arbitrarily close to bR. The resulting hyperplane
P̄ (⇡0, b�) separates bR and the hypercube centered at Rtrue. Adding the corresponding
halfspace H̄(⇡0, b�) instead of the IRL constraints ensures logarithmic convergence.

this hypercube and the IRL constraints. Following Figure 6.2, let P (⇡0, b�) be such

a separating hyperplane, and let P̄ (⇡0, b�) denote a hyperplane that results from

relaxing P (⇡0, b�) in the direction perpendicular to itself until it is arbitrarily close to

bR. Let H̄(⇡0, b�) be the halfspace not containing bR that is defined by P̄ (⇡0, b�). Since

P (⇡0, b�) separates Rtrue from a hypercube of side length � centered at bR, P̄ (⇡0, b�)

will separate bR from a hypercube of side length � centered at Rtrue. This ensures that

finding H̄(⇡0, b�) and adding it instead of IRL constraints is a su�cient condition for

guaranteeing logarithmic convergence.
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Since the hypercube of points centered at bR and the IRL constraints are both

characterized by linear constraints, we can find the separating hyperplane P (⇡0, b�)

by solving a simple linear program (e.g., see Theorem 10.4 in Vanderbei [93]). We

can easily find P̄ (⇡0, b�) by relaxing P (⇡0, b�) until it almost passes through bR, and

define H̄(⇡0, b�) accordingly.

We define a modified version of Algorithm 6.1, denoted Algorithm 6.1⇤, where:

(i) line 3 of Algorithm 6.1⇤ adds H̄(⇡0, �) instead of R 2 IRL⇡ to K (where �

corresponds to no environment change), (ii) Algorithm 6.1⇤ returns FAILURE if it

has not returned after 1 + |S|dlogbdR
max

� ee rounds, where b = 1
1�k for some k such

that 0 < k < 1
e , and (iii) given observed policy ⇡0 based on b�, Algorithm 6.1⇤ does

not add (R + b�) 2 IRL⇡0
to K and instead finds H̄(⇡0, b�) and add it to K.

Theorem 6.5. Assume the agent’s true reward is bounded by Rmax � � in every

state, where � = ✏(1��)
� �  for some arbitrarily small  > 0. Let Bt

K denote the

IRL space of reward functions implied by the constraints in K before the t-th iteration

of Algorithm 6.1⇤, and let b = 1
1�k for some k such that 0 < k < 1

e . For any

elicitation strategy that picks the centroid of Bt
K for bR, Algorithm 6.1⇤ terminates with

a solution to the policy teaching problem with unknown rewards or returns FAILURE

if no solution exists after at most 1 + dlogbd(R
max

� )|S|ee iterations.

Since the modifications to the algorithm allow us to eliminate the centroid of the

IRL space while preserving a closed hypercube of points centered at the agent’s true

reward, the condition required for logarithmic convergence is satisfied and Theorem

6.5 follows. Here (R
max

� )|S| is the number of non-overlapping hypercubes with side

length � that fit within the bounded space of rewards considered. This can be viewed
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as the size of the elicitation problem, and the bound given by Theorem 6.5 is logarith-

mic in this dimension. This logarithmic bound is still linear in the number of states

though, because only one of the constraints added at each iteration is guaranteed to

cut o↵ a constant fraction of the volume.

Although computing the centroid exactly is #P-hard [77], polynomial time, ran-

domized algorithms exist and extend Grünbaum’s result to the case of the approx-

imate centroid. Bertsimas and Vempala [6] showed that any halfspace containing

the average of O(n) uniform samples from a convex set in <n will cut o↵ a constant

fraction of its volume with arbitrarily high probability. Using this result, we can

construct an elicitation strategy that allows bR to be computed in polynomial time

while guaranteeing logarithmic convergence with arbitrarily high probability:

Theorem 6.6. Assume the agent’s true reward is bounded by Rmax � � in every

state. Let Bt
K denote the IRL space of reward functions implied by the constraints

in K before the t-th iteration of Algorithm 6.1⇤, and let b = 1
1�k for some k such

that 0 < k < 1
e . For any elicitation strategy that picks the average of O(|S|) points

sampled uniformly from Bt
K for bR, with arbitrarily high probability, Algorithm 6.1⇤

terminates with a solution to the policy teaching problem with unknown rewards or

returns FAILURE if no solution exists after at most 1 + dlogbd(R
max

� )|S|ee iterations.

Theorem 6.7. Each iteration of Algorithm 6.1⇤ with the elicitation strategy from

Theorem 6.6 is solvable in time polynomial in the number of states and actions.

Sampling O(|S|) points uniformly takes O(|S|4) steps of a random walk that re-

quires O(|S|2) operations per step, so computing bR this way is O(|S|6) [6]. One can

then find b� satisfying ( bR + b�) 2 IRL⇡0
✏ by solving a simple linear program.
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6.3.4 Summary

We study the problem of policy teaching, in which the goal is to elicit a desired

policy from an agent by providing rewards from a constrained space. Given unknown

agent rewards, we constructed an algorithm that applies the active, indirect elici-

tation framework to quickly narrow down the space of possible rewards consistent

with observed behavior. A centroid-based elicitation strategy guarantees convergence

to a solution after few interactions, and is made tractable by applying appropriate

sampling techniques.

Our analysis on policy teaching can be extended in a number of ways. Zhang et

al. [108] considered a heuristic elicitation strategy based on maximizing the slack in

IRL constraints. This approach does not provide logarithmic convergence guarantees,

but is simpler (the elicitation strategy only requires solving a linear program), and

achieved good empirical performance in simulation. Zhang et al. [108] also extended

the elicitation algorithm to handle situations in which the interested party only ob-

serves the agent’s actions instead of his policy, and in which the interested party only

wishes to influence the agent’s policy in a subset of the states.

Zhang and Parkes [107] considered the problem of value-based policy teaching, in

which the goal is to provide limited rewards to elicit a policy that maximizes the

interested party’s value with respect to the unknown agent rewards. With this objec-

tive, computing the optimal incentives becomes NP-hard. The IRL space is no longer

convex; while a similar active, indirect elicitation algorithm ensures convergence, log-

arithmic convergence cannot be guaranteed. Nevertheless, Zhang and Parkes [107]

proposed a mixed-integer program for solving modest-sized instances, and presented
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simulation results showing that slack-based elicitation heuristics were still e↵ective

and elicited the best possible policy after few interactions.

6.4 Discussion

Our solution to the policy teaching problem demonstrates how designing experi-

ments by reasoning about participants based on current models, and learning about

participants based on observed behaviors, can form an automated, iterative design

process that e↵ectively solves automated environment design problems. Using the

active, indirect elicitation framework, the elicitation strategy sets up a hypothesis

about an agent’s model parameters, and designs an experiment that either produces

a desired outcome (e.g., the agent follows the desired policy) or rejects the hypoth-

esis. If the hypothesis is rejected, the inference procedure refines the knowledge of

model parameters, to eliminate not only the particular parameter values being tested

but any model parameters that are inconsistent with observed behavior. Zhang et

al. [103] showed how to generalize Algorithm 6.1 and the centroid-based elicitation

strategy for other automated environment design problems, and extended the theo-

retical results about logarithmic convergence to any setting with observable decisions

for which the space of model parameters considered during the elicitation process is

convex.

While we assumed in the policy teaching setting that the agent’s decision or pol-

icy is directly observable through his actions, in practice we may only have access to

samples of agent actions. This implies, for example, that we cannot always set up a

hypothesis that directly proves that a particular set of parameter values is not the
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agent’s actual model parameters. In general, active, indirect elicitation algorithms

may need to adopt a more probabilistic framework, where observed actions and out-

comes are used to update beliefs over the underlying model parameters, but may

never completely eliminate certain model parameters from consideration. As an ex-

ample, Chapter 8 provides an active, indirect elicitation framework for automatically

synthesizing crowdsourcing workflows, that adopts probabilistic beliefs.

Implicit in the active, indirect elicitation framework is the assumption that obser-

vations of behavior can be used to infer the agent’s model parameters, and thus allow

designers to better understand how participants make decisions based on which to

more e↵ectively design using learned models. In practice, models may be inaccurate

and imprecise. The environment may be dynamic and involve changing factors that

are outside of a designer’s control but that nevertheless a↵ect participant behavior.

Some of these issues are explored in the next chapter, in which we consider an appli-

cation of the active, indirect elicitation framework for automatically designing human

computation tasks.

The active, indirect elicitation framework extends to settings with multiple par-

ticipants, for which information about how participants may interact or a↵ect one

another’s decisions can also be captured by an agent model and can likewise be re-

fined by learning from observed behavior in response to well-chosen experiments. But

with multiple participants there are new challenges, particularly in modeling the in-

teraction among participants and how participants’ individual actions can lead to

complex outcomes. For example, a designer may need to reason about how the var-

ied interests and abilities of participants can enable e↵ective collaborative problem
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solving, or reason about how network e↵ects may a↵ect the adoption of a new fea-

ture. Considering multiple agents also brings into focus a broader range of elicitation

processes, which includes the ability to select particular groups of users on which to

conduct an experiment.

While we assume that participants in social and economic systems on the Web are

myopically rational with respect to environment changes, participants can be forward

looking and take actions that aim to induce the designer to select more desirable

environment changes. For example, such situations have been observed in traditional

labor markets, in which paid for performance workers purposely reduced their output

to prevent the employer from using output measures to infer their actual ability and

increase quotas or reduce pay.10 When this occurs, the interested party cannot make

inferences based on observed actions under the assumption that agents are acting

straightforwardly, because the revealed information may not truthfully represent the

agent’s model parameters.

In certain settings, the interested party may be able to avoid such issues by com-

mitting to a goal (e.g., eliciting behaviors leading to a goal value that is above a set

threshold) and by only exploring environment changes that benefit both the agent

and the interested party. The interested party may undertake an active, indirect

elicitation process, and either discover an environment change under which the agent

behaves as desired, or if not then give up and reset to the base environment. If

the agent prefers a potential environment change over the base environment, he may

nevertheless reveal su�cient information through actions to ensure that a change

10This is often referred to as the ratchet e↵ect in economics, and occurs when an employer cannot
commit to not using revealed information to exploit a worker over time.
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benefitting both parties is made.

In general, handling such issues requires reasoning carefully about the incentives of

participants and the interested party. Whenever possible, an automated environment

design procedure should aim to discover designs that create additional value and

benefit both parties, and in the process mitigate concerns about non-straightforward

behavior. As an example in which we try to achieve this goal, we consider in the next

chapter the problem of automatically designing a human computation task, where we

seek to identify task designs that lead to higher quality output at a fixed unit rate of

pay.



Chapter 7

Automated Task Design

As discussed in earlier chapters, a central challenge in designing human computa-

tion systems is understanding how to construct decision environments that e↵ectively

attract participants and coordinate the problem-solving process. At a high level, the

design of a human computation system consists of two components. One component

is the design of incentives—social rewards, game points, and money—that helps to

attract a crowd and encourage high quality work. The other component is the organi-

zation of individuals—the selection of participants, assignment of tasks, and design of

interfaces and workflows—that helps to usefully harness individual e↵orts to advance

a system’s purpose. From the designer’s perspective, the goal is to maximize the rate

and quality of output, while minimizing the amount of human e↵ort required and the

cost incurred.

In this chapter, we apply ideas from automated environment design to tackle a

common computational environment design problem that requesters face on Amazon

Mechanical Turk: how should a task be designed so as to induce good output from

172
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workers? This question exemplifies both the incentive and organizational aspects of

the design challenge. In posting a task, a requester decides how to break down the

task into unit tasks (called HITs, for human intelligence tasks), how much to pay for

each HIT, and how many workers to assign to each HIT. These design decisions shape

the task environment, which may a↵ect the rate at which workers view and complete

unit tasks, as well as the quality of the resulting work.

There are a number of challenges involved in e↵ectively designing a task for posting

on Mechanical Turk. As we saw in the nutrition analysis example in Chapter 2, a

notable problem is that the e↵ect of design on the rate and quality of work is often

imprecisely known a priori. Any design’s e↵ectiveness is likely dependent on the

specifics of the task, and also the quality metric specified. While a designer may

have some prior knowledge and be able to experiment with di↵erent designs, the

design space is exponential in the number of design parameters while the number

of experiments that can be performed is relatively small. Furthermore, Mechanical

Turk is an inherently noisy and dynamic system, so any measurements obtained are

a↵ected in part by system conditions. Moreover, some statistics of interest, such as

the number of active workers currently looking for tasks to perform, are unobservable

by the requester.

Leveraging the active, indirect elicitation framework of automated environment

design, we introduce a general approach for automated task design. In this approach,

we construct models for predicting the rate and quality of work. These models are

trained on worker outputs over a set of designs, and are then used to optimize a task’s

design. We demonstrate our approach on an image labeling task, for which we aim
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to maximize the number of quality labels received, subject to budget constraints. We

consider two measures of quality: one based on the number of distinct labels received,

and another based on the number of distinct labels received that match an external

gold standard.

In our experiments, we find that simple models can accurately predict the output

per unit task for both quality metrics, and that the models generate di↵erent designs

depending on the quality metric we care about. For predicting the rate of work, we

observe that a task’s completion time is correlated with the amount of work requested

per dollar paid, and depends on the time of day when a task is posted. But despite

these e↵ects, we find that due to varying system conditions on Mechanical Turk, the

task completion time is nevertheless di�cult to predict accurately and can vary signif-

icantly even for the same design. Focusing on using the quality prediction models for

design, we find that for the same budget and rate of pay, optimized designs generated

by our models obtain significantly more quality tags on average than baseline designs

for both quality metrics.

