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Abstract—FRASA, Feedback Retransmission Approximation for
Slotted ALOHA, is proposed to study the stability region of finite-
user slotted ALOHA under collision channel. With FRASA, the
stability region is derived in closed form for any number of users

in the system. The result derived from FRASA is shown to be

identical to the analytical result of finite-user slotted ALOHA
when there are two users. It is shown that the stability regia
obtained from FRASA is a good approximation to the stability
region of finite-user slotted ALOHA. The convex hull bound,
which is convex, piecewise linear and outer-bounds the stdity
region of FRASA, is provided. p-convexity, an essential property

that the stability region of FRASA should have to ensure the

convex hull bound to be close to the boundary, is charactered.
From these, it is derived that the stability region of FRASA @an

never be convex when there are more than two users. A separate

convex and piecewise linear inner bound on the stability reign
of FRASA, the supporting hyperplane bound, is also given. More
insights on the characterization of the capacity region of ther
types of wireless random access networks can be obtained fro
the analytical findings with FRASA.

Index Terms—Stability Region,
ALOHA, FRASA.

Random Access,

I. INTRODUCTION

HE study of the stability region of slotted ALOHA has

attracted many researchers [1]-[9]. Despite the simplicit
of slotted ALOHA, this problem is extremely difficult when
M, the number of users in the system, exceeds two, even
on the collision channel assumption. Under this assumption
successful transmissions occur if and only if there is onigec
transmitter, because of the interference among the sgtion
The inherent difficulty in the analysis is due to the effect of
gueueing in each transmitter. More specifically, the prdtab
of successful transmission depends on the number of active
transmitters, which in turn depends on whether the queues in
the transmitters are empty or not. However, it is still anrope

problem to obtain the stationary joint queue statisticdased
form.

Slotted

[6], [8]. However, they did not require the bounds todmsvex

or piecewise linegrwhich are important in traffic engineering
[10]. Requiring such properties reduces the traffic enginge
problem into convex or linear programming, which are rela-
tively more tractable. Therefore, we are motivated to deriv
convex and piecewise linear bounds on the stability region.
We hope this work can serve as a basis and can be extended
to consider multi-hop networks and interference modelgoth
than collision channel.

In this paper, we propose FRASBeedback Retransmission
Approximation for Slotted ALOHAas a surrogate to approxi-
mate finite-user slotted ALOHA. By considering FRASA, we
make the following contributions:

1) We obtain inclosed formthe boundary of the stability
region of FRASA under collision channel fany num-
ber of users in Section Ill. The results obtained from
FRASA are identical to the analytical results of finite-
user slotted ALOHA forM = 2.

2) We demonstrate by simulation in Section IV that the
stability region obtained from FRASA is a good ap-
proximation to the stability region of finite-user slotted
ALOHA. We also demonstrate that FRASA has a wider
range of applicability than the existing bounds.

3) In Section V we provide @onvex hull boungdwhich is

convex, piecewise linear and outer-bounds the stability

region of FRASA. This bound can be computed by using

the transmission probability vector only. In Section VI

we introducep-convexity which is essential to ensure

the convex hull bound to be close to the boundary of
the stability region of FRASA. The nonconvexity of the
stability region of FRASA when\/ > 2 follows from
these results.

4) A convex and piecewise linear inner bound on the stabil-
ity region of FRASA, called thesupporting hyperplane
bound is given in Section VII.

Instead of finding the exact stability region, previous re- For the rest of the paper, we present related works in Section
searchers have attempted to bound the stability regioridJi]— II. In Section VIII we conclude the paper and discuss future

) ) ) works.
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Il. RELATED WORKS

The study of the stability region af/-user infinite-buffer
slotted ALOHA was initiated by [1] decades before, and is
still an ongoing research. The authors in [1] obtained treecex
stability region whenm\/ = 2 under collision channel. [2] and
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[3] usedstochastic dominancaend derived the same result as
in [1] for the case ofM = 2.

For general\/, there were attempts to find the exact stability
region, but there was only limited success. [5] establighed
boundary of the stability region, but it involves statiopgint
gueue statistics, which still do not have closed form to date
[9] obtained in closed form a partial characterization oa th
boundary of the stability region undeartial interference

Instead, many researchers focused on finding bounds on the
stability region for general/. [1] obtained separate sufficient
and necessary conditions for stability. [2] and [3] derived
tighter bounds on the stability region by using stochastigy 1. siotted ALOHA model: (Upper) Original; (Lower) FRAS
dominance in different ways. [6] introducedstability rank
and used it to improve the bounds on the stability region.

