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Abstract—High-performance microprocessor families employ
dynamic-thermal-management techniques to cope with the in-
creasing thermal stress resulting from peaking power densities.
These techniques operate on feedback generated from on-die ther-
mal sensors. The allocation and the placement of thermal-sensing
elements directly impact the effectiveness of the dynamic manage-
ment mechanisms. In this paper, we propose systematic techniques
for determining the optimal locations for thermal sensors to pro-
vide high-fidelity thermal monitoring of a complex microprocessor
system. Our strategies can be divided into two main categories:
uniform sensor allocation and nonuniform sensor allocation. In the
uniform approach, the sensors are placed on a regular grid. The
nonuniform allocation identifies an optimal physical location for
each sensor such that the sensor’s attraction toward steep thermal
gradients is maximized, which can result in uneven concentrations
of sensors on different locations of the chip. We also present a
hybrid algorithm that shows the tradeoffs associated with number
of sensors and expected accuracy. Our experimental results show
that our uniform approach using interpolation can detect the chip
temperature with a maximum error of 5.47 ◦C and an average
maximum error of 1.05 ◦C. On the other hand, our nonuniform
strategy is able to create a sensor distribution for a given micro-
processor architecture, providing thermal measurements with a
maximum error of 3.18 ◦C and an average maximum error of
1.63 ◦C across a wide set of applications.

Index Terms—Allocation, dynamic thermal management
(DTM), sensor, temperature.

I. INTRODUCTION

T RENDS pertaining the power consumption and power
densities on microprocessors are alarming. Number of

devices per unit area as well as clock frequencies are increasing
steadily. Although supply voltage levels and effective switched
capacitance values are decreasing along with scaling, the rate
of increase in the total number of devices on a chip largely sur-
passes this by orders of magnitude. For Intel microprocessors,
the observation is that for every 1% increase in performance,
there is a 3% increase in power consumption [1]. Increasing
leakage power due to scaling is one important factor contribut-
ing to this phenomenon. The net result of these trends is that the
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microprocessor core power densities are alarmingly high [2],
and extrapolations into the next decade indicate that this trend
will uphold [1].

Power density directly affects the thermal profile of a chip.
Thermal effects play an important role in various aspects
of quality, correctness, and reliability of a system. Effective
assessment and analysis of the thermal behavior of micro-
processors is crucial to prevent the adverse impacts of thermal
effects. A major challenge is the fact that the thermal behavior
is input dependent and also sensitive to environment condi-
tions. In addition, phenomena, such as process variation, affect
the leakage power. This, in turn, affects the total power and
the power densities, creating a coupling between power and
thermal profiles. Thus, a highly accurate thermal profile of a
complex system can only be established after it is deployed.

A direct means to capture the runtime thermal profile of
a system is to utilize on-die thermal sensors. In this paper,
we present a systematic methodology to allocate and place
thermal sensors to build a thermal monitoring infrastructure
for a complex microprocessor chip. Such infrastructures are
used in modern processor architectures to assist dynamic-
thermal-management (DTM) mechanisms. For instance, Intel
Pentium 4, Pentium M, and IBM PowerPC processors are
equipped with thermal sensors that trigger alerts if the junction
temperature exceeds a specified limit. Based on these alerts, the
processor power consumption is regulated via clock throttling
[24]. While early solutions consisted of a few sensors per chip,
the amount of sensors deployed on microprocessor tends to
elevate in each generation. For example, IBM’s POWER5 em-
ploys 24 digital temperature sensors [8]. In emerging multicore
architectures, the total number of on-die sensors deployed will
exceed far beyond. As a result, the decisions for allocation and
placement of these sensors in the strategic locations on the chip
need to be made within an automated framework considering
the coverage accuracy and overheads involved.

Accuracy is crucial for thermal monitoring. Overestima-
tion of temperature impacts performance negatively due to
unnecessary triggering of thermal control mechanisms, e.g.,
dynamic voltage and frequency scaling [9]. On the other hand,
Srinivasan et al. [29] have shown that the mean time to failure
decreases exponentially with an increase in temperature. There-
fore, underestimation of the die temperature is not desired since
the processor will continue to operate at a higher temperature
than its rated operating condition, hence greatly reducing the
reliability.

One naive option to increase the accuracy is to place a very
large number of sensors on the die. In current microprocessors,
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Fig. 1. Sensor reading errors of the SPEC2000 benchmarks if one sensor is placed at the hotspot indicated by a single application (twolf has been used in this
example).

two types of sensors are being utilized. In the Intel Pentium 4
processor, the processor temperature is determined through
an analog thermal sensor circuit consisting of a temperature-
sensing diode, a factory-calibrated reference current source,
and a current comparator [12]. One disadvantage of this sensor
is that the threshold current (i.e., the current of the diode at
the maximal allowable temperature) depends on some process
parameters such as doping density; thus, each sensor should
be calibrated individually. In fact, each processor is individu-
ally calibrated during manufacturing to eliminate any potential
manufacturing variations [12]. This is a lengthy process and
adds significant overhead to the testing and calibration phase.
Sensors in the second category are more sophisticated in terms
of design. They outperform the first kind of sensors in that
their output signals can carry more information to assist the
thermal management. Many new generation processors employ
multiple on-chip digital thermal sensors of this type (such as
IBM’s POWER5). Each digital thermal sensor of POWER5
[8] consists of a ring oscillator whose frequency is controlled
by a temperature-sensitive current reference and a counter that
records the number of oscillations within a set time interval.
Programmable registers define the maximum allowed temper-
ature on each sensor. These sensors usually include a serial
interface, such as I2C, SPI, or SMBus, which provides commu-
nication with embedded microcontrollers and other digital sys-
tems. Additional circuitry, such as analog-to-digital converter,
is also needed to digitize the analog signals. The accuracy and
the stability of digital sensors can be enhanced by increasing
their sizes, which will further emphasize the constraints on
hardware resources. In addition, as mentioned earlier, a cali-
bration of each chip and each individual sensor is still needed.
Furthermore, allocating arbitrarily large number of such sensors
will not only create a significant area overhead, but routing the
data from the sensor registers to a central processing unit will
also pose a challenge.