Section 7.1 reviews related work. Section 7.2 describes the Mechanical Turk mar-

ketplace and introduces a general approach for automated task design. Section 7.3

describes the image labeling task. Before exploring di↵erent designs for this task,

Section 7.4 details an experiment to capture the amount of variability on Mechanical

Turk, where we post the same task design multiple times under varying system con-

ditions. Section 7.5 discusses our initial experiments and reports on the performance

of models for predicting the rate and quality of work. We consider optimizing the

task design based on trained models in Section 7.6, and compare the performance
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of optimized designs to baseline designs that pay at the same rate. Section 7.7 dis-

cusses the implications of our experiments for automated task design and outlines the

possibilities and challenges moving forward.

7.1 Related Work

Studies on the e↵ect of monetary incentives on worker performance found that

monetary incentives attracted Mechanical Turk workers (Turkers) to perform more

HITs of a task [32, 66, 78, 11] but did not a↵ect the quality of work [66, 78]. In

our image labeling task, we also find that tasks are completed more quickly at higher

rates of pay. While we find that we can accurately predict the quality of work without

factoring in compensation, we do not study the e↵ect of pay on work quality and focus

instead on finding e↵ective designs that elicit good output at a fixed rate of pay.

A number of studies have also considered the e↵ect of non-monetary interventions

on work quality. Dow et al. [23] showed that asking Turkers to self-assess their work

against key performance criteria can improve work quality. Shaw et al. [85] showed

that when coupled with monetary incentives, asking Turkers to think about their

peers’ responses can also improve work quality. Findings on the e↵ect of intrinsic

motivation on work quality are mixed; whereas Chandler and Kapelner [12] found

that framing a task as being for a good cause did not induce Turkers to produce

higher quality solutions, Rogstadius et al. [78] found in their experiments that doing

so significantly improved solution quality.

Other studies have considered designing Turk tasks by organizing workers and

aggregating output. Snow et al. [87] considered a number of di↵erent natural language
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annotation tasks, and showed that annotations based on the majority output among

a group of Turkers is comparable in quality to expert annotations, but is cheaper and

faster to obtain. Su et al. [90] considered the e↵ect of qualification tests on worker

output and showed that workers with higher test scores achieve higher accuracy on the

actual task. In an orthogonal direction, this chapter focuses on e↵ectively distributing

work across identical, parallel subtasks.

Human-powered database systems that recruit a crowd to perform operations such

as filters, sorts, and joins are often concerned with e�ciency and interested in opti-

mizations that make better use of human e↵ort. Marcus et al. [63, 62] introduced a

declarative workflow engine called Qurk and proposed optimizations such as batch-

ing tasks and pre-filtering tables before joins. Parameswaran et al. [70] introduced

a crowdsourced database system called Deco, and demonstrated that the choice of

query execution plan can significantly a↵ect performance. In these systems, having

automated procedures that can learn and reason about the crowd’s performance on

tasks can potentially provide a means for query optimization, that seeks to identify

e�cient, crowd-tailored query plans.

Several works have applied decision-theoretic planning techniques to control the

request for additional work in human computation systems. Kamar et al. [43] demon-

strated how predictive models can be used to control the request of additional votes for

classifying celestial objects in Galaxy Zoo. Dai et al. [16, 17] introduced TurKontrol,

a system for controlling the request of additional voting or improvement tasks based

on costs and the inferred work quality. In this chapter, we focus on a complementary

challenge of learning about workers to best design individual tasks.
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7.2 Automated Task Design on Mechanical Turk

7.2.1 Mechanical Turk

We first review the design environment presented by Amazon Mechanical Turk

(www.mturk.com). Mechanical Turk is a crowdsourcing marketplace for work that re-

quires human intelligence. Since its launch in 2005, a wide variety of tasks have been

posted and completed on Mechanical Turk. Example tasks include audio transcrip-

tion, article summarization, and product categorization. Increasingly, Mechanical

Turk is also attracting social scientists who are interested in performing laboratory-

style experiments [33].

On Mechanical Turk, a requester posts jobs for hire that registered workers can

complete for pay. A job is posted in the form of a group of HITs where each HIT

represents an individual unit of work that a worker can accept. A requester can

seek multiple assignments of the same HIT, where each assignment corresponds to a

request for a unique worker to perform the HIT. The requester sets the lifetime during

which the HITs will be available and the amount of time a worker has to complete

a single HIT. The requester can also impose a qualification requirement for a worker

to be eligible to perform the task.

When choosing a task to perform, a worker is presented with a sorted list of

available jobs, where for each job the title, reward, expiration time, and number of

HITs available are displayed. The list can be sorted by the number of HITs available

(the default), the reward, creation time, or expiration time. Workers can see a brief

task description by clicking the title, or choose to “view a HIT in this group” to see
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a preview of a HIT. At this point the worker can choose to accept or skip the HIT. If

the HIT is accepted, it is assigned to that worker until it expires or is submitted or

abandoned. Workers are not provided with additional information on the di�culty

of tasks by the system, although there is evidence of workers sharing information on

tasks and requester reputation via browser extensions and on Turk-related forums.1

Upon receiving completed assignments, the requester determines whether to ap-

prove or reject the work. If an assignment is rejected, the requester is not obligated

to pay the worker. While tasks vary greatly in pay and the amount of work required,

the reward per HIT is often between $0.01 to $0.10, and most individual HITs require

between a few seconds to a few minutes to complete. There are thousands of job re-

quests posted at any given time, which correspond to tens and hundreds of thousands

of available HITs. For each HIT completed, Amazon charges the requester 10% of

the reward amount or half a cent, whichever is more.

7.2.2 An Automated Approach to Task Design

An exciting aspect of Mechanical Turk as a human computation platform is that

it allows a requester to post arbitrary tasks for a large population of workers to com-

plete. A requester has the freedom to design his or her task as desired, with the

aim of eliciting good e↵ort from workers toward generating useful work. The task

design allows a requester to optimize tradeo↵s among the rate of work, the quality

of work, and the cost of work. While some of the qualitative aspects of tradeo↵s are

well understood (e.g., paying more will increase the rate of work, both because more

1See http://turkopticon.differenceengines.com/ and http://www.turkernation.com/,
respectively.
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workers will want to accept HITs and that each worker will want to complete more

HITs [32]), optimizing the design to achieve particular tradeo↵s requires a quantita-

tive understanding of the e↵ect. The e↵ect of non-monetary aspects of task design

(e.g., the division of a task into HITs and assignments) on the quality and quantity of

work is less well understood, even qualitatively. Such e↵ects are likely to be specific

to the task at hand, and depend on a particular requester’s goals and constraints.

We advance an automated approach to task design based on the active, indirect

elicitation framework of automated environment design. For a given task, we first

experiment with di↵erent designs and use the workers’ output and measurements of

system conditions to learn a task-specific model of the e↵ect of design on the rate

and quality of work.2 We then use learned models to optimize for good designs

based on their predictions. From the automated environment design perspective, we

are interested in whether a model learned from observing worker performance can

e↵ectively guide the search for better designs.

In the rest of the chapter, we consider as a case study the problem of automatically

designing an image labeling task. We describe the task and its design space in the

next section, and then apply the following steps to discover an e↵ective design:

1. Estimate variances in target metrics with a baseline design (Section 7.4)

2. Explore the design space with experiments (Section 7.5)

3. Fit models to the experimental data (Sections 7.5.1 and 7.5.2)

2In the general active, indirect elicitation framework, learned information can be incorporated
after each experiment and can inform which experiments to conduct thereafter. For simplicity, the
elicitation strategy we consider in this setting simply picks a set of experiments to run in batch. The
inference procedure then updates the model after all experiments are completed.
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Figure 7.1: A HIT of the image labeling task

4. Optimize the target metrics given the fitted models (Section 7.6.1)

5. Run experiments using the optimized task parameters to validate our approach

(Section 7.6.2)

7.3 The Image Labeling Task

We consider an image labeling task in which workers are asked to provide relevant

labels (or equivalently, tags) for a set of images. Each HIT contains a number of

images, and for each image, requests a particular number of labels for that image.
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Workers are informed of the number of images and number of labels required per

image within the guidelines provided in the HIT, and are asked to provide “relevant

and non-obvious tags.” Workers can provide tags containing multiple words, but

this is not required nor specified in the instructions. See Figure 7.1 for a sample

HIT that requests three labels for one image. Example labels for this image include

“NASCAR,” “race cars,” “red,” “Dale Earnhardt Jr.,” “eight,” and “tires.”

We obtained a large dataset of images from the ESP game,3 which contains 100,000

images and labels collected through gameplay. From this dataset, we use images that

contain at least ten labels, of which there are 57,745. Of these, we have used 11,461

images in our experiments. Any particular image we use appears in only one HIT.

We consider two metrics for judging the quality of labels received from workers.

One metric counts the number of unique labels received, and is thus concerned with

the number of labels collected. The other metric counts the number of labels received

that also appear as labels in our gold standard (GS) from the ESP dataset. Since the

gold standard labels are those most agreed upon in the ESP game, they are labels

that are likely to capture the most noticeable features of an image.

To compute these metrics, we first preprocess labels to split any multi-word labels

into multiple single-word labels and convert upper case letters to lower case. We then

apply the standard Porter Stemming Algorithm [75] to normalize worker and gold

standard labels. This ensures that labels such as “dog” and “dogs” are considered

the same label, which is useful for our measure of uniqueness and for comparing

received labels to the gold standard. Finally, we remove stop words such as “a” and

3
http://www.cs.cmu.edu/

~

biglou/resources/
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“the,” which account for 0.9% of gold standard labels and 4.6% of distinct labels

collected.4

In designing the image labeling task, a designer can decide on the reward per

HIT, the number of images and tags requested per image per HIT, the total number

of HITs, the number of assignments per HIT, the time allotted per HIT, and the

qualification requirements. The requester’s goal is to maximize the number of useful

labels received as judged by the quality metric of interest, subject to any time and

budget constraints. For example, a requester may have $5 to spend, and aims to

collect as many unique tags as possible within the next six hours. One can compare

two di↵erent designs based on the amount of useful work completed within a certain

time frame, or by examining the tradeo↵ between the work completed per dollar spent

and the rate of work.

While each design variable may have an e↵ect on output, we focus our e↵orts on

designing the reward per HIT, the number of images per HIT, the number of labels

requested per image, and the total number of HITs. For our experiments, we fix

the time allotted per HIT at 30 minutes (the default), but do not expect workers

to spend more than a few minutes per HIT. We fix the number of assignments per

HIT at 5; this gives us multiple sets of labels per image and will enable a study of

the marginal e↵ects of recruiting an additional worker to a HIT on the quality of

output in future research. We require all workers to have an approval rate of at least

95%, such that only workers with 95% or more of their previously completed HITs

approved are allowed to work on our task.

4We used a short, conservative list of stop words from http://www.textfixer.com/resources/.
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When posting tasks, we collect measurements of worker views and accepts over

time, the amount of time a worker spends on a HIT, and the value of output as judged

by our quality metrics. We also collect information on system conditions such as the

time of day, the number of HITs available on Turk, the page position of our posting in

di↵erent list orderings, and the number of completed HITs overall in Mechanical Turk.

The last statistic is not available directly, and is estimated by tracking the change in

the number of HITs available for tasks in the system at two minute intervals.

7.4 Measuring Output Variability

Before considering the e↵ect of design on output, we first report on the amount of

variability in the output from Mechanical Turk when using a fixed task design. This

lets us know how much variance to expect from the system, and allows us to study

the e↵ect of system conditions on output.

By observing and following common practice on Mechanical Turk, we selected a

design for which each HIT has a reward of $0.01, contains one image, and requests

three labels. We posted a group of 20 HITs at a time, and posted 24 groups of the

same task design from 4/12/2010 to 4/20/2010. Each group of HITs was allowed

to run for approximately eight hours, and groups of HITs were posted sequentially

around the clock. All groups had at least 75% of the assignments completed, with 18

of the 24 groups finishing before the time expired.

Table 7.1 summarizes the mean and standard deviation of the rate and quality

of output along a number of measurements.5 The task took 5 hours and 30 minutes

5We measure the completion time of an unfinished task as the time until the job expires (⇠8
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Statistic Mean Standard Deviation

Time to 50% completion (min) 129.54 95.13 / 73%
Time to 100% completion (min) 330.44 124.93 / 38%
Total # of unique tags 264.56 18.06 / 7%
Total # of unique tags in GS 98.56 9.50 / 10%
# of unique workers 13.33 2.99 / 22%
Time to complete a HIT (s) 74.79 25.12 / 34%

Table 7.1: Statistics on a group of image labeling tasks with 20 HITs that was posted
24 times between 4/12/2010 and 4/20/2010. Each HIT pays $0.01 and requests three
labels for one image.

to complete on average, with the quickest run completing in just under 52 minutes

and the longest run taking 8 hours and 37 minutes. Unlike task completion time, the

number of unique labels received and the number of such labels that are in the gold

standard vary much less, suggesting that the quality of output from workers remains

relatively constant under di↵erent system conditions.