However, the bounds in [2] and [6] are not always applicablésedback loop, does not grow to infinity. Otherwis,is
Also, the bounds obtained may not be piecewise linear. unstable

With the advances in multi-user detection, researchecs als Equivalently, since the number of packets in the single
studied this problem with thenultipacket receptiolMPR) buffer must be finite, the stability of the feedback loop in
model. [7] studied this problem in the infinite-user, singleeach link determines the stability of the corresponding lin
buffer and symmetric MPR case. [8] considered the problem the FRASA system. Also, throughout this paper, we use
with finite users and infinite buffer. They obtained the boundhe results from [12] to determine when a system is stable:
ary for the asymmetric MPR case with two users, and also tba the assumption that the arrival and the service processes

inner bound on the stability region for generdl. of a queue are stationary, the queue is stable if the average
arrival rate is less than the average service rate, and theequ
I1l. THE FRASA MODEL is unstable if the average arrival rate is larger than theame

In slotted ALOHA, there is a queue of infinite buffer afService rate.
each transmitter. Packet arrivals are assumed to be Béirnoul Whens is stable, for eact € M, we have
When a packet arrives, it joins the end of the queue. The head-
of-line packet is transmitted when the transmitter deciabes
transmit, and it remains at head-of-line until it is sucéalgs
transmitted. This is depicted in the upper part of Fig. 1.

Due to the complexity introduced by the queues, we propose ] ) )
FRASA, Feedback Retransmission Approximation for Slottethe second term on right hand side of (1) represents theaarriv
ALOHA as a surrogate to approximate finite-user slottdate of the packets to the feedback loop due to the trangisitte
ALOHA. In FRASA, the buffer in each transmitter can holdl€cision of not transmitting the packet, while the thirdesn
one packet only. Whenever there is a packet in the bufféight hand side of (1) denotes the arrival rate of the pacdkets
if the transmitter decides not to transmit the packet, or ti{@e feedback loop due to the transmitter's attempt to tréansm
transmitter cannot successfully transmit the packet due i packet which results in a collision. Whénis stable, the
collision, the packet will be removed from the buffer andrrival rate and the departure rate of the feedback loop are
put back in the buffer again after a random delay which Raual. Therefore, together with the arrival of new packets,
geometrically distributed. Therefore, tlggregate arrivalof three terms on right hand side of (1) constitute the aggeegat
packets to the buffer, which includes the new arrivals ard tRfrival ratex,,. Simplifying (1), we get
retransmissions, is assumed to be Bernoulli or memoryless. A = Xnp H (1= Yo ) @)
Similar approximation was introduced by [11]. FRASA is oA e
shown in the lower part of Fig. 1. W eMn}

Assume there aré/ links in the network, and the set ofwhich states that whef is stable, the loading supported by
links is denoted byM = {n}* .. Let A = (\,)nem and each link is equal to the successful transmission proltyioifi
p = (pn)nem be the arrival rate vector and the transmissiothe corresponding link. Since the feedback loop of each link
probability vector respectively. Defing, = 1 — p, for all is stable, we get for each € M
n € M. Let x,, be the aggregate arrival rate of linke M
where x,, is between zero and one. For eache M, we _ _ v, _
define the mean of the random delay in the feedback loop tgn(l Pr)+Xupn | 1 H A=xwpw) | <17 (3)

+XnDn |1 — H (1 - Xn’pn/) . 1)
n’e M\{n}

N n’e M\{n}
be 1—\, Denote this FRAS_A system by. We define the Substituting (2) into (3), we obtaig,, < 1. On the other hand,
stability of the FRASA systen$ as follows. whenS is unstable, the feedback loop of at least one link, say

Definition 1: The FRASA systen® is stableif for each link n, is unstable. Then the departure rate of the feedback loop
link n € M, the number of packets in the correspondingf link n is 1 — A,. This implies that the aggregate arrival rate
transmitter,i.e,, the packets in the single buffer plus theflink n is x, = A, +(1—X\,,) = 1, which means that there is
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always a packet in the single buffer of the transmitter o lin
n. Therefore, we arrive at the following alternative defioriti
of the stability of the FRASA syster8.