In this paper, we propose two different sensor-allocation
strategies to automate the design of a thermal monitoring
infrastructure. Our goal is to define an allocation of thermal sen-
sors and their physical locations using systematic techniques. In
this process, we aim to maximize the accuracy of the readings
obtained from the sensor placement while bounding the asso-
ciated overheads. One of our proposed methods is the uniform
approach that places the sensors on a set of predetermined static

grid. We present techniques to optimize the granularity of such
a grid, hence the number of sensors used. The second strategy is
the nonuniform approach, in which the sensors can be inserted
at any location on the chip. This approach receives hints from
the expected temperature profiles. In essence, the two alterna-
tive strategies provide solutions for two cases: 1) a workload-
independent static sensor allocation and 2) an allocation that is
tailored for a given expected workload.

In either approach, we further investigate tradeoffs between
the complexity of the infrastructure versus the accuracy of the
readings. In the case of the uniform approach, we evaluated
interpolation methods that allow the virtualization of sensors
by utilizing readings from a smaller set of physical sensors. In
the context of nonuniform thermal sensor allocation, we present
results after clustering sets of hotspots under the constraints of
the number of sensors and the desired accuracy.

The remainder of this paper is organized as follows. In
Section II, we discuss our motivation of exploring systematic
strategies for sensor allocation. We present an overview of
related work in Section III. In Section IV, we propose the
uniform sensor-allocation strategy. The nonuniform approaches
by thermal-aware k-means clustering algorithm are presented in
Section V. Section VI presents our experimental methodology
and results. We conclude with important results and a summary
in Section VII.

II. MOTIVATION AND OVERVIEW

An ideal method to allocate a sensor on a microprocessor is
to find the hottest region over a set of well-defined applications
and place one sensor there. This would require a minimum
number of thermal sensors to monitor the highest temperatures
on the microprocessor. Early attempts to create a dynamic
monitoring for microprocessors employed a similar rationale.
For example, for the Intel Pentium 4 processor [15], one sensor
is placed near the rapid integer arithmetic logic unit (ALU),
which has been determined to undergo the most severe thermal
stress. For instance, our experimental results show that placing
sensors at the hottest locations determined for one application
can cause large temperature errors for other applications, as
shown in Fig. 1. If we identify the highest temperature observed
on the core by performing thermal simulation of one benchmark
and place one sensor in the center of the block exhibiting this
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Fig. 2. Thermal profiles of the Alpha 21364 microprocessor with three different benchmarks from SPEC2000. It can be observed that although the hottest region
is occurring near the IntQ, the locations are not the same (mesa has a clearly different hottest region). The location of the IntQ and other components is shown in
the floorplan of Fig. 10.

highest temperature, then this decision can be highly unreliable.
When we measure the amount of error resulting from relying on
this sensor for all benchmarks, it can be as high as 27.4 ◦C.

The thermal behavior of microprocessors is affected by var-
ious factors. For example, localized heating on a processor is
application dependent, as illustrated in the earlier example. In
addition, process variations impact the total power consumption
(by largely affecting the leakage component) and, hence, the
temperature behavior of each chip, generating different thermal
profiles. Power management techniques, such as local clock
gating, further create a disparity in power densities among
different regions on a chip.

It is intriguing to observe that recent studies aiming to
identify the hottest regions of microprocessors reached diverse
conclusions. The single thermal sensor on the Intel Pentium 4
processor is placed near the rapid integer ALU, which was
identified as the likeliest candidate to cause a hotspot [15].
Skadron et al. [27] reported that in the Alpha 21364 archi-
tecture, the register file appears to be the hottest component
consistently across a large set of SPEC CPU2000 [28] bench-
marks. We performed yet another set of experiments with
the same architecture (with a slightly different configuration,
mainly using different configurations of the memory hierar-
chy, particularly the level 2 cache blocks; we experimented
with a smaller sized L2-cache), benchmark suite, and thermal
simulator. Our thermal analysis reveals that the issue queue
(IntQ) generates the hottest points in most cases, as shown in
Fig. 2. Considering the wide variety of sensor allocations in
commercial products and previously reported results, it is safe
to conclude that the temperature behavior is architecture and/or
workload dependent. This motivates the need for a systematic
approach to the sensor allocation and placement problem so that
we can create the most effective monitoring infrastructure for a
given architectural configuration, workload characteristics, and
other relevant design and system-level parameters.

These observations lead us to two different directions to solve
the thermal-sensor-allocation problem. If the thermal profiles
over a large number of applications are not available, or a
fully representative application set is not available, we need a
workload-independent static approach. For instance, we can
place a number of sensors on a regular grid, e.g., a 4 × 4 grid.

We refer to this as the uniform thermal-sensor-allocation ap-
proach that does not rely on any temperature profiling data.
The basic approach needs to be further improved in order
to achieve high accuracy with a bounded size of the sensor
grid. We developed virtualization techniques through the use of
interpolation. The uniform sensor allocation can also monitor
the localized temperature changes around the sensor’s location.