One possible explanation for the significant variation in completion time is that the

activity level of workers on Mechanical Turk varies over time. While we do not know

how many workers are active on Mechanical Turk at any given time, it is reasonable

to think that activity level is correlated with time of day. That is, the system is likely

more active during particular “work hours” than at other times. In Figure 7.2 we

plot the relationship between the posting time and the time by which 50% or 100%

of the tasks were completed. We observe that jobs posted between 6AM GMT and

3PM GMT were completed most quickly; this corresponds to posting between 2AM

to 11AM EST in the United States and 11:30AM to 8:30PM IST in India, the two

countries that provide 80% of workers on Mechanical Turk [39]. Given that these

hours), and only measure the number of tags and unique workers for completed tasks.
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Figure 7.2: The e↵ect of posting time on time until 50% and 100% completion. Bins
depict the average completion time of runs posted within a three hour period and
error bars represent the standard error. Experiment conducted from 4/12/2010 to
4/20/2010.

times correspond to waking hours in India, we expect most of the workers interested

in this task to be from India. We geolocated workers based on their IP addresses

by using the Linux shell command whois. Of the IP addresses for which we can

determine the country of origin (247 out of 307), 62% were from India and 23% were

from the US, which is consistent with our intuition.

7.5 Initial Experiments and Behavioral Models

From the variability measurements we learned that the completion time of a task

may be highly variable, and may be di�cult to predict accurately even for a fixed

design. While some of the time variability can be explained by the time of day

in which the task is posted, there is still a substantial amount of residual noise. In
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contrast, we find that the quality of work does not vary much with system conditions.

Based on these observations, we expect that task design may have a large e↵ect on

the quality of work, but will only partially influence the rate of work.

In order to understand the e↵ect of design on worker output, we developed models

for predicting the quality of labels received per HIT and the completion time. We

performed a series of 38 initial experiments—which serves as our training data—in

which we varied the task’s design (or configuration) by changing the reward (R), the

number of images (Npic) and number of labels per image per HIT (Ntag), and the num-

ber of HITs (Nhits). We considered rewards in the range of $0.01 and $0.10 per HIT,

and varied the number of images and tags requested between 1 and 10. In choosing

configurations, we aimed to cover a large range of values along each dimension, and to

vary the total number of tags requested per dollar pay, i.e., NpicNtag/R. For the most

part we considered jobs that consist of groups of 20 HITs (in 31 configurations), but

also included a few jobs containing 30, 150, 500, and 1000 HITs, respectively. Con-

figurations were randomly ordered and allowed to run until completion. They were

automatically posted in series over a three week period from 2/2/2010 to 2/24/2010

with no gaps between postings. We fixed the number of assignments (Nasst) requested

per HIT at five, and required all workers to have an approval rate of at least 95%.

In considering models for predicting the rate and quality of work, we measured

the goodness of fit by reporting the coe�cient of determination (R2), the root mean

square error (RMSE), the root relative square error (RRSE), and the mean absolute

error (MAE), between predicted and actual output. All statistics are computed for

the hold-out data via leave-one-out cross-validation.
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7.5.1 Predicting Label Quality

We consider models for predicting the average number of quality labels received

from workers. A summary of model coe�cients and fitness is presented in Table 7.2.

Predicting Unique Tags

For predicting the average number of unique tags that are received per assignment

(Nunique),6 we hypothesized that we would experience diminishing marginal returns

as we request more tags per image, suggesting the following model:7

Nunique = �Npiclog(Ntag) + ✏ (7.1)

We find that the model’s predictions are somewhat accurate, with R2 = 0.77. We

also considered a model without diminishing marginal returns in the number of labels

requested:

Nunique = �NpicNtag + ✏ (7.2)

Surprisingly, we observe a significantly better fit, with R2 = 0.96; see Figures

7.3(a) and 7.3(b) for a comparison between the two models’ predictions. The model

without diminishing returns suggests that the proportion of overlap in tags entered

across the five assignments is invariant to the number of tags requested, and that

at least within the range of values in our training data we do not observe workers

running out of tags to describe an image.

6We compute the per assignment contribution by dividing the number of quality tags collected
per HIT by the number of assignments, which is fixed at five.

7When taking a log, we smooth the input data by adding 1 to the number of tags (Ntag) to
ensure the feature has weight instead of evaluating to zero.
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(a) number of unique tags based on dimin-

ishing returns in tags.

(b) number of unique tags based on total

number of tags requested.

(c) number of unique tags in gold standard

based on diminishing returns in tags.

(d) number of unique tags in gold standard

based on total number of tags requested.

Figure 7.3: Predicted vs. actual number of quality tags received per assignment
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Predicting Unique Tags that are in Gold Standard

For predicting the average number of unique tags received per assignment that

are in the gold standard (Ngs), we again hypothesized that there would be an e↵ect

of diminishing marginal returns as we request more tags per image. Since there is a

limited number of tags per image within the gold standard with which the collected

tags can match, we would expect the e↵ect of diminishing returns to be much stronger

than for our other quality metric. We consider the following model:

Ngs = �Npic log(Ntag) + ✏ (7.3)

The prediction is highly accurate, with R2 = 0.96. The model’s fit is significantly

better than the fit of a model without diminishing returns (R2 = 0.77); see Figures

7.3(c) and 7.3(d).

7.5.2 Predicting Completion Time

Continuing, we consider models for predicting completion time based on a task’s

design. Table 7.3 provides a summary of model coe�cients and fitness.

Intuitively, a task is more attractive if the pay is high but the amount of work is

low. Given similar amounts of work, we would expect the number of tags requested

per dollar pay (rate of pay) to be correlated with a task’s completion time. We

consider all 31 configurations with 20 HITs from our training data, and predict the

50% completion time (T1/2) and 100% completion time (T ) using the following model:

T = �0 + �1
NpicNtag

R
+ ✏ (7.4)
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We see that the rate of pay is correlated with the completion time, with R2 =

0.68 for predicting 100% completion. The correlation is weaker for predicting 50%

completion time, with R2 = 0.45.

From the results of our variability study, we also expect the time of posting to

a↵ect the completion time. As we saw in Figure 7.2, the e↵ect of time of day on

completion time is sinusoidal. To incorporate this e↵ect into our model, we convert

the time of day to an angle t between 0 and 2⇡, corresponding to 0:00 GMT and

24:00 GMT respectively, and then encode it as two units, cos(t) and sin(t). This

encoding scheme ensures that each time of day has a distinct representation and that

the values for times around midnight are adjacent. Adding these time variables, we

fit the following model:

T = �0 + �1
NpicNtag

R
+ �2 cos(t) + �3 sin(t) + ✏ (7.5)

We observe an improvement in the fit, with R2 = 0.79 for 100% completion time,

and R2 = 0.70 for 50% completion time; see Figure 7.4 for a comparison between

the models’ predictions. This improvement is more significant for predicting 50%

completion time (R2 from 0.45 to 0.70) than for 100% completion time (R2 from 0.68

to 0.79). One possible explanation is that the e↵ect of the posting time diminishes

when HITs are posted for a longer time frame that includes other times of the day.

The fit of these models suggests that the rate of pay and the time of posting are

correlated with the completion time, but that there is still a substantial amount of

unexplained variance. To use these models for prediction and design, it would be

useful to consider not only the expected completion time, but also to be mindful of

the variance in the prediction. Furthermore, the current models are only trained on
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(a) time to 50% completion based on rate

of pay.

(b) time to 50% completion based on rate

of pay and posting time.

(c) time to 100% completion based on rate

of pay.

(d) time to 100% completion based on rate

of pay and posting time.

Figure 7.4: Predicted vs. actual time until 50% and 100% completion (in seconds).
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configurations with 20 HITs, and do not incorporate the e↵ect of varying the number

of HITs. We leave the exploration of these directions for future work, and for now

focus on using the quality prediction models for design.

7.6 Design Experiment

The initial experiments provide us with an understanding of how workers respond

to di↵erent designs and thus serve as the building blocks for e↵ective task design. Even

at the same level of desirability to workers—e.g., as measured by the pay per tag, or

more generally, the estimated pay per hour—we expect some designs to induce more

quality output than other designs. We now investigate whether the learned models

can help us make informed design decisions for particular quality metrics of interest.

7.6.1 Design Optimization and Experiment Setup

We consider a simple design experiment in which we compare di↵erent designs

at a fixed pay per tag. We focus our comparison on the number of quality labels

received (per dollar spent), and do not concern ourselves with the rate at which work

completes.8 Fixing the rate of pay allows us to compare designs based on the kind of

work they request, and removes the e↵ect of assigning more work at a lower rate of

pay to get more quality labels from confounding the comparison.

We consider experiments at two pay rates: a low rate that pays 1¢ for every

three tags, and a high rate that pays 1¢ per tag. For each pay rate, we compare the

8In practice, we can set the rate of pay based on how quickly we want work to get done. But
since time is not considered in this experiment, fixing the rate of pay allows for a fair comparison
between designs.
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output of baseline designs to designs optimized for each of our two quality metrics.

Baseline designs are chosen by observing common practice in image labeling tasks on

Mechanical Turk, which typically requests three or four tags for a single image within

each HIT. Each design is given a budget of $5, which must account for fees paid to

Amazon as well as payments to workers. As in our initial experiments, the number

of assignments per HIT (Nasst) is fixed at 5.

To optimize the task design, we choose values for the reward per HIT (R), num-

ber of images per HIT (Npic), number of tags requested per image (Ntag), and the

total number of HITs (Nhits), in order to maximize the total number of quality tags

received as predicted by the model with the best fit, subject to budget and rate of

pay constraints. We consider rewards in the range of $0.01 to $0.10 per HIT, and

the number of images and tags requested per image in the range of 1 to 10. For

example, the following formulation captures the optimization problem for finding a

design that maximizes the total number of unique tags received as predicted by our

model, subject to a $5 budget and a pay rate of $0.01 per tag:

max
R,N

pic

,N
tag

,N
hits

0.8426NpicNtagNhitsNasst (7.6)

NHIT Nasst(R + max(0.1R, 0.005))  5 (7.7)

R/NpicNtag = 0.01 (7.8)

Constraint 7.7 ensures that the cost of the design stays within budget, and con-

straint 7.8 ensures that the pay per tag is $0.01. The max term in the budget

constraint corresponds to Mechanical Turk’s per assignment fees, which is 10% of the

reward or half a cent, whichever is more.

Table 7.4 summarizes the baseline and optimized designs for both pay rates and
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quality metrics. For the low pay rate, we consider a baseline design that requests

3 tags for one image, which is the same design that we had adopted for measuring

variability (but with more HITs). For maximizing the number of unique tags collected,

we see that the optimized design attempts to save on posting fees by putting more

work into a HIT and paying more per HIT, which allows for more tags to be requested.

For maximizing the number of unique tags that are in the gold standard, the optimized

design avoids diminishing returns by requesting 1 tag per image, and also saves on

posting fees by putting more work in a single HIT.

For the high pay rate, we consider a baseline design that requests 4 tags for one

image. Here the optimized designs for the two quality metrics are the same. More

work is put into each HIT to save on posting fees (hitting the upper bound on reward

per HIT) and only 1 tag is requested per image to avoid diminishing returns.

Figures 7.5(a) and 7.5(c) show the models’ predictions with bars representing the

95% prediction interval for these designs. We see that the di↵erence in the predicted

numbers of unique tags per dollar spent between baseline and optimized designs is

small, since the benefits of the optimized design comes only from savings in posting

fees. By avoiding diminishing returns in tags, designs optimized for the numbers of

unique tags that are in the gold standard are expected to perform significantly better.

We post five groups of each baseline and optimized design in round-robin order.

Each group ran initially for 6 hours and was allowed to finish at a later time if needed.9

9We initially posted the baseline designs between 3/25/2010 and 3/29/2010, and the optimized
designs between 4/22/2010 and 4/26/2010. While almost all trials of the high pay configurations
completed within this time frame, many of the low pay configurations did not; these configurations
were ran to completion between 4/29/2010 and 5/7/2010.



Chapter 7: Automated Task Design 198

(a) Predicted number of unique tags per dol-

lar spent.

(b) Actual number of unique tags per dollar

spent.

(c) Predicted number of unique tags in gold

standard per dollar spent.

(d) Actual number of unique tags in gold

standard per dollar spent.

Figure 7.5: Predicted and actual number of quality tags received per dollar spent for
baseline and optimized designs. Error bars in predictions indicate the 95% prediction
intervals, and error bars in results represent the standard error over five runs of each
design.

7.6.2 Results

Figures 7.5(b) and 7.5(d) show the average number of unique tags and the average

number of unique tags in the gold standard received per dollar spent, with bars

capturing the standard error of the mean.
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In all comparisons, we find that the optimized designs received more quality tags

than baseline designs. The optimized designs for unique tags received 38% more tags

in the low pay condition, and 33% more in the high pay condition. For collecting

unique tags that are in the gold standard, the optimized designs received significantly

more quality tags than the baseline comparisons, with 71% more in the low pay

condition and 60% more in the high pay condition. For all baseline and optimized

designs, the actual number of gold standard tags received is very close to our model’s

predictions (within 11%), and well within the prediction intervals.

Interestingly, our optimized designs received significantly more unique tags than

our models predicted: 28% more in the low pay condition and 38% more in the high

pay condition. One possible explanation is that our model underpredicts the number

of unique tags when the number of tags requested per image is low, as is the case in

our designs. After checking the model’s predictions on the training data, we noticed

that our model underpredicts for 10 out of the 11 configurations that request one

or two tags per image (by 15% on average). Our model also underpredicted the

number of unique tags obtained by the baseline in the low pay condition by 27%,

suggesting that the model may need to be refined to improve prediction accuracy.