Definition 2: The FRASA systen® is stableif for each
n € M, xn < 1. We define linkn to beinfinitely backlogged
when y,, = 1. If S contains at least one link with infinite
backlog,S is unstable

To determine the stability region of FRASA, we first con-
sider areduced FRASA systenm a reduced FRASA system,
we let M — 1 of the links have fixed aggregate arrival rates
and the remaining link is assumed with infinite backlog. Take
i € M to be the link with infinite backlogi,e., x» = 1, and EE’ASA
denote this reduced FRASA system By. Hence, link# is
active with probabilityx,ps = pa, while for n £ 7, link n

Stability region withM = 2: (Upper) From [2]; (Lower) From

is active with probabilityy,,p,. Therefore A = (/\")nej\/[ is holds, the boundary of the stability region of FRASA is
the successful transmission probability vector and
P y A[AL(L = p1) + Aep1] = pr (1 = pa),
XnPn(1 = pa) H (L =Xwpw), n#n which is reduced to
X _ n’e M\{n,n} Ao
" 7 1= xnpn =i’ AL = 1-
p HA( Xn' D), n=n 1 Pl( 1_p1)
neM\{n} o . L . N
(4) after simplification. Geometrically, it is a straight lin@ijing

with X5, > 0. Then,\, = \,,,Vn € M is theparametric form
of the boundary of the stability region &f,. We can obtain
a non-parametric version by using (4) as follows.

Lemma 1:ConsiderS;. When

/\ﬁ(l _pﬁ) > /\n(l _pn) >

- 20 (%)
Pa Pn
is satisfied for alln € M \ {7}, the hypersurfacé, i.e,,
H A (1 —pa) + Awpa] = palra(l — pﬁ)]Mfl (6)

n'emM
is the non-parametric formof the boundary of the stability
region ofS;.

Proof: Refer to Appendix A.

Recall the system is stable if all queues in the system aréyout we consider the case dff

stable [5], [6], [8], and notice the expressieﬁli/\ (L= pn) in

the points(p;,0) and (p1P,, p2p;). This is depicted in the
bottom left of Fig. 2. By symmetry, we also get

")

/\2=p2(1— 1
— D2

as the boundary of the stability region of FRASA when

A2(1 —po) S Ar(1—p1)
D2 N D1

holds. This is a straight line joining the point8, p2) and
(p1D4, p2Dy)- This is shown in the bottom center of Fig. 2. The
bottom right of Fig. 2 contains the final result of the staili
region obtained from FRASA. The stability region derived in
[2] is illustrated in the top row of Fig. 2 for comparison. We
see that the final results are identical to each other.
= 3 and each link has
a transmission probability of 0.3. Figs. 3(a), 3(b) and 3(c)

>0

(5) is identical to thenstability rankintroduced inp[ré]. When illustrate the results of Lemma 1 65, S, andS; respectively.
A1 =pn) Ml —pa) ) o The single-colored hyperplanes in Figs. 3(a), 3(b) and 3(c)
max . - o holds as in (5), linki is the 5 the partition of the positive orthant generated by (5),
most progable one to be the first unstable link. Hence, we ighile the multi-colored hypersurfaces come from (6). The
link 7 to be infinitely backlogged and use Lemma 1 to obtaimnion of these regions constitutes the stability regionim F
the stability region of FRASA as in the following Theorem. 3(d) as stated in Theorem 1. Another example is shown in
Theorem 1:R U R; is the stability region of Figs. 4(a)-4(d), in which each link transmits with probéil
nem 06
FRASA, whereR, is represented by:

An(l—pa) S An(1—pn)

IV. VALIDATION OF THE FRASA MODEL

o = >0,vne M\{n},  (7) A Simulation Results
H Ma(l = pa) + Awpal < palha(l —pa) M1 (8) In this Section,_ we _first use _simulation to verify if FRA_SA
i eM is a good approximation to finite-user slotted ALOHA. Since
) ) L i whenM = 2, we obtain identical results for both FRASA and
The union here is actually a disjoint union. finite-user slotted ALOHA, we conside¥/ = 3 here.
Proof: Refer to Appendix B. B First, to check whether the slotted ALOHA system is stable

We first illustrate our results fok/ = 2. When

M (1 —=p1) S A2 (1 = p2) >0
D1 D2

or not by simulation, we extend the algorithm proposed in
[13]. For each simulation run, we partition the simulation
time into N batches, where\NV > 2. We calculate the
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Fig. 3. Stability region of FRASA with)\/ = 3 and transmission probabilities 0.3 by Lemma 1 and Theorem 1.

)
OERXXD,
LRRERR

LZRRRREKS
LXK

°
>

SRRRRR

BN

BRI
RIS

5
L
&,
22

o o
9

Loading on Link 3

oo

04 0.4 04 04

06 06 i 06 06 Loading on Link 1 06 06 06 06 Loading on Link 1
Loading on Link 2 Loading on Link 1 Loading on Link 2 Loading on Link 2 Loading on Link 1 Loading on Link 2 o

() R1, stability region with link 1(b) R, stability region with link 2(c) R3, stability region with link 3 (d) R, the whole stability region.
having maximum instability rank. having maximum instability rank. having maximum instability rank.