On the other hand, if the thermal profiles simulated over a
predictable and well-defined workload are available, we can
opt to decide the locations of thermal sensors based on these
data. The thermal profile of one application predicts one set
of hotspots. A global hotspot map is the superposition of
hotspots among all the simulated applications, as shown in
Fig. 9. The problem of nonuniform sensor allocation is to
identify n clusters among all these hotspots such that the total
weighted reading error is minimized. We will elaborate on both
approaches in Sections IV and V.

Furthermore, we identified two main purposes for thermal
monitoring: global and local monitoring. The purpose of global
monitoring is to track the hottest locations on the core to
guide the DTM for thermal-emergency intervention. The lo-
cal monitoring aims to establish a thermal monitoring for all
core components even if some are not likely to exceed safe
temperature thresholds. Although it is hardly possible for a
usually cold component such as cache to trigger the thermal
emergency, the highest temperature of such a component is still
interesting for a thermal-induced leakage power control applied
at the granularity of individual blocks. In addition, several local
optimization techniques applied to various processor compo-
nents have been proposed, including “heat and run” thread
assignment for chip multiprocessors [23], activity migration
to reduce hotspots [11], temperature-aware steering, clustering
and thermal-aware renaming, and committing mechanisms [7].
All such efforts will require accurate local thermal monitoring
for individual processor components to support fine-grain dy-
namic optimizations.

III. RELATED WORK

While the design of accurate and efficient sensors has been
studied extensively, only a few works have addressed the
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Fig. 3. Relationship between the number of sensors and the temperature-monitoring error. The x-axis is in log form.

sensor-allocation problem. Lee et al. [16] presented an ana-
lytical model that describes the relationship between the accu-
racy of a reading and the distance of the sensor from a hotspot.
Gunther et al. [10] presented observations on thermal maps
of a microprocessor and point to opportunities for optimized
decisions on a sensor placement; however, they do not provide
any solutions. Our previous work proposed the first systematic
thermal-sensor-allocation scheme [21] for microprocessors.
However, that work only considered nonuniform techniques
and did not offer any placement methods where the thermal
profiles are not available or dependable. In this paper, we
have built upon this preliminary study and further introduced
uniform placement strategies that do not depend on any a priori
knowledge on workload or thermal profiling. We further create
virtual sensors by interpolating among the uniformly placed
sensors. We also made modifications to the original model in
order to reduce the computational complexity required. These
modifications also allow us to dynamically adapt a parameter
of the model during actual temperature measurement, which
was assumed to be a fixed constant in the original model. In this
paper, we also presented an extensive set of results comparing
different approaches—both our previous results as well as our
new results on uniform placement.

On a different track, Bratek and Kos [4] presented a sen-
sor placement for fault diagnosis of integrated circuits by
linking temperature sensors and power modules in pairs.
Lopez-Buedo et al. [17] investigated instantiating digi-
tal sensors on field-programmable gate arrays (FPGAs).
Velusamy et al. [30] used such digital sensors to validate the ac-
curacy of the thermal simulator HotSpot in modeling an FPGA-
based system. Mukherjee et al. [22] proposed an algorithm
to locate vacant configurable logic blocks that can be used
to instantiate thermal sensors and embed them into a design
mapped onto the FPGA. Thermal sensors are mainly used in
FPGAs to validate the thermal behavior of a design against
simulations during the prototyping phase. Their architectural
constraints are fundamentally different than the microproces-
sors. While accuracy is the main goal for microprocessors while
maintaining low overhead, in the case of FPGAs, the hardware
cost of implementing a sensor can be much more dominant.
Along the same lines, the sensor infrastructure is not intended
to support the DTM, which is the focus for microprocessors.
Therefore, the approaches and the priorities of optimization
objectives are significantly distinct.

IV. UNIFORM THERMAL SENSOR ALLOCATION

One straightforward method to create a workload-
independent sensor infrastructure is to divide the chip into
equally sized grids and place a sensor at each grid point. Then,
all the sensors work in parallel, and the maximum temperature
measured among the sensors will be used as the estimation of
the core temperature.

If the grid size is equal to the effective sensing area of the
thermal sensor, we can achieve 100% accuracy because each
grid will have one sensor on it. However, it is usually not prac-
tical to implement such a fine-grain grid. Every sensor incurs
additional cost, which becomes nonnegligible as the number
of sensor increases. Early uses of thermal sensors relied on
thermal diodes which are simple structures and easy to embed
into any chip placement. However, the thermal diodes suffer
from nonlinearity and can be subject to environmental effects
[18]. New digital sensor designs are being proposed. The use
of digital sensors on microprocessors, such as the POWER 5
from IBM, is becoming popular. Digital sensors consume non-
negligible resources (e.g., ring-oscillator-based counters, reg-
isters, bus interfaces, and routing to a central microcontroller)
[3]. The placement of digital sensors into a highly optimized
processor layout with a very limited white space will become
complicated as the number of sensors increases. Moreover, col-
lection and processing of the data generated by a vast number
of sensors presents itself as a challenge. The limiting factor
in most cases is the capability of routing the sensor readings
to a processing unit. Such a solution will certainly have area,
reliability, and power overhead.