Nevertheless, the information contained in the model was still helpful in discovering

optimized designs that significantly outperform the baseline designs.

7.7 Discussion

By collecting data about how workers respond to designs in our initial experiments,

we are able to construct models that can accurately predict worker output in response
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to di↵erent designs. These models can then be used to optimize a task’s design,

subject to designer constraints such as budget and rate of pay, to induce quality

output from workers. The results from our experiments show that designs that are

optimized based on learned models obtain significantly more high quality labels than

baseline comparisons.

There are a number of possible extensions to this work. We would like to under-

stand the e↵ect of distributing work across multiple assignments on the quality of

output, and to include the number of assignments as a design variable. We are also

interested in revisiting models for predicting the rate of work, and incorporating them

to design with respect to time-related tradeo↵s. One possible direction is to learn the

relative rates at which work completes for di↵erent designs, which may be su�cient

for accurately predicting the relative output between designs. Furthermore, while we

focus here on the design of a task with identical, parallel subtasks, we are interested

in developing a general approach for automating the design of human computation

algorithms and workflows. We discuss this in the next chapter.

We believe the active, indirect elicitation approach of learning from observations

of behavior to optimize designs can be e↵ectively used to design a variety of tasks,

with respect to di↵erent performance metrics, and in richer design spaces. While

linear regressions were used for this work, other modeling approaches and methods

from machine learning and statistics can be incorporated into the design process.

The models of behavior need to be specific to the particular task and performance

metric at hand. Constructing accurate models will likely require drawing from an

understanding of the task domain and the population of workers, and learning from
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experimentation.

In addition to accurate models, we need methods that help to discover e↵ective

designs quickly after only a few experiments. While we trained our models on a set of

manually picked designs and then used these models to optimize the design, we can

develop elicitation strategies that automatically pick subsequent experiments in a way

that drives the search for better designs. In the next chapter, we develop a general

method for automatically synthesizing workflows in which the system optimizes the

choice of experiments to maximize the value of information obtained.



Chapter 8

Automated Workflow Synthesis

In the last chapter, we introduced an approach for automating the design of human

computation tasks with identical, parallel subtasks. In this chapter, we develop a

general framework for automating the synthesis of human computation algorithms

and workflows involving heterogeneous tasks.

There are often many ways to coordinate a crowd to solve a problem. Di↵erent

human computation algorithms or workflows embody di↵erent approaches, and may

utilize distinct tasks or allocate e↵ort di↵erently among the same tasks. Given a space

of possible human computation algorithms for solving a problem, figuring out which

algorithms are the most e�cient requires understanding how the crowd performs on

individual tasks within an algorithm and how this in turn influences the quality of the

final solution and the cost of e↵ort incurred. The goal of the designer is to discover

e�cient workflows that make e↵ective use of human e↵ort to achieve high quality

solutions, and in doing so take into account crowd characteristics and any time or

resource constraints the designer may face.

202
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Since inputs from the crowd are inherently noisy and submitted answers can be

incorrect, the output from any task is probabilistic. An algorithm may apply quality

control mechanisms that use redundancy or voting to mitigate potential errors in

tasks, which helps to mitigate errors in the final solution but incurs additional cost

of e↵ort. Choosing an algorithm that makes e�cient use of human e↵ort involves

reasoning about which tasks to employ and how much e↵ort to devote to each task.

These decisions rely on understanding human performance on individual tasks, and

on understanding how the probabilistic and possibly erroneous outputs from each task

a↵ect the final solution, either directly or through other tasks that take its output as

their input.

The crowd’s performance on any given task is often imprecisely known a priori,

and the space of possible algorithms for solving a problem—involving di↵erent com-

binations of tasks and allocations of e↵ort to tasks—is potentially very large. It is

often costly if not infeasible for a designer to empirically compare a large number of

algorithms, or to conduct a large number of experiments to learn about the crowd’s

performance on di↵erent tasks. In practice, experiments are often conducted on an

ad hoc basis, with designers relying mostly on their intuitions and common practices

to determine which algorithms to deploy. Even when deployed algorithms e↵ectively

coordinate a crowd to solve a problem, they are not necessarily e�cient and may not

make the best use of human e↵ort.

To enable designers to discover more e�cient algorithms and workflows with less

experimentation and manual e↵ort, we develop a general framework for automated

workflow synthesis. Leveraging the active, indirect elicitation framework of automated
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environment design, we construct models of human performance on tasks for the

purpose of improving a workflow. Over repeated interactions, an automated system

selects experiments to refine current models, with the intent of quickly discovering

an e�cient workflow built on (a subset of) tasks that meets desired objectives and

satisfies resource constraints.

To learn quickly, we develop a value of information based elicitation strategy that

at any time chooses which task to experiment on based on which experiment is ex-

pected to provide information that best informs the choice of algorithm for solving

a problem. This is done by comparing the expected di↵erence in solution quality

between the best algorithm generated using current information and algorithms op-

timized based on refined information that may be learned from experimentation. In

order to reason about the e↵ect of human task performance on the overall performance

of an algorithm, we develop a simulation-based approach that uses available models

to estimate the cost and solution quality associated with an algorithm. This allows us

to compare workflows without having to deploy them, and is used for synthesizing the

best workflow given currently available knowledge and for deciding which experiments

to conduct.

We illustrate the e↵ectiveness of our approach in a case study on human sorting

tasks, in which human judgment is used to determine the ordering among objects

being sorted. We focus on a class of quicksort algorithms in which pivot selection

and pairwise comparison tasks are performed by the crowd, and consider the problem

of determining how many workers to devote to each task at each level of recursion.

Experimental results show that knowledge of crowd performance on tasks allows us
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to better optimize for algorithms that are tailored to the crowd and the designer’s ob-

jective. Results also show that our elicitation strategy reveals better algorithms more

quickly than selecting experiments to uniformly reduce uncertainty across models.

Section 8.1 reviews related work. Section 8.2 provides a model of the automated

workflow synthesis problem. Section 8.3 introduces a general approach for automated

workflow synthesis based on the active, indirect elicitation framework of automated

environment design. We introduce a simulation-based approach for evaluating algo-

rithms and present an elicitation strategy that refines current knowledge by selecting

experiments to maximize the expected value of information. Section 8.4 describes

the human sorting task. We introduce models for predicting human performance on

pivot selection and pairwise comparison tasks, and provide a local search procedure

for synthesizing sorting workflows. Section 8.5 presents experimental results. Section

8.6 discusses a number of possible extensions and directions for future work.

8.1 Related Work

A number of studies in human computation have developed optimization pro-

cedures and control strategies for enabling more e�cient computation with humans

and machines. For example, Shahaf and Horvitz [84] studied generalized task markets

with human and machine problem solvers, and introduced formulations for optimally

assigning and sequencing tasks to humans and machines to maximize the utility de-

rived from the final solution. While we also optimize workflows by reasoning about

e↵ective combinations of tasks, we consider simultaneously the problem of learning

about human performance on tasks. In addition, by utilizing simulations and local
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search algorithms, we are able to handle optimization problems over complex work-

flows in which the quantitative relationship between the crowd’s performance on tasks

and the quality of the final solution is di�cult to capture analytically.

Drawing on techniques from decision-theoretic planning, Dai et al. [16, 17] intro-

duced a framework for optimizing workflows by controlling at run-time the request

for additional work (e.g., for the purpose of redundancy) based on costs and the in-

ferred work quality. Recent work by Lin et al. [57] showed that a similar approach

can be used to dynamically switch between workflows, which can sometimes lead to

improvements over using a single workflow. In these works, the structure of the work-

flow or the set of workflows considered is predetermined and the goal is to e�ciently

control the computation given fixed designs. In contrast, our framework for auto-

mated workflow synthesis aims to tackle the complementary problem of discovering

e�cient designs in the first place by optimizing over the space of possible workflows,

which determines the overall structure of the optimized algorithm and the allocation

of e↵ort within.

A number of studies have focused on enabling e�cient human computation in the

context of human-powered database systems that recruit a crowd to perform opera-

tions such as filters, sorts, and joins. For example, Marcus et al. [63, 62] introduced

a declarative workflow engine called Qurk, and proposed optimizations for sorts and

joins such as batching tasks, using numerical ratings, and pre-filtering tables before

joins. Venetis et al. [94] studied human computation algorithms for retrieving the

maximum item from a set, and proposed a framework for selecting algorithm param-

eters to optimize the tradeo↵ over quality, monetary cost, and execution time. By
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exploring the space of possible algorithms and providing performance models and op-

timization procedures, findings from these studies can be utilized within an automated

workflow synthesis framework to help identify e�cient crowd-tailored algorithms for

these and related problems.

In machine computation, program synthesis considers the use of appropriate design

tactics to systematically derive a program based on a problem specification. In the

context of sorting, Darlington [18] and Smith [86] demonstrated how to derive a

number of sorting algorithms using logical transformations and reductions. Closer to

our work, Li et al. [55] demonstrated how to synthesize sorting algorithms that are

optimized for particular computer architectures. As learning about crowd abilities

incurs a cost, our work on synthesizing sorting algorithms for the crowd must tackle

the added challenge of learning quickly, to synthesize e�cient algorithms after few

experiments.

From the machine learning perspective, our value of information based elicitation

strategy can be viewed as taking an active learning approach to acquiring information.

In the context of human sorting tasks, Pfei↵er et al. [72] introduced an algorithm that

adaptively selects which pairwise comparison questions to ask a crowd in order to

quickly derive an accurate aggregate ranking using the crowd’s noisy answers. While

in both this work and our work on synthesizing sorting algorithms the goal is to

learn quickly and make e�cient use of human e↵ort, we consider through automated

workflow synthesis di↵erent ways through which humans can contribute to solving a

problem. In doing so, we seek to better understand how to structure e�cient crowd

problem solving by synthesizing algorithms involving heterogeneous tasks.
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In artificial intelligence, the study of metareasoning [36, 80] focuses on enabling

agents with bounded time and computational resources to make intelligent decisions

about what to reason about, how long to deliberate for, and when to take action.

Since deliberation can lead to better decisions but incurs a cost, it is often necessary

to evaluate the benefit and cost of gathering information through additional computa-

tion [37, 9, 79]. Due to the cost of human e↵ort, our automated system for workflow

synthesis faces a similar problem in that it must decide on which experiments to

conduct, how much resources to devote to experimentation, and when to stop exper-

imenting. In using value of information computations to inform elicitation decisions,

we adopt a decision-theoretic framework for active, indirect elicitation that draws on

principles introduced by Horvitz [35, 36] for decision-theoretic metareasoning.

8.2 Automated Workflow Synthesis

We consider a situation in which an automated system seeks to identify an e�cient

human computation algorithm or workflow for solving a problem. Given a (potentially

large) space of human computation algorithms A = {A1, . . . , An}, we let Si denote

the set of base-level human tasks in Ai that can be assigned directly to individual

workers in a crowd,1 such that S = S1 [ . . . [ Sn represents the entire set of human

tasks under consideration. Each task s 2 S is associated with a task function fs,

which defines for each task s an output distribution on the space of possible answers,

some of which may be incorrect. This captures the distribution over answers that

1For example, in the context of Amazon Mechanical Turk, these base-level tasks are the human
intelligence tasks (HITs) assigned to workers.
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individuals in the crowd may provide when assigned a task. For an algorithm Ai, we

let Fi represent an algorithm function that maps problem instances into a distribution

over solutions. The solution distribution based on Fi is itself constructed from the

output distributions of tasks s 2 Si, which are based on fs.

A task encompasses all the details of how the work is requested, which includes for

example the user interface and instructions. Two tasks that request the same work

may thus produce di↵erent distributions over answers. Furthermore, algorithms that

share some or all of the same tasks may di↵er in the type of inputs that are passed

to the tasks, and in when and how often each task is called. Algorithms that contain

similar or even the same tasks may thus induce di↵erent distributions over solutions.

Deciding which algorithm to use depends not only on the crowd’s performance on

tasks, but also on details of the algorithm that govern how outputs combine and

propagate to form a final solution.

Given a distribution over problem instances and a measure of the solution quality,

the system seeks to identify an algorithm A⇤ 2 A that achieves a high solution quality

on average while satisfying cost constraints.2 We assume that each instance of a call

to a task incurs a known cost, which may be monetary or be based on a measure

of the time or e↵ort required to complete the task. In contrast, we assume that the

system does not know how well the crowd can perform each task a priori (that is,

fs is imprecisely known), and thus cannot perfectly predict the expected quality of

solutions obtained through di↵erent algorithms.

2Our framework is agnostic to details of the objective. We can also consider optimizing for
cost subject to constraints on quality or more complex utility-based objectives that define explicit
tradeo↵s between solution quality and cost.
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In order to learn about the crowd’s performance on tasks, the system can experi-

ment with di↵erent tasks and observe the crowd’s outputs. At any time, the system

can select from a set of possible experiments E = {e1, . . . , em}, each of which corre-

sponds to a particular task-input pair. Since the crowd’s answers are probabilistic,

the same experiment may result in di↵erent observations. For simplicity, we assume

that all possible experiments are feasible, such that if an experiment is conducted

the corresponding task will be completed by the crowd. A general goal is to quickly

discover, after few experiments, an e�cient algorithm that obtains high quality solu-

tions and satisfies cost constraints. Since conducting experiments takes time and is

also costly, this allows us to deploy better algorithms sooner, and also keeps the cost

of experimentation low.3

8.3 An Active, Indirect Elicitation Approach

We introduce a general approach for automated workflow synthesis that leverages

the active, indirect elicitation framework of automated environment design. For each

task s 2 S, we construct a task performance model f̂s to predict the output from

the actual task function fs. Using observed outputs from experiments, an inference

procedure updates f̂s after each experiment to refine the system’s knowledge of the

crowd’s performance on tasks. This allows the system to better predict the perfor-

mance of di↵erent algorithms under consideration, based on which to optimize the

choice of algorithm. In order to select experiments that lead the system to quickly

3The elicitation strategy we develop later in this chapter is able to consider explicit tradeo↵s
between the cost and value derived from experimentation. For simplicity, we do not model the cost
of experimentation and focus instead on discovering e�cient algorithms quickly.
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discover e�cient workflows, we introduce a simulation-based approach that allows us

to compare di↵erent algorithms based on models, and an elicitation strategy that uses

simulations to evaluate the value that can be derived from di↵erent experiments.