Fig. 4. Stability region of FRASA with\/ = 3 and transmission probabilities 0.6 by Lemma 1 and Theorem 1.

average queue lengths for each ba@l;;gw(b), starting from take the midpoint of the final search range to be the boundary
the second batch. We discard the first batch to remove aralue of A3 for the given values of\; and \s. We repeat
transient behavior in the system. Then we compute the samibles procedure for any combination of and A\, to get the
mean and sample variance of the average queue lehgth, boundary of the stability region.

E[Q,.,] andVar(Q, ), respectively. We use the difference

between the last and the second observatiem,Qnyw, in the

hypothesis testing. If,
. For illustrative purposes, we only show the cross-sections
_ Gnw >t _an_2,InEM, (9) of the stability regions. We first let all links transmit with
2Var(Q,, ) probability 0.3. In Fig. 5(a) we depict the cross-sectiofis o
the stability region by fixing\s, while in Fig. 5(b) the cross-
wheret;_, p—2 is the (1a)-percentile oft-distribution with sections of the stability region are obtained by fixikg The
N —2 degrees of freedom, is satisfied, we assume the systersafid lines represent the simulation results while the etish
unstable; otherwise all queues in the slotted ALOHA systemlines are obtained from FRASA. In Figs. 6(a) and 6(b) we
stable and so does the system. If the system is unstable, ttefrow the corresponding results by changing the transmissio
must existh € M such that the length of quetiehas positive probabilities of all links to 0.6. We observe that there is
linear growth rate, making the hypothesis (9) satisfied with close match between the stability region of FRASA and
high probability. Otherwise, the expectation ¥, ,, would the stability region of slotted ALOHA. Slotted ALOHA and
be zero for alln € M, and with high probability (9) would FRASA are similar in many ways. First, both define stability
be false. We performy simulation runs and then use majorityas the situation that the number of packets in the trangmitte
vote to determine whether the system is stable. of each link does not grow to infinity. Second, if in every
Using the previous algorithm as a subroutine, we use thime slot, the transmission attempts of all links are the esam
following approach to find the boundary of the stability mgi for both slotted ALOHA and FRASA, the number of packets
This is based on bisection method [14]. We Mgt and \» in the transmitter of each link are the same for both systems,
increase from zero to one. Given apy= (p1, p2, p3), for any except for a subtle difference: in slotted ALOHA the packets
A1 and )\, between zero and one, let the initial search range afe located in the queue, while in FRASA, the packets are
A3 be [0, 1] and set\s to be the midpoint of the search rangein the feedback loop. Also, the probability that there is a
Then we letA = (A1, A2, A3) be the arrival probabilities of packet in the buffer are similar for both systems: when both
the links and simulate the slotted ALOHA system. We use thlsystems are stable, the queue in slotted ALOHA and the single
previous algorithm to check the stability of the systemhHtt buffer in FRASA can be empty; on the other hand, when both
algorithm indicates that the system is stable, we set thé neystems are unstable, there is always a packet in the queue in
search range of; to be the upper half of the original one;slotted ALOHA, while the single buffer in FRASA is always
otherwise, we use the lower half as the next search range. Wéeupied. Therefore, the stability region of FRASA is a good
iterate until the search range is sufficiently small. Then wagpproximation to the stability region of slotted ALOHA.
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Fig. 5. Cross-section of stability region with/ = 3 and transmission Fig. 7. Restricted application of the upper and lower bounds€].
probabilities 0.3.
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RIS TS whether the instability rank assumption is valid or not. Whe
WZ:\ oz Zoms - L o1 Zoms the instability rank assumption is not valid, one may tempt
Sod S - load 040 EPY N - loan 040 to switch the order of the links to keep the validity of the
£os “\ Eos \NN assumption. But in this case, we even cannot determine the
o2 \»‘\ oz ) "~ stability of the links with instability ranks higher thanathof
" T~ S - link M, because the bounds on linkdepend on the loadings
O O et T on the links having smaller instability ranks than link[6].
(a) Az fixed. (b) A fixed. Therefore, when using the bounds in [6], we cannot set the

) , - _ , ~ loadings on the firsfi/ — 1 links too large in order to maintain
g:gb:t;ilitiér%sjzsecnon of stability region with/ = 3 and transmission the instability rank assumption.
However, such restriction does not exist in computing the
“FRASA’ value of \j;. We first let link A be the link with
B. Comparison to Previous Bounds the highest instability rank,e., 7 = M. Then we solve (6)