Therefore, we need to maintain a bound on the static sensor
grid size, and at the same time, we need metrics to evaluate
the expected accuracy of such a static grid. We observed the
following key aspects in the behavior of the static sensor-
grid formation. First, the accuracy obtained from a static grid
placement is related to the number of sensors used; however, it
is not a linear relationship. In Fig. 3, we observe that when the
number of sensor grids increases above 25 (note that the x-axis
is in a log scale), the errors of sensor readings for a collection
of applications do not change any further. We obtained the data
shown in Fig. 3 by using the same experimental setup, as de-
scribed in Section VI-A. We have performed a sensor placement
using a static grid distributed across the entire core, and we
have measured the maximum sensor reading error. Even if the
reading error observed decreases to a substantially low plateau
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Fig. 4. Interpolation of the sensor data to obtain more accurate estimation of
hotspots.

for some applications, for others, the error is still significant.
Consider the galgel benchmark. Even with 64 sensors placed
on a grid on the core, the errors can be as high as 5 ◦C for
some applications. Considering that these readings will be used
for the DTM and the thermal-emergency management, such
incorrect readings can put the processor in danger or invoke
unnecessary interruptions. The conclusion is that the size of the
grid improves the effectiveness of the sensor infrastructure in
many cases; however, in others, the hotspots may simply be
located such that even a sizable grid of sensors will be incapable
of capturing the locations of significant thermal events.

To minimize these errors, we have developed an interpolation
scheme that uses the existing sensor readings obtained from
the uniform placement and estimates the temperature of the
points that lie between sensors. As we have described earlier,
placing an arbitrary number of sensors on the chip is not the best
solution in terms of the associated overheads. Therefore, it is
beneficial to maintain an upperbound on the number of sensors
that will feed data to the central control mechanism at a given
instant. At the same time, the basic naive approach previously
described may fail to perform reliably even if we dedicate a
very high number of sensors. These observations motivated us
to investigate more effective techniques for sensor allocation
and placement. Our interpolation method is described in the
following.

A. Interpolation-Based Virtualization of Sensors

The inconsistent accuracy and potentially large errors in
the basic uniform grid are caused by the fact that we are
not able to optimize the distances of the sensor points to the
hotspots by such a static placement. Therefore, a corrective
measure is needed to further refine the readings obtain from the
static uniform placement. The basic idea is that several sensor
readings can be used to interpolate the thermal behavior of loca-
tions farther away from the actual physical sensors. Therefore,
instead of using the sensor reading directly as an indicator of
the hotspot temperature, we calculate a more accurate value of
the highest temperature on the chip by interpolating the sensor
readings in the neighborhood of that hotspot.

We use an example to illustrate our idea. Consider the sensors
shown in Fig. 4. Assume that the reading by the center sensor
(T4) is the highest. In this case, the hottest point in the region
must be close to sensor T4, if not exactly at T4. In particular, the
hottest point should be within the dashed square. The sides of
this square extend exactly midway between T4 and its neighbors
in four directions. Intuitively, if the temperature at sensor T3

is higher than the temperature at T5, the x coordinate of the

hottest point must be on the left of T4. In the same way, we
can determine whether the y coordinate of the hottest point is
positive or negative by assuming that T4 is the origin.

In the x dimension, the temperature of virtual sensor can be
approximated as follows:

Tm = T4 +
1
2
(T3 − T5). (1)

While considering the possibility of T3 > T5, if we assume for
a y dimension T1 > T7, we obtain our temperature interpolation
as follows:

Tm = T4 +
1
2
· (|T3 − T5| + |T1 − T7|) . (2)

We will use (2) in our experimental section described in
Section VI.

V. NONUNIFORM SENSOR ALLOCATION

Although we have so far analyzed the static grid-based loca-
tions for sensors, the sensors can also be placed at nonuniform
locations on a chip if the thermal profiles of the microprocessor
are available among a wide range of applications. One straight-
forward approach is to first detect the potential hotspots through
simulation and then put a thermal sensor on each hotspot. This
method has several problems in practice. First, the locations of
hotspots are highly application dependent; hence, an optimal
location for one application will not be the best solution for
another. Second, the number of hotspots can be very large if
we run a sufficiently large number of benchmarks to reveal the
possible hottest locations on the chip.

Therefore, it is necessary to derive an automated scheme to
decide the optimized allocation of a set of sensors. This proce-
dure can be carried out in two stages. The first step is to generate
a full thermal hotspot map across a wide range of applications.
After that, the problem can be formulated as a clustering of
the points of interest in the spatial domain. The number of
clusters is decided by the number of available sensors. The
center of each cluster will indicate the physical location of
a sensor. This sensor will monitor the points associated with
that cluster. Hence, the temperature reading from that sensor
is representative of its respective coverage area. The reading
error of each sensor can be represented by the distance between
the cluster center and the other points in the cluster. Therefore,
minimizing the total reading error is equivalent to solving a
k-means clustering problem [19].

In the remaining part of this section, we will first briefly
introduce the basic idea of the k-means clustering algorithm.
Based on the basic k-means algorithm, we propose a mod-
ified thermal-aware k-means clustering method. Several dif-
ferent sensor-allocation strategies based on the thermal-aware
k-means clustering are discussed in Section V-C.

A. Basic k-Means Clustering

The k-means clustering technique can be defined as
follows [19].
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Problem 1: Given an integer k and a set of n data points R =
{�ai|(xi1, xi2, . . . , xim), i = 1, 2, . . . , n} in an m-dimensional
space, determine k centers such that the mean-square distance
from each data point to its nearest center is minimized, i.e.,

minimize
n∑

i=1

|�ai − �ci|2 (3)

where �ci represents the nearest cluster center to the data
node �ai.

The k-means clustering algorithm works by iteratively refin-
ing the position of the k cluster centers. Initially, the k cluster
centers are randomly picked up from the n data points. Then,
each data point finds out which center it is closest to. In this
way, each cluster center will “own” a set of data points. The
next step is to move the cluster center to the centroid of the
points it owns. The iterations will continue until we reach
the optimal solution.

The termination of the basic k-means algorithm is easy to
prove. Each iteration will arrive at a new clustering configu-
ration because the objective function value must be reduced.
On the other hand, there are only a finite number of ways
of partitioning the n data points into k groups. Therefore, the
algorithm will terminate eventually.