8.3.1 Simulating Human Computation Algorithms

At any point in the active, indirect elicitation process, we assume that the system

can use the current task performance model f̂s for task s to estimate a distribution

over outputs for any input to fs. Under this assumption, the system can simulate

an algorithm Ai on a machine by sampling from the output distribution provided

by f̂s, s 2 Si whenever the algorithm makes a call to task s. For any algorithm

applied to a problem instance, this allows the system to estimate a distribution over

possible solutions. Simulations can thus be used to estimate the solution quality for

any algorithm based on our current knowledge of the crowd’s performance on tasks

the algorithm calls upon. Furthermore, since the number of times each task is called

in a run of an algorithm may in general depend on the crowd’s performance on tasks,

simulations also allow us to estimate, to the best of our current knowledge, the cost

associated with running an algorithm.

In addition to evaluating algorithms based on current knowledge, we can also use

simulations to estimate the solution quality of an algorithm under di↵erent hypotheses

about fs. This is helpful when deciding among a set of experiments to conduct.

Having the ability to simulate algorithms tackles two major obstacles for auto-

mated workflow synthesis. First, it allows us to compare algorithms without having

to necessarily deploy them, which is useful when we are trying to determine which
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experiment to conduct next. Second, it allows us to reason about complex algorithms

that may be di�cult to analyze analytically, which makes this approach applicable

to a broad range of settings.

8.3.2 Elicitation Strategy

An automated workflow synthesis problem may consider a large space of possible

algorithms that draw on diverse tasks. Models for each task may be complex and

di�cult to learn accurately with few examples. Given this, we would like to be able

to determine which experiment to conduct at any time, for which the knowledge

acquired may significantly a↵ect our choice of algorithm. Since our goal is ultimately

to discover e�cient workflows and not to learn about the crowd’s performance on

tasks, it is not necessary to learn about the task whose model has the most variance,

or on which the fewest experiments have been conducted thus far. For example, if

we have reason to believe that a task is unlikely to help an algorithm achieve high

quality solutions anyway, it is unlikely that learning about this task will provide useful

information for improving our choice of algorithm.

Following this intuition, we consider an elicitation strategy that selects experi-

ments based on which task-input pair is most likely to reveal information that im-

proves the choice of the optimal algorithm. Let A⇤
f̂

denote the optimal choice of al-

gorithm to deploy based on current task performance models, such that A⇤
f̂

achieves

the highest average solution quality across all algorithms that satisfy cost constraints

when simulated using f̂s for task s on problem instances drawn from a known distri-

bution. For each experiment e 2 E that involves the task se, let Oe = {o1
e, . . . , o

k
e}
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denote the set of potential outcomes from experiment e based on f̂s
e

. Depending

on the realized outcome of an experiment, we may be in one of k possible worlds,

corresponding to the state of task performance models after the inference procedure

performs an update based on the result of the experiment. We let f̂ oi

e denote the

updated task performance models under the assumption that we conduct experiment

e and observe outcome oi
e, and let A⇤

f̂o

i

e

denote the optimal choice of algorithm with

respect to f̂ oi

e .

Since we can potentially deploy di↵erent algorithms based on the outcome of an

experiment, the di↵erence in solution quality between A⇤
f̂

and each of the algorithms

A⇤
f̂o

i

e

, evaluated with respect to our knowledge after observing oi
e, captures the ex-

pected value to be gained if we were to update our choice of algorithm to deploy after

conducting a single experiment e. By comparing experiments in this way, we can

find the experiment that (myopically) maximizes the expected value of information

by solving the following optimization problem:

maxe2E

X

oi

e

2O
e

Pr(oi
e|f̂s

e

)[v(A⇤
f̂o

i

e

|f̂ oi

e)� v(A⇤
f̂
|f̂ oi

e)] (8.1)

Pr(oi
e|f̂) is an estimate of the likelihood of observing outcome oi

e when conducting

experiment e based on the task performance model f̂ , and v(A|f̂) is a measure of

the expected quality of solutions provided by algorithm A based on task performance

model f̂ .

An elicitation strategy based on this objective focuses experimentation on where

there is the most value to be derived from learning. Since an individual experiment

only obtains a single output from the crowd, it may not contain enough information

to change the decision about the best algorithm. The myopic value of information
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may be zero for all experiments, but the choice of experiment still matters because

conducting an experiment can enable subsequent experiments to become (myopi-

cally) valuable. For this reason, it can be important to conduct experiments in batch,

where at any given time the elicitation strategy selects a set of experiments to con-

duct whose potential outcomes best inform the choice of algorithm. Outside of any

computational concerns, the elicitation strategy remains essentially the same, but

with each experiment representing a set of experiments.

As a technicality, in the context of constrained optimization, an algorithm opti-

mized based on current information may be infeasible in light of information derived

from observing the outcome of an experiment. In particular, the term v(A⇤
f̂
|f̂ oi

e) may

not be well defined. For example, an experiment may reveal that an algorithm that

repeatedly calls the same task until multiple solutions agree incurs higher costs than

expected if observed outputs are more varied than expected. In these situations, such

an algorithm may, by nature of being infeasible, achieve a higher solution quality than

an algorithm optimized based on newly derived information. To avoid uninformative

comparisons to an infeasible algorithm when making value of information computa-

tions, we can apply a “primal heuristic” that transforms an infeasible algorithm into

a similar, feasible algorithm. We can then perform any comparisons using the trans-

formed algorithm instead, with the view that the di↵erence in performance between

an algorithm optimized based on new information and this transformed algorithm

captures the value of information that can be derived from experimentation. Later in

the chapter, we construct a primal heuristic for use in the sorting setting we consider.
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8.4 Human Sorting Tasks

Having presented a general approach for automated workflow synthesis, we con-

sider as a case study the problem of finding e�cient human computation algorithms

for human sorting tasks. In a human sorting task, human perception and judgment

are used to determine the ordering among objects. Examples of human sorting tasks

include sorting images by their visual appeal, sorting tra�c photos by the severity

of tra�c conditions presented, sorting edited versions of a paragraph by how well

written they are, and sorting web pages by their relevance to a query. Human sorting

tasks may vary in their level of objectiveness, but share the common feature that

machines often cannot accurately determine the desired ordering among objects.

There are many possible ways to sort, and designing computer algorithms for

sorting is of course a well-studied problem. While it is sometimes straightforward to

adapt a sorting algorithm for a human sorting task, the e↵ectiveness of the resulting

human computation algorithm will depend on how well the crowd can perform the

human tasks that the algorithm calls upon. Since people can make mistakes even

for objective tasks, solutions may not be perfectly sorted, and redundancy may be

needed to achieve good solutions. The algorithm design space thus includes not only

di↵erent types of sorting algorithms, but also di↵erent allocations of e↵ort to tasks

within algorithms. Given a constraint on the total cost of e↵ort that can be incurred,

the goal is to synthesize a human computation algorithm that maximizes the expected

solution quality for an objective of interest.

We focus on the problem of automatically synthesizing a workflow from a class

of human computation algorithms based on quicksort, that leverages the crowd to
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Figure 8.1: The progression of sorting with human quicksort applied to ordering
grayscale tiles from light to dark. The algorithm determines the amount of human
e↵ort to allocate to each pairwise comparison and pivot selection task at di↵erent
levels of recursion.

perform pairwise comparison and pivot selection operations. Quicksort is a divide-

and-conquer sorting algorithm that sorts a list of elements by first identifying groups

of elements that are less than or greater than a pivot element, and then recursively

applying quicksort on each group. The choice of the pivot a↵ects the algorithm’s

running time, and for example can be chosen based on the median of three elements

selected randomly from the list.

In adapting quicksort for human sorting tasks, we consider how much redundancy

to require for each pairwise comparison and pivot selection task that is assigned to the

crowd at di↵erent points in the computation (see Figure 8.1). These decisions a↵ect

the quality of the solution, as well as the number of operations and thus cost required

to compute a solution. For example, allocating more e↵ort to pairwise comparisons
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early in the computation helps to place elements in roughly the correct order, whereas

allocating more e↵ort later in the computation increases the likelihood that adjacent

elements are in the correct order.

Specifically, we consider optimizing over two sets of parameters rd and kd, that

determine the number of people to recruit for identifying the median of three randomly

chosen elements as the pivot (rd), and the number of people to recruit for comparing

a pair of objects (kd), at the d-th level of recursion. In cases where rd = 0, a random

element is chosen as the pivot. For any task, the algorithm takes the majority answer

from people recruited to perform the task as output, breaking ties randomly as needed.

Algorithm 8.1 presents the pseudocode for the class of human quicksort algorithms

as a function of rd and kd, in which MedianOfThree() and PairwiseCompare()

represent the pivot selection and pairwise comparison tasks respectively.

The performance of an algorithm in this class depends on how well the crowd can

identify the median and perform pairwise comparisons, and on the implications of the

crowd’s performance on the quality of the solution and the cost incurred. We assume

that each call to a pairwise comparison or pivot selection task incurs known costs cc

and cp respectively, which are additive and independent of the input to a task. To

evaluate solution quality, we consider inversions as a measure of sortedness. Given a

list {l1, . . . , ln} that should be sorted in ascending order, the number of inversions is

the number of pairwise elements that are out of order, which occurs whenever lj < li

for j > i. The goal is to find parameter values rd, kd such that Human Quicksort

based on these values produces solutions with few inversions on average, while staying

within a cost budget C.
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Algorithm 8.1 Human Quicksort
Require: {rd}, {kd}

1: procedure HumanQuicksort({l1, . . . , ln}, t)

2: if n = 1 then

3: return {l1}

4: else if n = 2 then

5: if PairwiseCompare(l1, l2, kt) then

6: return {l1, l2}

7: else

8: return {l2, l1}

9: else

10: L = {}, R = {}

11: p MedianOfThree(l, rt)

12: for i = 1! n do

13: if PairwiseCompare(li, p, kt) then

14: Add li to L

15: else

16: Add li to R

17: return HumanQuicksort(L, t + 1) · {p} ·HumanQuicksort(R, t + 1)

8.4.1 Task Performance Models

In order to discover e�cient algorithms quickly, we apply our framework for au-

tomated workflow synthesis to sorting by first constructing models for the pairwise

comparison and pivot selection tasks. Given two distinct objects a and b, a pairwise
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comparison task outputs the correct answer with some probability p, and the incor-

rect answer with probability 1 � p. The probability of error may depend on aspects

of the task such as its user interface and instructions, on how “close” a and b are, etc.

Given three elements a, b, and c, the median-of-three pivot selection task outputs the

median element with probability q, the smallest element with probability p, and the

largest element with probability 1 � p � q. Similarly, the probability of error may

depend on aspects of the task, the relative closeness of a, b, and c, and so on.

While we do not have access to the actual task functions and thus do not know

these probabilities a priori, we can construct a probabilistic task performance model

as follows. Since it is infeasible to learn probabilities for every combination of input

values separately, we consider grouping sets of input values into clusters, and learning

a model for each task-cluster pair. In the simplest instantiation, there may only

be a single cluster per task, and the model may only attempt to learn an input-

independent probability distribution over outputs. We can consider arbitrarily more

complex models by considering finer-grained clusters.

For each model, we use Beta and Dirichlet distributions to represent our knowl-

edge and uncertainty over the actual output distributions for pairwise comparison

and pivot selection tasks, respectively. Distributions can capture any prior knowl-

edge we may have about human performance on each task and be updated based on

observations from experiments.4 With Beta and Dirichlet distributions, we can incor-

porate observations from experiments by simply updating the corresponding model’s

parameters based on a worker’s output. For example, for pairwise comparisons, a

4For simplicity, we treat each model as independent, and only perform updates on a model whose
cluster matches the inputs to the task in an experiment.
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Beta distribution’s ↵ and � parameters can capture the number of correct and in-

correct answers respectively, and be updated by incrementing ↵ by 1 if the answer

to an experiment is correct or incrementing � by 1 otherwise. For pivot selections, a

Dirichlet distribution with three parameters maintains counts over the frequency of

the correct output and the two possible incorrect outputs (for each cluster), and can

be similarly updated.

8.4.2 Simulating Algorithms

Each task performance model maintains a distribution over the actual output

distribution for the task. As we conduct more experiments, a model becomes more

certain about the crowd’s performance on the task and thus allows us to more ac-

curately predict the performance of algorithms. To measure the performance of an

algorithm using current models, we can sample using the current task performance

models probability distributions over the possible outputs to each task. Each sample

represents a “guess” of the probability distribution over outputs based on the actual

task function. For each sample, we can simulate the algorithm using the sample as

the task function, and obtain a distribution over possible solutions. By aggregating

results across samples, we can obtain a “best guess” over the distribution of possible

solutions based on current knowledge of crowd performance on tasks as captured by

our models.