Here, we demonstrate that FRASA is a good approximati(f)?lr Apr, Which is an equation of degrek! - 1, and g?t
to finite-user slotted ALOHA by showing the boundary values™ 1 vglues of Ay E_xactly_ one of the_m IS the_deswed
obtained from FRASA lie inside the upper and lower bound’?lue' Wh'Ch ma_kes the |.nstab.|I|ty rank.of I"M.the h|-g_hest.
in [6]. We fix the loading of the first\l — 1 links, evaluate Otherwise, we find the _Ilnk with the .h|ghest |Anstab|I|ty rank
the “FRASA’ value of \j;, and evaluate the “Upper” bound3MONY the f|rs_tM.— 1 links. We let it equalsh and slolve
and “Lower” bound of\y; by using Theorems 3 and 5 in [6] (6) for Aar, which IS an equatlo_n Of degree one. In this case,
respectively. Before showing this, we point out that theriusu we get a nonnegative value Wh'c_h Is the des_|red valupf ,
in [6] are applicable only when the instability rank assuiopt OtherW|§e, we FOF‘C'”de _that with the loadings on the first
ie, link M has the highest instability rank, holds. This ig/ — ! links, it is impossible to keep the system stable no
best illustrated by the following examples. Consider atstbt matter how smalh, is. )
ALOHA system with two users. We let both links transmit T(_) compare the r_1umer|cal valu_es computed f_rom FRASA
with probability 0.6. We keep increasiny while assuming _agamst the bounds in [6], we consider the numencal examnple
M =p1) A1 —p2) in [2] and [6]. The examples are reproduced in Tables I-XIV.

" < b and evaluate the upper bound 0Rrhe values of the loadings are classified into four groups in

A2 by using Theorem 3 in [6]. When; > p;p,, the upper each table. In G1, one or more values\gfare zero. In G2, alll

bound,i.e., Az, max, Satisﬁes/\z(l —p2) < A2,max(1 = p2) < A, are approximately equal tgpn H D, In G3, all

P2 P2 n’€M\{n}
Ar(l— . . - . .
M, showing that the instability rank assumption does,, are close tg, H D,- In G4, one or more,,, satisfy
not ﬁ%)ld. We change the transmission probabilities of both n EM\{n} . _
links to 0.3 and repeat the whole process, but evaluate the > pn H Pns» and these\,, are marked with asterisks
lower bound on)\; by using Theorem 5 in [6]. It is found n’ e M\{n} _ _
that when), > pip,, the lower boundj.e., Ay min, Satis- in the tables. In all cases, the values predicted from FRASA |
. A2.min(1 — p2) 2’/\1(1 —p1) I inside the upper and lower bounds in [6]. Simulations are als
ies — <

2 T and we cannot concludeperformed for all examples in [2] and [6], and the results are
whether the instability ranfz assumption is valid or not. §de shown in brackets in the tables. While the difference betwee
results are depicted in Figs. 7(a) and 7(b) respectivelyhén the simulation result and the corresponding “FRASA’ value
case ofM = 2, we already have the complete characterizatiatan be as large as 40% (the first case of G4 in Table ),
on the boundary of the stability region, therefore we caior most cases, 82 (resp. 90) out of 96, the simulation result
explicitly evaluate\, and show that whern; > p;p,, the deviate from the corresponding “FRASA’ values by at most
instability rank assumption does not hold, and the Theorem2% (resp.£10%). The examples also show that the bounds
in [6] are not applicable. Whed/ > 2, if there are some in [6] may not be always applicable, as in the case of G4 in
\n satisfying, > p, H P, it is difficult to predict Table IV.

n'eM\{n} For the first case of G4 in Table I, we plot the contour



TABLE |
COMPARISON FORAjy FORM = 3 AND p1 = p2 = p3 = 0.5.

COMPARISON FORA s FORM = 3 AND p1 = 0.6,p2 = 0.7,p3 = 0.8.

A1 A2 CHB | Upper | FRASA (Sim) | Lower
G1 0 0 0.5 0.5 0.5 (0.500) 0.5
0 0.12 | 0.38 0.38 0.38 (0.383) 0.38
G2 | 0.06| 0.06 | 0.38 0.38 | 0.370 (0.365)| 0.341
G3 | 0.12 | 0.123] 0.257 | 0.257 | 0.170 (0.158) | 0.140
G4 ] 0.12] 0.13* | 0.25 0.25 0.13 (0.131) 0.13
TABLE Il

COMPARISON FORA s FORM = 3 AND p1 = 0.63,p2 = 0.52, p3 = 0.51.