However, it is not possible to guarantee the optimality of
the basic k-means algorithm [20]. Therefore, some guidance
must be applied to the initial random distribution. One effective
heuristic introduced in [20] is to place jth initial center on the
data points that are as far away as possible from the closest of
center 1 through j − 1.

For our purpose of the uniform sensor allocation, k sensors
(k clusters) need to be created to monitor n hotspots. The
cluster center corresponds to the sensor location. The data
points in each cluster correspond to the hotspots that will be
monitored by the sensor located at the cluster center.

B. Thermal-Gradient-Aware k-Means Clustering

The basic k-means algorithm correlates the sensor error with
the distance between the hotspot and the location of sensor. This
implies a linear relationship between the temperature gradient
around a hotspot and the temperature at that location. There-
fore, if we have, for example, one point with the highest tem-
perature of 370 K and another point with the highest possible
temperature of 350 K, the basic k-means algorithm will put the
sensor in the middle between these two hotspots. However, it is
beneficial in terms of accuracy if we move the sensor toward the
370-K point because the temperature gradient around a high-
temperature location is larger than that at a low-temperature
point. Therefore, a better sensor allocation should place an
emphasis on minimizing the actual distance weighted by the
temperature of the hotspots instead of using physical distances
directly. Here, we propose a thermal-gradient-aware k-means
clustering and a sensor-allocation algorithm to overcome this
challenge.

Considering the thermal characteristic t, i.e., the tempera-
ture, of the hotspots, each such element can be regarded as
distributed in a 3-D space and described by a tuple (x, y, t).

Fig. 5. Pseudocode for the thermal-gradient-aware k-means clustering
algorithm.

By using this representation, our sensor-allocation algorithm
operates in two stages. In the first stage, we group the hotspots
into clusters where elements in the same cluster exhibit both
spatial and thermal correlation. In the second stage, we identify
the physical location within each such cluster where a thermal
sensor should be placed. The sensor placed at this location
would provide the most reliable information regarding the
thermal condition of any hotspot within a certain cluster. If the
sensor is placed directly at the center of the cluster, it is called a
3-D-placement scheme; otherwise, the location can be decided
by some heuristic, as will be discussed later.

The clustering stage in a 3-D space is similar to the basic
k-means iterations in a 2-D space, except that we need to extend
the 2-D Euclidean distance to a 3-D case. That is, we need to
use (4) to find the cluster center to which each hotspot belongs

d(i, j) = (xi − xj)2 + (yi − yj)2 + (ti − tj)2 (4)

where (xi, yi), (xj , yj), and (ti, tj) are the coordinates and
temperature of hotspot and cluster center, respectively.

Once we finish the hotspot clustering, we need to determine
the physical location of thermal sensors. Instead of directly
using the centroid of each cluster as the sensor location, we
propose here another approach that takes into account the
diversity of thermal gradients within a cluster. The basic idea
behind this approach is to move the cluster centers or the
sensors closer to the relatively higher temperature hotspots.
This is equivalent to the sensor being attracted to the hotspots
with high-temperature values with a larger force. The details
are described in the algorithm shown in Fig. 5.

The 3-D Euclidean distance computation shown in (4) cor-
responds to Step 5) of the algorithm shown in Fig. 5. If the
temperature of a certain hotspot is larger than the average of the
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cluster, the sensor location will be pushed toward that hotspot
by an attraction coefficient α. This is shown in Step 13). We
have determined experimentally that an attraction coefficient
value α = 0.1 performs best. The cluster centers determined
in Steps 3)–14) are then iteratively refined such that the mean-
square distances of the hotspots from their respective cluster
center are minimized over Steps 1)–18). Note that computing
the cluster center using this method moves the sensor location
physically closer to the steeper thermal gradients. We should
also point to the fact that although we use the temperature
dimension of the cluster centers, this dimension t is used only
for modeling attraction toward points exhibiting high thermal
stress. The temperature at the sensor’s physical location deter-
mines its thermal reading, which has no physical relation with
the temperature coordinate t of the cluster center.

Finally, we would like to point that the n-dimensional clus-
tering concept allows us to consider other parameters during
the sensor placement. In addition to the thermal gradients,
frequency of occurrence of a certain hotspot may be another im-
portant parameter to guide the placement. We can incorporate
this parameter as an additional dimension defining each point
of thermal event point in the cluster sets.

Next, we will show how our proposed algorithm can be
applied for different sensor-placement scenarios.

C. Sensor-Allocation Strategies

1) Global Sensor Allocation: In this strategy, the global
hotspots are considered. We refer to the global hotspot as the
absolute hottest point across the entire core. The global hotspots
generally emerge in the same functional block repeatedly
over many applications for a given architecture configuration
(although the exact location of the hotspot may be shifted inside
the block across applications). However, there can be reasons
for the global hotspots to move into different components of
the processor. For instance, in a superscalar processor, multiple
copies of the floating-point unit can be selectively activated.
During the intervals where a single floating-point unit is active,
it can contain the hotspot. In another interval where multiple
copies of this unit are active, the load would be distributed
evenly, and the power density would be low in this location.
At that point, a different unit, such as the instruction queue, can
be the origin of the hotspot. Our strategy to place the sensors to
capture such events works as follows. First, an initial number
of sensors are estimated, and a thermal-gradient-aware sensor
allocation is performed with that number. Then, the sensor
allocation is changed iteratively until the results are within a
given accuracy. A good starting point is to select the number of
sensors to be equal to the total number of blocks and then to
increase or decrease that number of sensors.
2) Local Sensor Allocation: In this case, our goal is to