In order to compute the value of information that can be derived from selecting

an experiment, our elicitation strategy needs to be able to simulate algorithms with

respect to hypothetically refined models that incorporate updates based on outcomes
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that may be observed from an experiment. To do so, we can sample output distribu-

tions using hypothetically refined task performance models whose Beta and Dirichlet

parameters have been updated to take into account possible observed outcomes, but

otherwise simulate an algorithm as we would when using current models.

8.4.3 Optimizing Quicksort Algorithms

Our elicitation strategy evaluates the expected value of information that can be

derived from conducting an experiment by computing the di↵erence in expected so-

lution quality between (a) the optimal algorithm with respect to current models and

(b) the optimal algorithms with respect to information derived from the experiment.

For the class of quicksort algorithms we consider, the number of possible algorithms

is exponential in the assignment of e↵ort to tasks at di↵erent levels of recursion.

Computing the optimal algorithm exactly is thus likely to be intractable. To avoid

potential computational di�culties, we take a heuristic approach and focus on finding

and comparing algorithms that are approximately optimal with respect to task per-

formance models. We do this by adapting for our setting the local search procedures

introduced by Venetis et al. [94] for optimizing human computation algorithms for

finding the maximum element in a set.

To perform our search, we assume that there is a fixed, finite set of possible

values to assign to parameters rd and kd. Given task performance models, we first

compute the optimal constant sequence algorithm, which selects fixed values for r⇤

and d⇤ such that rd = r⇤ and kd = k⇤ for all recursion levels d. Since the space of

such algorithms is small, we can obtain the algorithm that maximizes solution quality
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while satisfying the cost constraint by simply simulating and evaluating every possible

constant sequence algorithm within the class.

The optimal constant sequence algorithm serves as a starting point for our search.

Better algorithms may exist that allocate e↵ort non-uniformly at di↵erent levels of

recursion. Fixing the number of people to assign to pivot selection tasks (rd), we

consider a hill-climbing procedure that iteratively varies the number of people to

assign to pairwise comparison tasks (kd). For every pair of parameter values ki and

kj for which ki > 1, we consider the e↵ect of decrementing ki and incrementing kj

up to the point that the resulting algorithm just satisfies cost constraints. If any

such swaps improve the solution quality, we apply the best such swap, and repeat the

process to incrementally improve the choice of algorithm until no such improvements

exist.5

8.4.4 Applying the Elicitation Strategy

While this local search procedure may not necessarily find the optimal algorithm

with respect to a set of task performance models, we can nevertheless use the al-

gorithms it produces to evaluate the value of information that can be gained from

an experiment. Since individual experiments may not contain enough information

to a↵ect the choice of algorithm, we only consider batch experiments which obtain

multiple observations at once. Assuming that the set of experiments to consider is

5We can construct a generalized local search procedure that considers all possible constant values
rd = r. We can also allow for varying values of rd by fixing the values for rd and kd one level
of recursion at a time. To do this, given fixed values k1, . . . , ki�1 and r1, . . . , ri�1, we identify the
values ki and ri based on the solution of the generalized local search procedure applied to searching
over values of rd and kd that have yet to be fixed. See Venetis et al. [94].
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not too large, we can compute the expected value of information for each experiment

and select the experiment with the largest expected value.

As discussed at the end of Section 8.3.2, one problem we may encounter in making

value of information computations is that a human quicksort algorithm optimized

based on current information may be infeasible in light of information derived from

observing the outcome of an experiment. In particular, the term v(A⇤
f̂
|f̂ oi

e) may

not be well defined. When this occurs, an algorithm optimized based on current

information may appear to be better (by nature of being infeasible) than an algorithm

optimized based on an experiment’s outcome. To avoid uninformative comparisons

to an infeasible algorithm and to evaluate the value of an experiment even in such

situations, we apply a “primal heuristic” that makes an infeasible human quicksort

algorithm feasible by reducing the number of people it assigns to some of the tasks.

We do this by iteratively decrementing some pairwise comparison parameter kd until

the algorithm becomes feasible. At each step, we select a parameter to decrement that

leads to the largest (myopic) decrease in cost incurred per unit decrease in solution

quality. This procedure seeks to identify a version of the original algorithm that has

similar performance but does not violate cost constraints when evaluated based on

hypothetically refined performance models. In this way, the di↵erence in solution

quality between the optimal algorithm given refined information and the transformed

algorithm still represents the value gained when reoptimizing the choice of algorithm

based on new information derived from an experiment.
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8.5 Experiments

To test the e↵ectiveness of our approach on human sorting tasks, we consider

experiments for learning task performance models and optimizing human quicksort

algorithms. We focus on two main questions: (a) does learning task performance

models help to discover more e�cient algorithms, and (b) does our value of informa-

tion based elicitation strategy lead to more e�cient algorithms more quickly than a

simple elicitation strategy?

8.5.1 Setup

We consider a human sorting task in which the goal is to sort a list of grayscale

tiles from light to dark. We chose this domain because comparisons are objective,

tasks are easy to describe, and tasks may vary in di�culty (e.g., depending on how

close tiles are in their grayscale value). This makes it easier for us to evaluate answers,

increases the likelihood that workers understand the goal of the task, and allows for

interesting models that depend on characteristics of particular task instances.

To understand human performance on this task, we recruited workers from Ama-

zon Mechanical Turk (Turkers) to complete pairwise comparison and median-of-three

pivot selection tasks. For pairwise comparison tasks, we posted 100 HITs and re-

quested 10 assignments for each HIT. We sampled pairs of grayscale values for tiles

at random, restricting the di↵erence in value to between 1 and 10.6 For pivot selec-

tion tasks, we also posted 100 HITs each with 10 assignments. We sampled three

6We used a scale with 128 values, such that black is 0 and white is 127. We chose this scale over
a 256 valued scale so that minimal di↵erences in darkness are barely distinguishable.
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Figure 8.2: An example HIT of the pivot selection task.

grayscale values for tiles at random, restricting the di↵erence in value between the

median element and the other 2 elements to between 1 and 10. Workers were required

to have a 98% approval rating, and were paid $0.01 per HIT. Figure 8.2 shows an

example HIT of the pivot selection task.

To simplify our evaluation, we use the Turkers’ responses to construct ground

truth models of task functions that provide distributions over answers to tasks based

on the empirically observed answers from the crowd. When evaluating the active,

indirect elicitation approach, instead of actually posting jobs on Mechanical Turk

for experiments an elicitation strategy chooses, we instead sample from the ground

truth distribution to simulate the answers the crowd would provide in an experiment.

Assuming that models are accurate, results of the simulation experiments would still

be indicative of the crowd’s actual performance, but with the evidence obtained a
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priori to allow for a simpler evaluation.

For both the ground truth models and the task performance models, we cluster

inputs to tasks based on the closeness of the objects being compared, according to

our hypothesis that tiles are more di�cult to compare when their grayscale values

are closer. For pairwise comparison tasks, we consider clusters that correspond to

di↵erent distances in grayscale value between pairs of objects. For pivot selection

tasks, we consider clusters based on the minimum distance between the grayscale

value of the median element and any non-median element. For both tasks, we consider

five clusters each, for distances of 1, 2, 3, 4, and 5+. The models for the pivot selection

task maintain counts or probabilities for three possible outcomes: (1) the median is

selected, (2) the element closer to the median is selected, and (3) the element farther

from the median is selected.7 We hypothesize that if some of the elements being

compared are very close together, people are more likely to make mistakes in favor of

the element closer to the median than the element farther from it.

In the active, indirect elicitation process, we maintain a model for each task-cluster

pair, which also forms the set of experiments that we can conduct at any given time.8

We batch experiments to sets of five observations each, such that any update to a

model is based on five outcomes drawn from the ground truth distribution for the

task-cluster pair. To evaluate the value of information based elicitation strategy, we

compare it to a uniform strategy that chooses the next experiment based on whichever

model has been experimented on the fewest times thus far. We hypothesize that

7Whenever two non-median elements are equidistant to the median, a model for the pivot selection
task chooses between them with equal probability whenever the median is not chosen.

8Pairwise comparison models are initialized with ↵ = 4 and � = 1. Pivot selection models are
initialized with ↵1 = 6, ↵2 = 1, and ↵3 = 1.
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Pairwise Pivot

Di↵erence Pr(correct) Pr(incorrect) Pr(median) Pr(closer) Pr(farther)

1 0.74 0.26 0.585 0.27 0.145
2 0.87 0.13 0.69 0.16 0.15
3 0.94 0.06 0.74 0.13 0.13
4 0.98 0.02 0.82 0.10 0.08
�5 0.997 0.003 0.85 0.08 0.07

Table 8.1: Ground truth models based on Turkers’ performance on pairwise compar-
ison and pivot selection tasks as a function of the (minimum) di↵erence in grayscale
value between tiles.

(regardless of elicitation strategy) learning will lead to better algorithms, but that

the value of information elicitation strategy will lead to better algorithms after fewer

experiments.

When synthesizing human quicksort algorithms, we consider optimizing with re-

spect to random permutations of a list with 20 tiles holding grayscale values 1 through

20, with costs cc = cp = 1 and budget C = 250.9 We consider kd 2 {1, 3, 5, 7} and

rd = r 2 {0, 1, 3} as the possible values to assign to parameters kd and rd, where

d 2 {1, 2, 3, 4, 5, 6+}.

8.5.2 Results

From the Mechanical Turk experiment, we found that people indeed make more

mistakes in pairwise comparison tasks when tiles are closer in grayscale value. We

observe from Table 8.1 that when tiles only di↵er in value by 1, the crowd makes

twice as many mistakes (26% error rate) as when tiles di↵er in value by 2 (13%), and

9Note that since our models only consider the di↵erence in grayscale value between tiles, the
exact grayscale values we assign to tiles are inconsequential for the purposes of our experiments.
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Figure 8.3: The performance (with respect to ground truth models) of algorithms
optimized through the process of learning. Values represent averages over 50 trials.

about four times as many mistakes as when tiles di↵er in value by 3 (6%). The crowd

makes very few mistakes for any larger di↵erences in value, which suggests that after

a certain point the tiles are noticeably di↵erent. For pivot selection tasks, we also

found that people make more mistakes when one or more of the non-median elements

is close to the median. We observe that when a non-median element is very close to

the median (i.e., di↵er in grayscale value by 1), people are much more likely to make

mistakes in favor of selecting that element than the farther non-median element.

Based on workers’ answers, we constructed ground truth models using the empir-

ically observed probabilities for each task-cluster pair (Table 8.1). Figure 8.3 shows

that the average performance of the algorithm optimized using current task perfor-

mance models (evaluated with respect to the ground truth models) improves over time

as we conduct more experiments in simulation and observe more samples drawn from
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Figure 8.4: Comparison of the performance (with respect to ground truth models)
of algorithms optimized based on current models through the process of learning for
the value of information (VOI) and uniform elicitation strategies. Values represent
averages over 50 trials.

the ground truth distribution.10 This demonstrates that knowledge acquired from

experiments reduces noise and uncertainty in task performance models and informs

better decisions when synthesizing workflows based on learned models.

Figure 8.4 compares the average performance of algorithms optimized using cur-

rent models over the course of learning based on the value of information and uniform

elicitation strategies. We observe that for both strategies, solution quality generally

improves as more information is collected from experiments. Comparing the two

strategies, we observe that at any given point in time, algorithms optimized based

on information obtained using the value of information elicitation strategy tend to

10As with making value of information computations, we may encounter scenarios in which an
optimized algorithm using current task performance models does not satisfy cost constraints with
respect to the ground truth distribution. In these cases we apply the primal heuristic earlier discussed
and evaluate the performance of the feasible, transformed algorithm instead.



Chapter 8: Automated Workflow Synthesis 230

Figure 8.5: Comparison of the performance (with respect to ground truth models) of
the best algorithms discovered thus far through the process of learning for the value
of information (VOI) and uniform elicitation strategies. Values represent averages
over 50 trials.

outperform algorithms optimized based on information obtained using the uniform

elicitation strategy (90% of the time). That is, given the same amount of experimen-

tation, the value of information elicitation strategy allows the system to synthesize

better algorithms on average than the system can synthesize based on information de-

rived from following the uniform strategy. Viewed di↵erently, for any desired solution

quality, the value of information elicitation strategy allows the system to optimize for

algorithms achieving that solution quality after fewer experiments.

Since learned task performance models are inherently probabilistic and noisy, there

is no guarantee that a piece of evidence obtained from experimentation will neces-

sarily lead to an optimized algorithm with strictly better performance. An algorithm

optimized based on current models thus serves as a best guess of what may be a good
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k1, k2, k3, k4, k5, k6+ r Inversions Cost

Best discovered through learning 3, 3, 5, 3, 7, 5 1 3.45 249
Synthesized based on ground truth 3, 3, 3, 5, 7, 5 3 3.60 248

Table 8.2: Configuration and performance (with respect to ground truth models) of
the best human quicksort algorithm discovered through our learning experiments and
the human quicksort algorithm synthesized with respect to the ground truth models.
We consider random permutations of a list with 20 elements holding values 1 through
20, with costs cc = cp = 1 and budget C = 250.

algorithm. From the designer’s perspective, algorithms synthesized at any point in

time can be viewed as candidates for A/B testing against the best algorithm dis-

covered thus far that is (presumably) currently deployed. Taking this view, we also

compared the value of information elicitation strategy against the uniform elicitation

strategy based on the solution quality of the best algorithm discovered thus far. Fig-

ure 8.5 shows that on average, the value of information elicitation strategy discovers

e�cient algorithms more quickly, and at any point in time, has already discovered a

more e�cient algorithm than has been discovered by the uniform strategy.