A1 A2 CHB | Upper | FRASA (Sim) | Lower
G1 0 0 0.8 0.8 0.8 (0.802) 0.8
0 0.05 0.743| 0.6 0.6 (0.601) 0.6
0.03 0 0.76 0.68 0.68 (0.683) 0.68
G2 | 0.018| 0.028 | 0.744| 0.616 | 0.603 (0.594)| 0.508
G3 | 0.03 0.05 0.703 ]| 0.48 | 0.423 (0.375)| 0.24
G4 | 0.035| 0.0561* | 0.689 | 0.436 | 0.344 (0.204)[ 0.115
0.025 | 0.0563* | 0.702 | 0.475 | 0.421 (0.360) | 0.278
TABLE IlI

COMPARISON FORAp; FORM = 3 AND p1 = 0.1,p2 = 0.1,p3 = 0.1.

A1 Ao CHB | Upper | FRASA (Sim) | Lower

G1 0 0 051 | 051 | 051 (0510) | 051
0 0.045 | 0.466 | 0.463 | 0.463 (0.464) | 0.463

0.07 0 0.453 | 0.437 | 0.437 (0.440) | 0.437

G2 | 0.07 | 0.045 | 0.409| 0.390 | 0.381 (0.375)| 0.341
G3 | 0.14 0.09 | 0.308| 0.271 | 0.204 (0.164) | 0.123
G4 | 0.12 | 0.095* | 0.320 | 0.286 | 0.233 (0.203) | 0.167
0.15* | 0.093 | 0.297 | 0.257 | 0.166 (0.117) | 0.092

TABLE IV

(NOTE: [6]' SBOUND IS NOT APPLICABLE FOR THE EXAMPLE ING4)

COMPARISON FORAjy FORM = 3 AND p1 = 0.3, p2 = 0.2,p3 = 0.1.

A1 A2 CHB | Upper | FRASA (Sim) | Lower
Gl 0 0 0.1 0.1 0.1 (0.100) 0.1
0 0.03 | 0.097 | 0.097 | 0.097 (0.097) | 0.097
G2 | 0.04 0.04 | 0.091| 0.091 [ 0.091 (0.091) | 0.091
G3 | 0.078| 0.078 | 0.082 | 0.083 | 0.082 (0.082) | 0.082
G4 | 0.078 | 0.082* | 0.076 | 0.082 | 0.076 (0.077)| 0.081
TABLE V

A1 A2 CHB | Upper | FRASA (Sim) | Lower
G1 0 0 0.1 0.1 0.1 (0.102) 0.1

0 0.06 | 0.093| 0.093 | 0.093 (0.094)| 0.093
G2 | 011 0.06 | 0.081| 0.081 | 0.080 (0.079)| 0.079
G3 | 021 | 0.12 | 0.058 | 0.063 | 0.058 (0.057)| 0.058
G4 | 011 0.13* | 0.072| 0.073 | 0.071 (0.071)| 0.071
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Fig. 8. Contour plot of the stability region of FRASA for thesti case of
G4 in Table II.

V. CONVEX HULL BOUND

Although Theorem 1 gives us a closed-form expression for
the stability region of FRASA, this stability region is naire
vex whenM > 2 (as shown in the next Section). Therefore we
are motivated to derive outer and inner bounds on the diabili
region of FRASA that are convex and piecewise linear, which
can be used to find the upper and lower bounds on network
capacity respectively. In this Section, we first develop aten
bound on the stability region of FRASA that is guaranteed to
be convex and piecewise linear by usiogrner pointsof the
stability region of FRASA. For eaciM’ C M, we obtain a

corner pointl?™ (M) = (HZM(M,)) , where
nem
M , pn H ]_?77,” n e MI
01 n e M \ M/

These corner points, by construction, lie on the boundatigef
stability region of FRASA because they satisfy the paraimetr
form (4). We first obtain the following Lemma, stating the
relationship between the boundary of the stability regién o
FRASA and the corner points.

Lemma 2: The boundary of the stability region &%, i.e.,
the hypersurfacg;, is contained in the convex huil;, gener-
ated by the corner poinfg?™" (M'YU{7}) for all M’ € M\ {},

i.e.,, every point satisfying (6) is a convex combination of the
corner pointsI?” (M'U{7}) for all M’ C M\ {A}.
Proof: Refer to Appendix C. [ ]

By using Lemma 2 and Theorem 1, we obtain the following
Theorems about using convex hulls to bound the stability
region of FRASA. To obtain the bounds from these Theorems,
we only have to know the coordinates of all corner points,
which can be computed from (10) based on the transmission

of the stability region of FRASA in Fig. 8 to investigate theprobability vector only.

reason for such a large discrepancy between the stabitjigre

Theorem 2 (Bound of Convex-Hull Unionyhe  convex

of slotted ALOHA and FRASA. This contour plot showshull generated byllP"'(M'YU{7}) for all M’ C M \ {A}
that when); and X\, are approximately equal to 0.035 andogether with0, i.e.,, the origin, is a piecewise linear outer
0.0561 respectively, the contour lines are very close taget bound onR;. Denote this convex hull by;. Therefore,
meaning that the boundary of the stability regionat= 0.035 the union of thes&; for all 4 € M, i.e, H = U Hs,

and A, = 0.0561 is almost parallel to the\s-axis, i.e., the
boundary is very sensitive to small changesiin and \,.

nem
is a piecewise linear outer bound on the stability region of

Therefore, in this situation, it is difficult to obtain thelwlary FRASA. The union here is also disjoint.

of the stability region of slotted ALOHA by simulations.