determine the allocation of the sensors for each individual
processor component or block. We define a hotspot per com-
ponent basis in this case. For a component, a hotspot is the
location exhibiting the highest temperature within that block
for an application. Effective local monitoring can be vital in
various dynamic optimizations. Activity-migration and thread-
assignment techniques [11], [23] can be assisted by local

thermal-monitoring mechanisms. Temperature information re-
garding local components can be exploited by a dynamic cache
optimization [13], [14] to reduce the leakage power. There can
be different approaches for local sensor allocation.
Naive Allocation: The most straightforward approach is to

place a fixed number of sensors per processor block. There are
different ways to place the sensors based on the geometry and
alignment of the block. The main idea is to recursively bisect
the block into smaller units until the number of units is equal
to the number of desired sensors. For example, this will involve
placing a single sensor at the geometric center of the processor
block. For two sensors, the block is bisected along the longest
edge, and a sensor is placed at the center of each bisected
rectangle.
Single Sensor at Thermal-Gradient-Aware WCC: This tech-

nique involves placing a single sensor for each processor
component. This is equivalent to applying the thermal-gradient-
aware allocation (TGA) shown in Fig. 5, without performing
clustering within the component block. In this case, the entire
hotspot map will form a single cluster, and the center of this
cluster will be the sensor location for the single sensor. Hence,
we term this as the thermal-gradient-aware weighted cluster
center (WCC). It is the same as our thermal-gradient-aware
k-means clustering approach but with k being equal to one.

TGA: In this approach, multiple sensors are placed within
each processor block. Such allocation is performed by the
thermal-gradient-aware k-means algorithm, where k is the
number of sensors in each block, and the centers of the k
clusters are the location for the k sensors. Increasing the number
of sensors increases the monitoring accuracy. We observed
that selecting the number of sensors to be two gives a good
accuracy thermal sensing for microprocessor configuration in
our experiments.
Hybrid Sensor Allocation: In contrast to the previous ap-

proaches where all blocks have an equal number of sensors
(either single for the WCC strategy or a fixed number for the
TGA strategy), we allow the allocation of variable number of
sensors in different blocks. We adjust the amount of sensors
necessary based on the error in measurement observed in differ-
ent processor blocks. At first, for each processor block, a single
sensor is allocated by the WCC method, and temperature-
measurement error is determined. Then, depending on the
amount of error observed in each individual block, the TGA
is repeatedly applied with an increasing number of sensors
until no significant improvement in accuracy can be observed
in that block. By customizing the number of sensors required
for accurate temperature measurement for each block, the total
number of sensors is reduced.

VI. EXPERIMENTAL RESULTS

In the following sections, we first describe our experimental
methodology. In Section VI-B, we present our results for dif-
ferent sensor-allocation strategies.

A. Experimental Flow

We simulated the SPEC2000 benchmark (13 floating points
and 12 integer benchmarks) suite [28] using SimpleScalar [6].
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Fig. 6. Maximum temperature error for the SPEC2000 benchmarks performing a uniform global sensor allocation using the basic approach and the interpolation
scheme.

The SimpleScalar simulates a superscalar processor with out-
of-order issue and execution. We simulated each application for
200 million instructions after fast-forwarding an application-
specific number of instructions, as proposed by Sherwood et al.
[25]. We have chosen Alpha 21364 as our base processor. The
Alpha 21364 processor is a four-way processor with a load
store queue and a register update unit of sizes 32 and 64,
respectively. The level 1 instruction and data caches are 64 KB
and four way associative with a 32-B block size and a two-
cycle latency. Unified level 2 caches are 512 KB and four
way associative with 128-B line size and a uniform 15-cycle
latency.

Wattch infrastructure [5] is used for architectural-level power
modeling. The access patterns of the processor blocks from
the SimpleScalar are then used by Wattch to compute the
power dissipation of the blocks. The power data for 1.6 V
at 1 GHz at 180-nm node were scaled using Wattch’s linear
scaling to obtain power for 1.3 V at 130-nm node with a 3-GHz
clock frequency. We have used Hotspot version 3.1 [26] to
perform the thermal simulation. The floorplan of Alpha 21364
and the power dissipation from Wattch are used as inputs to
the Hotspot. The thermal simulation can be performed in the
granularity of processor blocks. Another option is to perform
a grid-level thermal simulation. In that case, the processor
floorplan is uniformly divided into grids, and the temperature
of each grid element is computed. The grid size determines the
number of grid elements per processor component. Increasing
the number of grid elements (higher resolution) helps capture
the spatial variation in temperature per component. The initial
temperature of the processor was assumed to be 60 ◦C. This
represents the die temperature if the processor was already
executing instructions prior to the execution of benchmarks to
model the warm-up period. The ambient temperature is set to
40 ◦C. Power data at every 5 ms of simulation are used for
transient thermal simulation at the grid level. For a 2.13-GHz
clock frequency, this corresponds to a sampling period of every
ten million cycles.

For our experiments, the point of interest is the relationship
between the maximum temperature that would have been re-
ported by the sensors within the core and the actual maximum
temperature within that core. The expected temperature mea-
surement of a sensor is determined by its location on the thermal
map, i.e., the temperature of the grid location is equal to what

a sensor placed in that grid location would have measured. We
adjusted our grid size to ensure that each processor component
contains a large number of distinctly monitored grid points, i.e.,
the granularity of the thermal simulation is much finer than the
number of blocks on the processor floorplan. We also obtain the
actual maximum temperature across all grid points on the core’s
floorplan directly from the thermal simulation. The difference
between the maximum sensor temperature, i.e., the temperature
at the grid point where the sensor has been placed, and the
highest temperature across all grid points of the core floorplan
indicates the “goodness” of our sensor-placement scheme. For
the local sensor placement, the same arguments hold. In that
case, however, we compare the maximum sensor reading and
the maximum grid point temperature within a single processor
component at a time.