Table 8.2 shows the configuration and performance (with respect to ground truth

models) of the best human quicksort algorithm discovered through our learning ex-

periments and the human quicksort algorithm synthesized with respect to the ground

truth models. We see that both algorithms apply more e↵ort at deeper levels of re-

cursion than at shallow levels (1 and 2). In quicksort, at deeper levels of recursion,

any two tiles being compared are more likely to be closer in grayscale value. Since

workers are more likely to make mistakes when tiles are close in grayscale value, the

additional e↵ort being applied at deeper levels of recursion reduces the likelihood of

such errors and thus e↵ectively reduces the number of inversions.
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We also observe from Table 8.2 that it is possible for an algorithm synthesized

based on learned models to outperform an algorithm synthesized based on ground

truth models when evaluated with respect to the ground truth models. This counter-

intuitive situation may occur because the local search procedure we use to synthesize

algorithms may constrain the search space di↵erently depending on the models con-

sidered. In particular, since the local search procedure fixes the number of repetitions

(r) used for pivot selection tasks based on the best constant sequence algorithm, de-

pending on the models considered, some values for r are not explored. While the

search space with respect to the ground truth models can only consider human quick-

sort algorithms for which r = 3, the search space with respect to learned models may

consider di↵erent values of r and thus include better algorithms.

In comparing the best algorithm discovered through our learning experiments with

the algorithm synthesized based on ground truth models, we observe that with r = 1,

the best algorithm discovered allocates more repetitions to k3 and fewer repetitions

to k4, which is infeasible for r = 3. This helps to reduce the number of inversions

because the nominal number of calls to pairwise comparison tasks (not counting how

many repetitions are requested for each task) for which the tiles’ grayscale values are

1 apart is highest at level 3. This is due to the recursive structure of quicksort. Since

there are roughly twice as many lists at level 4 than at level 3, there are roughly

twice as many pivots selected at level 4. Since tiles being compared against the pivot

are those that have yet to be selected as a pivot, the number of pairwise comparison

tasks decreases rapidly as we move to deeper levels of recursion. While the fraction

of pairwise comparison tasks for which grayscale values are 1 apart is higher at level
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4, at level 3 there is significantly more pairwise comparison tasks. The e↵ort shifted

from repetitions assigned to pivot selection tasks and to k4 is thus put to good use

through k3 to reduce the potential for error in more pairwise comparisons tasks for

which the likelihood of error is highest.

8.6 Discussion

We applied the active, indirect elicitation framework of automated environment

design to the problem of automated workflow synthesis and demonstrated how learn-

ing about human performance on tasks and synthesizing workflows based on learned

models can enable more e�cient human computation. To discover more e�cient

algorithms more quickly, we introduced an elicitation strategy that reasons about

the value of information that can be derived from conducting di↵erent experiments

and focuses the learning on where this value is greatest. Results from experiments

on human sorting tasks showed that the elicitation strategy is e↵ective for quickly

discovering e�cient algorithms that are tailored to the crowd’s performance on tasks.

Our framework and methods are quite general, and can be extended in a number

of ways. In the context of sorting, we can for example consider a larger set of possible

tasks beyond pairwise comparison and pivot selection, and include in the design space

other classes of sorting algorithms beyond quicksort. As some tasks may be used in

multiple algorithms, any knowledge of the crowd’s performance on such a task will

inform the design of all algorithms that use it. In addition to deciding how to allocate

e↵ort within each class of algorithms, we can also consider optimizing over hybrid sort

algorithms. For example, we can consider using one algorithm to first order items



Chapter 8: Automated Workflow Synthesis 234

roughly and another algorithm to then refine the sort, which may be more e�cient

in some settings [62].

We saw from observing Turkers’ performance when comparing grayscale tiles that

task performance can depend on not only the task, but on specifics of the problem

instance. In general, for accurately predicting the crowd’s performance in order to

e↵ectively synthesize algorithms, models of task performance may need to be quite

rich. This suggests that a model may require significant e↵ort and domain knowledge

to construct and a significant amount of data from experiments to learn. Given that

the same tasks may be used in not only di↵erent algorithms for solving a particu-

lar problem, but also in di↵erent contexts for solving completely di↵erent problems,

we would like to be able to reuse designer and crowd e↵ort by building extendable

libraries of task performance models that can be reused in other automated work-

flow synthesis problems. Such libraries would allow for a “warm start,” where one

can begin reasoning about algorithms using already learned information about some

tasks and focus learning e↵orts on other tasks. Learned models can similarly be

incorporated into libraries for future reuse.

While we have focused primarily on the learning problem, considering a more

complex design space brings into focus computational challenges in optimizing and

synthesizing workflows. Since synthesizing an algorithm may involve choosing tasks

and allocating e↵ort to tasks, both of which are combinatorial in general, the problem

can be arbitrarily hard computationally. Having tractable procedures that can e↵ec-

tively search over the design space and discover e�cient algorithms quickly is crucial,

both for the purpose of quickly deploying designs based on learned information and
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for making decisions based on elicitation strategies that synthesize workflows under

di↵erent knowledge conditions as subroutines in value of information calculations. As

in active, indirect elicitation approaches more generally, synthesis procedures can use

current models of participant behavior to help constrain the search for a well-tailored

design.

Human computation algorithms may include tasks for machine computation. The

performance and e�ciency of such tasks can be similarly measured, modeled, and rea-

soned about when synthesizing workflows. Our framework extends straightforwardly

to include machine tasks, and allows for learning and optimizing over human-machine

algorithm design spaces. The decision-making over whether to use human or machine

computation components may consider particular tradeo↵s in e�ciency, cost, and

performance [84].

As mentioned in our discussion of related work, we make a conceptual distinction

between automated workflow synthesis and decision-theoretic control [16, 17]. Work-

flow synthesis is about algorithm design, and focuses on reasoning about the structure

of an algorithm before it is deployed. Decision theoretic control is about execution

control, and focuses on reasoning about the state and progression of problem solving

in the midst of solving a problem. As design and control both influence eventual per-

formance and complement one another, future work should explore considering both

aspects in unison, which may lead to discovering new techniques and approaches.
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Conclusion

The Internet today is a center for social and economic activity. Through crowd-

sourcing, social media, and electronic commerce, social and economic systems on the

Internet attract large numbers of individuals to take action and join in collabora-

tions. From a system designer’s perspective, a key challenge is understanding how to

promote particular desired participant behaviors and outcomes. I call this problem

computational environment design.

The designer’s role is to construct the decision environment in which participants

take actions. This can include interfaces, workflows, feedback to users, incentives,

constraints on actions, rules and policies, and so forth. Participants have their own

preferences and capabilities, that together with the decision environment influence

their behavior. As the designer can only a↵ect participants’ actions and outcomes

indirectly through the decision environment, solving computational environment de-

sign problems may rely on understanding participants and tailoring designs to the

participants.

236
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In this dissertation, I propose an approach for solving computational environment

design problems by reasoning and learning about characteristics of participants and

how these characteristics interact with the decision environment to influence behavior.

By reasoning, I mean thinking about participants and a design problem using available

knowledge. By learning, I mean the acquisition of new knowledge about participants

that informs design decisions.

I focus on two notable abilities a↵orded by the Internet that speak directly to

the computational environment design problem. The first is the ability to recruit

a crowd. Taking advantage of this ability, crowdsourcing and human computation

systems are attracting crowds to solve large-scale problems. From a computational

environment design perspective, this presents an exciting opportunity for designers to

recruit large numbers of interested participants for the explicit purpose of performing

useful actions that help to achieve desired outcomes.

A practical challenge that arises when attracting a large crowd to perform an ar-

bitrary task is that individuals may only be briefly involved, and any given individual

may provide noisy inputs. Leveraging a crowd to complete a complex task may thus

require coordinating small, noisy contributions from large numbers of participants, or

identifying and attracting individuals who are most willing and able to contribute.

In the first part of the dissertation, I show how reasoning about crowd abilities and

limitations can lead to designs that enable a crowd to e↵ectively contribute to solving

complex tasks. In seeking to leverage the distributed intelligence of the crowd, I make

advances in three core directions. The first direction is the coordination among prob-

lem solvers. I demonstrate how existing design patterns can be e↵ectively combined
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to construct human computation algorithms and new design patterns that enable

the crowd to solve complex problems (Chapters 2). I also introduce a crowdware

design, that enables the crowd to tackle complex tasks involving global constraints

which cannot be easily decomposed and solved using human computation algorithms

(Chapter 3).

The second direction is harnessing the general intelligence of the crowd. I explore

methods and designs that engage the crowd to guide the control flow of an algorithm

and generate plans that define the problem-solving process (Chapter 4). In study-

ing e↵ective means for passing solution context in the 8-puzzle and a system called

CrowdPlan for generating simple plans to high level search queries, we are beginning

to explore principles for crowdsourcing general computation that can enable general

problem solving via human computation systems.

The third direction is the recruitment of expertise. I study task routing as an

approach for problem solving in which individuals both contribute to a solution and

route to others for further contributions (Chapter 5). Focusing on prediction tasks, I

introduce incentive mechanisms that promote participants to honestly report private

information and route tasks to people who they believe can best contribute.

In the process of arriving at e↵ective designs, I find that designs that are e↵ective

for small groups of people are not necessarily e↵ective for the crowd. Such designs of-

ten needed to be rethought and adapted to explicitly take into account crowd abilities

and limitations. For example, in studying Mobi, we observed how automatically gen-

erated todo items are crucial for helping the crowd keep track of violated constraints

in the process of generating an itinerary. Given crowd workers who are only briefly
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involved and not available over time to keep track of solution context, the todo items

take on the role of a “dedicated volunteer,” who is there always to provide feedback

and make suggestions about how to move toward a solution.

As another example, when constructing routing scoring rules for task routing for

prediction tasks, we observed that it is possible to construct incentives such that if

everyone knows about the network structure and everyone else’s expertise, then in

equilibrium everyone would route along the optimal path. But in social networks on

the Internet, individuals may only know (the expertise of) people within their local

neighborhood, which may only include their friends and possibly friends of friends.

Implementing the would-be optimal incentive scheme would require people to perform

complicated inference and may not work as desired. As a solution, we introduced a

class of local routing rules, that are designed to explicitly enable equilibrium behavior

for which the inference required of participants is local and thus tractable.

The second ability a↵orded by the Internet with implications for computational

environment design is the ability for designers to engage in a data-driven, iterative

design process. The Internet provides a wide range of tools for iterative design, that

include web analytics software for tracking user behavior; style sheets, frameworks,

and content management systems for redesigning easily; and tools for A/B testing for

comparing designs based on desired objectives. From a computational environment

design perspective, these tools provide a valuable resource for designers of Internet

systems to easily experiment with alternative designs, collect rich behavioral data

from large numbers of users, and iterate quickly to improve designs over time.

But despite having these tools, the process of designing for e↵ective behavior on
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the Internet remains largely manual, tedious, and ad hoc. Experiments are often

conducted on alternative designs that consist of small modifications aimed at mak-

ing incremental improvements against set objectives. Without particular regard to

understanding participants and their behavior, this can lead to a design process that

hill-climbs toward a solution at a local rather than global maximum. Designers may

miss out on better designs, and ultimately fail to promote desired behaviors and

outcomes.

In the second part of the dissertation, I introduce principles and methods that

enable an automated system to systematically explore a design space to elicit desired

behavior by reasoning and learning about participants. In automated environment

design, a system takes a model of the interaction among decision environment, par-

ticipants, and behaviors and seeks to quickly identify an e↵ective intervention from a

space of possible interventions. We introduce an active, indirect elicitation framework

that drives an objective-based, iterative design process (Chapter 6). The framework

makes use of an inference procedure and an elicitation strategy. The inference proce-

dure uses observations of participant actions to learn about participants and refine

existing models of behavior. The elicitation strategy complements the inference pro-

cedure by designing experiments to refine existing knowledge.

We find through applications to crowdsourcing that an automated system using

observations of participant actions to refine a model of behavior can discover e↵ective

designs tailored to the participants that achieve significantly better outcomes than

designs available prior to learning. In automated task design, we learned models of the

quality of worker output to an image labeling task as a function of task design param-
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eters and used learned models to construct optimized designs that are demonstrated

to be more e↵ective at the same rate of pay (Chapter 7). In automated workflow

synthesis, we learned models of the crowd’s performance on pairwise comparison and

pivot selection tasks and used learned models to better allocate e↵ort within a human

quicksort algorithm to achieve high quality solutions (Chapter 8).

In general, a design space may be very large, and exploring it blindly may not lead

to e↵ective designs. By learning about participants from observing their behavior in

response to di↵erent designs, we can e↵ectively narrow the space of possible designs

we need to consider. This is because our knowledge of participants gives us a better

sense of which designs may be e↵ective or ine↵ective. In the extreme case where

we have a perfect, known model of how participants make decisions with respect to

di↵erent designs, identifying the best design becomes an optimization problem with

known parameters. When studying the problem of policy teaching, we take advantage

of this insight and develop a centroid-based elicitation strategy that is guaranteed to

elicit the desired behavior after few interactions (Chapter 6). The elicitation strategy

does this by basing incentives on hypotheses that, if correct, will elicit the desired

behavior, and if incorrect will lead to an observation that significantly narrows the

space of agent rewards that are consistent with observed behavior.