Proof: Refer to Appendix D. [ ]
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TABLE VI
COMPARISON FORAjy FORM = 5 AND p1 = p2 = p3 = psa = p5 = 0.5.
A1 A2 A3 A4 CHB | Upper | FRASA (Sim) | Lower
G1 0 0 0 0 0.5 0.5 0.5 (0.500) 0.5
0 0 0 0.015 | 0.485| 0.485 | 0.485 (0.487) | 0.485
0 0 0.015 0.015 | 0.47 0.47 0.470 (0.469) | 0.462
0 0.015 0.015 0.015 | 0.455| 0.455 | 0.453 (0.455) | 0.422

G2 0.015 0.015 0.015 0.015 | 0.44 0.44 0.437 (0.433) | 0.337
G3 0.03 0.03 0.03 0.03 0.38 0.38 0.364 (0.348) | 0.048
G4 0.03 0.03 0.03 0.033* | 0.377 | 0.377 | 0.360 (0.344) | 0.046
0.033* | 0.032* | 0.031 0.03 | 0.374| 0.374 | 0.356 (0.330) | 0.039
0.0325* | 0.032* | 0.0315* | 0.03 | 0.374| 0.374 | 0.356 (0.329) | 0.038

TABLE VII
COMPARISON FORA s FORM = 5 AND p1 = 0.4,p2 = 0.5,p3 = 0.6,p4 = 0.7, p5 = 0.8.
A1 A2 A3 A4 CHB | Upper | FRASA (Sim) | Lower
G1 0 0 0 0 0.8 0.8 0.8 (0.802) 0.8
0 0 0 0.005 | 0.794 | 0.78 0.78 (0.782) 0.78
0 0 0.005 0.005 | 0.788 0.76 0.759 (0.761) | 0.744

0 0.005 0.005 | 0.005 | 0.780| 0.74 | 0.738 (0.737) | 0.686
G2 | 0.002| 0.003 0.005 | 0.005 | 0.780 | 0.74 | 0.738 (0.731) | 0.629
G3 | 0.004 | 0.006 0.01 0.01 | 0.759| 0.68 | 0.672 (0.664) | 0.409
G4 | 0.004 | 0.006 0.01 | 0.017* | 0.751 | 0.652 | 0.640 (0.626) | 0.173
0.004 | 0.006 | 0.011* | 0.017* | 0.750 | 0.648 | 0.635 (0.617)| 0.152
0.002 | 0.0073* | 0.011* | 0.017* | 0.751| 0.651 | 0.639 (0.621) | 0.312

TABLE ViIII
COMPARISON FORAp; FORM = 5 AND p1 = 0.77,p2 = 0.74, p3 = 0.63, p4 = 0.52, p5 = 0.51.
A1 Ao A3 A4 CHB | Upper | FRASA (Sim) | Lower
G1 0 0 0 0 051 | 051 | 051 (0.514) | 051
0 0 0 0.0025 | 0.508 | 0.507 | 0.507 (0.507)| 0.507
0 0 0.003 0.0025 | 0.505 | 0.504 | 0.504 (0.508) | 0.503

0 0.007 0.003 0.0025 | 0.500 | 0.497 | 0.497 (0.496) | 0.482
G2 | 0.0005| 0.007 0.003 0.0025 | 0.500 | 0.496 | 0.496 (0.496) | 0.476
G3 | 0.001 | 0.014 0.006 0.005 | 0.490 | 0.483 | 0.482 (0.486) | 0.439
G4 | 0.001 | 0.014 0.006 | 0.0057* | 0.489 | 0.482 | 0.482 (0.483)| 0.438
0.001 | 0.014 | 0.0089* | 0.0057* | 0.487 | 0.479 | 0.479 (0.477) | 0.425
0.001 | 0.015* | 0.0089* | 0.0057* | 0.486 | 0.478 | 0.477 (0.479) | 0.420