For each application, transient thermal simulation is per-
formed with a 5-ms sampling period, and we have performed
20 iterations for each configuration. The resulting instruction
traces contain 200 MHz. For each iteration, we determine
the maximum temperature on each core and the temperature
reading that would be captured by the given sensor placement.
The difference between these two temperatures yields an error
value. Across all cores, we determine the largest error value.
Across 20 iterations, we obtain 20 such maximum-error values.
In all our results presented in the following section, the average
error denotes the average of these 20 maximum-error values.
Maximum error denotes the largest error value across these 20
individual maximum-error values.

B. Results

Our first set of results presents the maximum errors in sensor
reading using the basic uniform approach on a 4 × 4 grid and
the interpolation scheme, as shown in Fig. 6. The maximum
error of the uniform approach among all the benchmarks is
10.48 ◦C, and the average error is 2.64 ◦C. Interpolation scheme
improves these results significantly with a 5.47-◦C maximum
error and a 1.05-◦C average error. In Fig. 6, the sensor error
of interpolation method can be negative, which is not possible
in any other approaches. As discussed before, overestimation
would degrade the system performance by unnecessary trigger-
ing of the DTM. However, compared with the risk of putting
the microprocessor in the thermal emergency, which degrades
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Fig. 7. Maximum temperature error for the SPEC2000 benchmarks performing a nonuniform global sensor allocation using 2-D allocation, 3-D allocation, and
TGA approaches.

TABLE I
MAXIMUM ERRORS AND AVERAGE ERRORS FOR THE SPEC2000

BENCHMARKS USING DIFFERENT GLOBAL AND LOCAL

THERMAL-SENSOR-ALLOCATION STRATEGIES IN A

SINGLE-CORE MICROPROCESSOR

not only performance but also reliability, overestimation will be
more acceptable.

The second set of results shown in Fig. 7 presents the
maximum error in sensor reading using the nonuniform global
allocation techniques described in Section V-C for allocating a
total of 16 sensors across the entire floorplan. We observe that
allocating a number of sensors equal to the number of blocks
in the processor core could be a good starting point. Then, the
number of sensors can be increased or decreased depending
on the desired accuracy. Since the initial number of sensors
is relatively low, a linear increase or decrease in the number
of sensors to meet the accuracy proved to be a good method.
For our experiments, we found that 16 sensors provide a good
accuracy. We compared our method against three alternatives:
2-D allocation using only x and y coordinates, 3-D allocation
using x, y, and t coordinates, and our thermal-gradient-aware
approach. The results are summarized in Table I. It can be
observed that the 2-D allocation can cause very big read-
ing errors compared with the 3-D and thermal-gradient-aware
approaches.

The third set of results shown in Fig. 8 presents the thermal
monitoring accuracy for the local sensor-allocation techniques
discussed in Section V-C. In our experiments, we observed that
placing one to two sensors per block gives a good accuracy
for our hotspot distribution. Of the different local allocation
techniques, we present the thermal monitoring accuracy results

for the WCC for a single sensor per block, the TGA approach
for two sensors per block, and a hybrid assignment of one or
two sensors for each block.

These sets of results are compared against all previously
described techniques in Table I. This summary illustrates the
most interesting trends for our proposed methods. For the hy-
brid method, initially, a single sensor is placed at the weighted
centroid of each block, and the sensor errors are calculated.
Then, we identified the blocks responsible for the maximum
sensor error. We found that L2_left, FPAdd, FPReg, FPMul,
FPMap, IntExec, and FPQ contributed the largest sensor errors.
Note that out of the seven processor components, only L2_left
belongs to the memory subsystem, and the rest are functional
units. It can be observed from Fig. 9 that L2_left has two
distinct hotspot clusters: one at the boundary of Icache and the
other at FPMul. The WCC approach locates the sensor at the
center of these two hotspots, and that is the reason for the large
error. Using the thermal-gradient-aware method can improve
the accuracy greatly if we place two sensors in each processor
block.

Fig. 9 shows the sensor placement using the hybrid approach
for local monitoring. The sensors are denoted by rectangles.
This floorplan zooms onto the core of the processor. Dotted
lines represent that the majority of the cache blocks have not
been included in this floorplan. This figure shows the sensor
placement for local monitoring. The hotspots depicted within
each block represent the locations exhibiting the highest tem-
peratures observed within the respective block across different
benchmarks. Therefore, each block contributes to this hotspot
map with its own local hotspot set, as shown in Fig. 9, and
sensors have been placed to perform the local monitoring within
each block.

For the memory subsystem, most of the hotspots occur at
its boundary. This is due to the interaction of neighboring hot
blocks on the relatively cooler ones. Other blocks, such as the
floating-point multiplier and the integer execution unit, have
higher power densities and higher maximum temperatures in
general. For those blocks, we observe a set of hotspots in the
interior regions and another set of hotspots at the boundaries,
which occur due to the lateral thermal interaction with the
neighboring blocks. It can be seen from the figure that two
sensors were assigned to the blocks L2_left, FPAdd, FPReg,
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Fig. 8. Maximum temperature error for the SPEC2000 benchmarks performing a nonuniform local sensor allocation using WCC approach, hybrid approach,
and TGA applied at the local level.

Fig. 9. Hotspot distribution across processor blocks and (marked as rectan-
gles) the sensor locations determined by our hybrid-allocation strategy for local
monitoring.