In addition to exploring a design space in a principled manner based on models of

participant behavior, to be practically useful, automated environment design systems

need to be able to discover e↵ective designs quickly. In the context of computational

environment design, the goal is not to learn about participants for learning’s sake but

rather to elicit desired behaviors and outcomes quickly. Focusing on this, in studying
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automated workflow synthesis, we introduced a value of information based elicitation

strategy that selects experiments by estimating the expected value that can be derived

from potential improvements to the current choice of algorithm as the result of new

information (Chapter 8). By incorporating the objective of the designer directly into

the elicitation strategy, a value of information approach focuses the learning e↵ort on

exploring parts of the design space where learning is most likely to matter.

In both manual and automated approaches to solving computational environment

design problems, reasoning and learning about participants allows us to discover

e↵ective solutions that are tailored to the participants. In the rest of the chapter, we

briefly review the main contributions and results, and present directions for future

work.

9.1 Brief Review

The first part of the dissertation focused on human computation and crowdsourc-

ing and introduced design patterns and methods for recruiting and coordinating a

crowd to tackle complex tasks.

Chapter 2 studied the design of human computation algorithms that enable the

crowd to contribute e↵ectively to complex tasks. Through the problem of crowd-

sourcing audio transcription, I discovered an iterative dual pathway structure that

e↵ectively combines the output-agreement design pattern with the iterative design

pattern to encourage contributors to provide accurate improvements. This design

pattern eliminates the need for explicit quality control via voting or grading and

focuses the crowd’s e↵ort on improving solutions instead. I then considered the
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problem of crowdsourcing nutrition analysis from food photographs. I introduced

a system called PlateMate, whose workflow consists of multiple, heterogeneous tasks

that request from the crowd diverse contributions such as tagging food items, de-

scribing ingredients, and measuring portions. PlateMate is built on the management

framework inspired by the structure of human organizations, which provides e↵ective

support for managing complex workflows involving heterogeneous tasks.

Chapter 3 presented a crowdware design that enables a crowd to tackle complex

tasks with global constraints through a shared, collaborative workspace. Focusing on

crowd itinerary planning as a case study, I introduced a system called Mobi. Mobi

presents a single interface through which individuals in the crowd can see the current

solution and all ideas generated thus far and contribute freely. To guide the crowd

towards useful contributions, Mobi displays automatically generated todo items that

alert crowd workers of unresolved constraints. The design takes advantage of the

crowd’s ability to process context and contribute where they are best able to. It also

addresses the crowd’s limited attention span by bringing to their attention via todo

items where contributions are most needed. Experiments and user studies showed

that the design is e↵ective in helping workers to resolve global constraints and that

the crowd-generated itineraries satisfied users’ stated mission requirements.

In crowdware and Mobi, the crowd is allowed to shape the problem solving process

directly. That is, the process of computation is no longer fixed by an algorithm

ahead of time and is instead defined by the crowd in the process of problem solving.

Expanding on this view, Chapter 4 explored opportunities for involving the crowd in

control and synthesis. I presented an experiment on the 8-puzzle that demonstrated
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how passing a small amount of context can enable more e↵ective problem solving

in an iterative task. I also introduced a system called CrowdPlan, that leveraged a

crowd to generate simple plans that help users to approach and accomplish high-level

tasks.

Solving a complex problem requires not only e↵ective coordination but recruiting

individuals who are willing and able to e↵ectively contribute. Chapter 5 proposed

methods for task routing on a social network that harness people’s ability to both

contribute to a solution and route tasks based on their knowledge of others’ exper-

tise. Focusing on prediction tasks, I introduced routing scoring rules that properly

incentivize participants to honestly update probability assessments and route tasks

to people who they believe can best contribute. Taking into account that individuals

may only know about people within a local neighborhood, I identified a family of local

routing rules which isolate simple routing decisions in equilibria while still promoting

e↵ective information aggregation.

Understanding participants and their behavior is crucial for designing any social

or economic Internet system that aims to elicit desired behaviors and outcomes. To

enable designers to discover more e↵ective designs more quickly and with less manual

e↵ort, the second part of this dissertation focused on constructing automated proce-

dures that discover e↵ective designs by reasoning and learning about participants.

Chapter 6 introduced a general approach for automated environment design. I

provided a model of the automated environment design problem and presented an

active, indirect elicitation framework that drives an objective-based, iterative design

process. As an illustrative example, I introduced the problem of policy teaching, in
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which the goal is to discover rewards that induce an agent to follow a desired policy.

I showed that, even with a large number of possible designs and little prior informa-

tion about the agent’s reward function, an algorithm based on the active, indirect

elicitation framework is guaranteed to discover an e↵ective reward intervention after

a small number of interactions.

Chapter 7 presented an approach for automating the design of human compu-

tation tasks. Using image labeling as an example, I learned models of the crowd’s

performance by observing the crowd’s outputs under di↵erent task designs and used

learned models to optimize designs based on desired objectives. Experimental results

showed that simple models can accurately predict work quality and that optimized

designs outperformed baseline designs at the same rate of pay.

While Chapter 7 focused on the design of human computation tasks with identi-

cal, parallel subtasks, Chapter 8 considered the more general challenge of automating

the synthesis of workflows that involve heterogeneous tasks. By adapting the active,

indirect elicitation framework of automated environment design, I introduced a gen-

eral framework for automated workflow synthesis. I presented an elicitation strategy

that decides which task to experiment on at any given point by estimating the ex-

pected value that can be derived from new information. Learned models are used

to synthesize and tune algorithms to optimize desired objectives subject to resource

constraints. In experiments on human sorting tasks, I showed that this elicitation

strategy is e↵ective in helping to discover better algorithms with less experimenta-

tion.
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9.2 Research Directions

9.2.1 Crowdsourcing and Human Computation

In crowdsourcing complex tasks, there are opportunities to develop other crowd-

ware systems along with theoretical models, in order to fundamentally understand

the spectrum between crowdware and workflow paradigms. An interesting challenge

is scale. As the number of ideas and the size of the solution grows, it becomes dif-

ficult if not impossible for any given individual to keep track of the entire solution

context and reason about all aspects of the problem. For problems that are di�cult

to decompose, managing problem-solving context becomes di�cult and crucial for ef-

fective problem solving. Problems embodying this challenge include enabling a crowd

to write a novel or a large piece of software, and involving hundreds or thousands of

individuals in planning real world events and executing their plans.

One idea for overcoming the challenge of scale is to present solution context at

di↵erent levels of detail and abstraction. We can create task platforms that generalize

both crowdware and workflow paradigms. By presenting context at the right level of

detail, individuals can be prompted to make e↵ective local contributions while being

aware of the e↵ect of their actions on the global solution. For example, in writing

a story, someone working on the plot may need to be aware of the impact of his

contributions on character development, but can otherwise contribute freely. In cases

where relevant views of the solution may not already exist, such views may need to

be explicitly constructed by the crowd to facilitate e↵ective problem solving. For

example, a crowd writing a story may need to produce plot summaries and character
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profiles to help people working on di↵erent aspects of the problem be aware of relevant

changes that require attention and thus be able to contribute more e↵ectively.

From the workflow perspective, task platforms are algorithms that determine and

display at any given time a set of available tasks, and for any selection construct an

interface that provides the necessary context and functionality for that task. From

the crowdware perspective, task platforms consist of multiple workspaces that cover

di↵erent but interdependent aspects of the problem. There are opportunities to ex-

plore both perspectives, and to develop frameworks, methods, and applications that

leverage this concept.

Moving from the task level to the organizational level, we can envision a future

in which the distributed intelligence of humans and machines across networks are

brought together to tackle complex problems. In the context of task routing, there

are opportunities to develop general principles and methods that e↵ectively and ef-

ficiently harness the diverse expertise of participants in a system. As online labor

markets and online platforms for collaborative problem solving [2, 84] develop, it will

become increasingly important to make e�cient use of people’s expertise. This in-

cludes recognizing people’s changing levels of attention, motivation, and availability,

and the corresponding need for balancing the load across participants. For example,

a task should not always be routed to the individual with the most expertise, simply

because that individual may already be engaged in another task. As e↵ective problem

solving may rely on the joint characteristics of participants involved, I am interested

in exploring settings in which ad hoc teams [89] of human and machine problem

solvers connected through networks form spontaneously to tackle problems as they
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arise, and expect that reasoning and learning about the collective intelligence [101] of

such teams may a↵ect solutions and outcomes.

As we continue to explore crowd problem solving in the context of complex and

creative tasks, we will inevitably encounter or create scenarios in which the crowd

has an intrinsic interest in the solution. In other words, the outcome of the crowd’s

collaboration may matter to the crowd, and this creates new opportunities and chal-

lenges. One possible issue that can arise is that while some individuals may only be

briefly involved, other individuals may return to a task over time and claim particular

tasks as their responsibility or make demands about some aspect of the solution. For

example, an individual contributing to writing a story may attempt to steer the plot

toward a certain direction, and individuals planning a large-scale event may not agree

on the best course of action.

One approach for resolving di↵erences in opinion and making key decisions is to

consider di↵erentiating members within a crowd, such that some contributors may be

given special powers and privileges based on their experience or expertise, and can

serve as moderators or decision makers should conflicts arise. This is common on the

Web, and is used in social computing systems like Wikipedia and in forums to resolve

disputes and maintain the quality of content. In the case of a crowd, a hierarchy

among contributors may emerge either organically or based on rules and policies set

by the designer. For example, within a task platform, it is possible that some tasks

are at a higher level than other tasks (e.g., decision about a key aspect of a plot),

with these tasks only accessible to those who have already contributed significantly to

other tasks within the platform. Understanding how to design such rules and policies



Chapter 9: Conclusion 249

in order to create and maintain cultural norms through which the best contributors

can emerge organically is an interesting area for future work.

An alternative approach is to design a↵ordances that promote e↵ective crowd

decision making, but otherwise leave the decision to the crowd. For example, to

settle di↵erences, members in the crowd may vote on the best path forward, with the

system automatically enforcing and imposing that choice unless the results from a

subsequent vote suggests a di↵erent path forward. In the context of planning a real-

world event, this may mean voting on a course of action and sticking to it unless the

crowd collectively prefers something else. The crowd can also decide to split up into

smaller crowds, each pursuing their own direction forward. From the computational

environment design perspective, understanding how to design e↵ective mechanisms for

joint decision making within crowds that promote e↵ective outcomes is an interesting

area for future work.

9.2.2 Automated Environment Design

For automated environment design, a key next step is applying the active, indi-

rect elicitation framework to a wide range of real world scenarios in which automation

may help to discover more e↵ective designs more quickly and with less manual e↵ort.

In the near term, there are opportunities to automate the design of websites and

web pages to promote desired usage patterns, for example to increase the levels of

contribution, comprehension, and awareness. In the longer term, there may be oppor-

tunities to apply automated design techniques in the physical world, where advances

in ubiquitous sensing and the increasing digitization of real world spaces have the po-
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tential to enable interactions in which spaces can automatically configure themselves

to promote desired behaviors and outcomes.

An ongoing challenge for automated environment design will be the availability

of models that capture how characteristics of participants interact with the decision

environment to influence participant behavior. But as improved models and compu-

tational tools for understanding participants from data become available, automated

environment design tools and methods will naturally play an increasingly important

role in how we approach the design of social and economic systems.

Of course, human ingenuity will also continue to play an important role in design-

ing social and economic systems for many years to come. An interesting direction is

to explore opportunities for tight-knit collaboration between humans and machines in

the process of identifying an e↵ective design for solving a computational environment

design problem. As an example, consider the following interaction. An automated

system forms hypotheses and suggests experiments on alternative designs on its own.

A designer can at any time ask questions about how the process is going, provide

feedback by identifying particular neighborhoods to focus the search, and introduce

additional features and parameters for the system to incorporate in its automated

design process. The system may likewise provide feedback on a designer’s hypotheses

and make suggestions based on its knowledge. While the example may seem some-

what futuristic, given the extent to which automated tools for simplifying the design

of social and economic systems on the Internet are already utilized and continue to be

developed, such interactions may not be so far fetched, and point to a future in which

e↵ective collaboration among human and machine designers become commonplace.
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9.3 One More Thing

One can envision a future in which a crowd is more connected, more intelligent,

and generally more capable of handling a situation or task than an individual. One can

also envision a future in which automated systems are more adept at understanding

us and shaping the environment around us.

But there is one more thing I want to discuss. It is about why social and economic

systems on the Internet exist in the first place.

A computational environment design problem is intrinsically a human problem.

It’s about designers with their own interests and motivations constructing decision

environments in which participants with their own interests and motivations take

action. The environment exists to advance the interests of both parties. Otherwise, a

designer would likely modify the environment he controls or participants would leave

and new environments would likely form.

Given this, what is perhaps most important is for designers to adopt a way of

thinking in which truly advancing the interests of both the designer and the partici-

pants is paramount over any narrower objective that can be formed. Without regard

to this way of thinking, designers may be content with constructing environments

that lead to desired behaviors in the short term but that are ultimately unsustain-

able. For this reason, a designer may need to continuously reassess specific objectives

and designs to ensure that they indeed advance the interests of both parties. Such

awareness will require that we develop the ability to reason and learn about funda-

mentally what it is that we as designers aim to do, why is it that we do what we do,

and whether doing what we do indeed makes things better.
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