FPMul, FPMap, IntExec, and FPQ, and that single sensor was
assigned to the rest.

So far, we have presented relative reading errors to assess
the coverage success of the sensor infrastructures. In Fig. 10,
we show the absolute temperature distribution for a representa-
tive application and the associated sensor readings generated
by a global uniform sensor grid placement (4 × 4 array of
sensors). We have obtained this set of results with extended
sampling intervals and a larger total number of cycles. In this
simulation, one sampling interval is composed of 125 million
cycles, and 15 intervals have been sampled for a total of
1.875 billion cycles. This helps us also to demonstrate that the
sensor behavior can be expected to be consistent for longer du-
rations of execution. In addition, we would like to mention that
our integrated simulation environment (SimpleScalar, Wattch,
and HotSpot) has also been extended with a throttling mecha-
nism that simulates the voltage and frequency scaling employed
by microprocessors when a certain critical temperature has been
exceeded. In this particular simulation, this threshold has been
set to 82 ◦C.

C. Discussion

Table I summarizes the maximum error and the average
of maximum errors for each of our sensor-allocation tech-
niques. Our first observation is that our interpolation scheme
improves the accuracy significantly over the basic uniform

approach without increasing the number of sensors needed.
Comparing the nonuniform techniques against each other, we
observe once again that our proposed thermal-gradient-aware
technique performs best. Comparing the uniform interpolation
and nonuniform clustering-based techniques, we observe that
the nonuniform technique and the interpolation-based uniform
technique are comparable. The nonuniform placement can im-
prove the error in a maximum temperature reading, which
impacts the DTM decisions most. However, we note that this
analysis is still based on one benchmark set. The nonuniform
placement technique using clustering relies on profiling data
and resulting thermal maps of hotspots. On the other hand, the
uniform interpolation mechanism is built upon a static place-
ment independent of such profiling assumptions. This provides
us with two alternative approaches, where clustering yields
the best quality in maximum temperature measurements if the
profiling data are highly accurate and dependable; otherwise,
the static placement with interpolation approach may be more
suitable.

The uniform sensor allocation generally may not be preferred
in the localized component-based temperature monitoring. The
reason is that the necessary number of sensors depends heavily
on the floorplan of the microprocessor. In some cases, this
may require an arbitrarily high number of sensors. Our con-
clusions for the local monitoring using alternative nonuniform
approaches are as follows. The thermal-gradient-aware tech-
nique outperforms all other clustering-based techniques that do
not have sensitivity to the thermal gradients, using the same
number of sensors. Our hybrid approach further builds upon the
thermal-gradient-aware technique by selectively adjusting the
number of sensors needed in each block. This leads to similar
accuracy with fewer sensors used.

It can be noted that our scheme applies the best sensor
allocation and placement decision that is possibly independent
of the power and thermal model. For our experimental flow,
we have used the Wattch infrastructure to obtain block-level
power. It is true that the evaluation would be more accu-
rate if we model power distribution inside individual compo-
nents. However, such data require detailed component layouts,
which are not public information. New versions of HotSpot,
as used in our study, allow grid-based simulation efficiently.
Our attempt to apply fine-grid thermal simulation on top of
the blocks in the least gives better accuracy compared with
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Fig. 10. Temperature values obtained from thermal simulation and the sensor readings for a uniform sensor grid (for the gzip benchmark).

performing block-based thermal simulation. The results for
the evaluation of our technique correspond to the accuracy
of the thermal simulator HotSpot. HotSpot has been vali-
dated against Floworks (http://www.floworks.com), which is
a commercial finite-element simulator of 3-D fluid and heat
flow [26].

Finally, regardless of whether a clustering-based method or
a static scheme is used, some hotspots may still be missed. A
drastically steep thermal gradient within a very small distance
can lead to missing possible hotspots, even if we employ a
static grid. Our interpolation scheme using the physical sensor
readings to assess those locations falling in between physical
sensors aims to remedy this problem. While there always may
be some thermal gradients, which are challenging to monitor for
any type of sensor network, with a reasonably sized static grid
and the follow-up interpolation, most thermal gradients could
be successfully monitored.

VII. CONCLUSION

We have presented techniques to generate a sensor infrastruc-
ture to monitor the maximum temperature on microprocessors.
Our goal is to provide accurate temperature readings in a given
system while maintaining a reasonable overhead in terms of the
number of sensors and the sensor data collection effort. The
DTM schemes can leverage on the sensor infrastructure that is
built by our approaches.

We first analyzed the uniform sensor-allocation strategy,
where the sensors are placed on a uniform grid on the mi-
croprocessor. This strategy can be applied in cases where the
thermal profiles are not available or they vary greatly among
different applications. We improved upon this naive solution
by introducing an interpolation scheme. The interpolation is
able to reduce the average errors for a given sensor distribution
without incurring any additional overhead. Our experiments
show that our uniform sensor-allocation strategy can provide

a comparable accuracy, the nonuniform placement delivering a
slightly better accuracy for maximum temperature monitoring,
as that of the nonuniform strategy by the same number of
thermal sensors. On the other hand, the nonuniform strategy
can be used to monitor both the global and local thermal
conditions. The uniform placement for local component-based
monitoring can require a high number of sensors in total, and
some processor components present much more predictable
thermal profiles compared with the global case. Therefore, the
nonuniform placement can be the most dependable and accurate
option for such blocks. Our proposed thermal-gradient-aware
approach reduces the maximum error to 4.85 ◦C and the average
error to 2.10 ◦C in the global thermal monitoring. In the local
thermal monitoring, the maximum error is 3.18 ◦C, and the
average error is 1.63 ◦C.
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