TABLE IX
COMPARISON FORAj; FORM = 5 AND p1 = p2 = p3 = p4a = p5s = 0.1.
A1 Ao A3 Aq CHB | Upper | FRASA (Sim) | Lower
G1 0 0 0 0 0.1 0.1 0.1 (0.100) 0.1
0 0 0 0.03 0.097 | 0.097 | 0.097 (0.097) | 0.097
0 0 0.03 0.03 0.093 | 0.093 | 0.093 (0.093) | 0.093

0 0.03 0.03 0.03 0.09 0.09 | 0.090 (0.091) | 0.089
G2 | 0.03 | 0.03 0.03 0.03 | 0.863] 0.087 | 0.086 (0.085) | 0.085
G3 | 0.064] 0.064 | 0.064 | 0.064 | 0.067 | 0.072 | 0.067 (0.067) | 0.066
G4 | 0.064 | 0.064 | 0.064 | 0.066* | 0.066 | 0.071 | 0.066 (0.067) | 0.066
0.061 | 0.062 | 0.066* | 0.066* | 0.067 | 0.072 | 0.067 (0.068) | 0.067

Theorem 3 (Convex Hull Bound}{, the convex hull gen- We demonstrate the results from these Theorems in the
erated byIIP"" (M) for all M’ C M, is a convex and following examples. Figs. 9(a), 9(b) and 9(c) illustrate th
piecewise linear outer bound on the stability region of FRAS results of Theorem 2, assuming the transmission probiabilit
of all links are 0.3. The polytopes shown in these figures
are the convex hullsi;, H, and Hs generated by the

In finding the bounds om\,,; given the loadings on the corresponding corner points respectively. Fig. 9(d) shatys
other links, we do not have to rely on the instability rankhe union of the convex hulls in Figs. 9(a), 9(b) and 9(c).. Fig
assumption as in [6]. To apply Theorem 2, we first assun3e) depictsH, the convex hull generated by all corner points.
link M to have the highest instability rank, and generate théhe polytopes in Figs. 9(d) and 9(e) are identical. To show
corresponding convex hull. If the assumption is valid, we cahat this is not necessarily true, we give another example in
find a lower bound and an upper bound from the convex hulthich the transmission probabilities of all links are 016this
Otherwise, we choose from the remaining links the link witexample,® in Fig. 10(d) is contained insid#/ in Fig. 10(e).
the highest instability rank and repeat the process. TiheGre
can be applied in any case in finding the upper bound.

Proof: Refer to Appendix E.
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TABLE X
COMPARISON FORA s FORM = 5 AND p1 = 0.05,p2 = 0.15,p3 = 0.2, p4 = 0.25,p5 = 0.3.
A1 A2 A3 A4 CHB | Upper | FRASA (Sim) | Lower
G1 0 0 0 0 0.3 0.3 0.3 (0.303) 0.3
0.008 0 0 0 0.297 | 0.297 | 0.297 (0.295) | 0.297
0.008 | 0.03 0 0 0.284 | 0.284 | 0.284 (0.284) | 0.283

0.008 | 0.03 | 0.04 0 0.267 | 0.267 | 0.265 (0.264) | 0.263
G2 | 0.008 | 0.03 | 0.04 0.06 0.241 | 0.241 | 0.236 (0.236) | 0.228
G3 | 0.015| 0.05 | 0.08 0.1 0.175| 0.195 | 0.171 (0.170)| 0.165
G4 | 0.008 | 0.03 | 0.04 | 0.115* | 0.212 | 0.217 | 0.207 (0.208) | 0.202
0.006 | 0.02 | 0.09* | 0.115* | 0.188 | 0.201 | 0.185 (0.183)| 0.181

TABLE XI
COMPARISON FORA)s FORM = 10 AND p; = p2 = p3 = P4 = P5 = p6 = P7 = P8 = P9 = p1o = 0.5.
Al A2,A3 A5 A6,A7, A8 A9 Upper | FRASA (Sim) | Lower
Gl 0 0 0 0 0 0.5 0.5 (0.500) 0.5

0 0.00045| 0.00045 0.00045 0.00045 | 0.496 | 0.496 (0.495) | 0.437
G2 | 0.00045| 0.00045]| 0.00045 0.00045 0.00045 | 0.496 | 0.496 (0.492) | 0.362
G3 | 0.0009 | 0.0009 0.0009 0.0009 0.0009 | 0.492 | 0.492 (0.488) | 0.005
G4 | 0.00097 | 0.00097 | 0.000977*| 0.000977*| 0.00098* | 0.491 | 0.491 (0.492) | 0.002
0.00097 | 0.00097| 0.00097 | 0.000977*| 0.00098* | 0.491 | 0.491 (0.492) | 0.003

TABLE XII
COMPARISON FORA )y FORM = 10 AND p1 = p2 = p3 = 0.1,p4 = 0.2,p5 = 0.3,pg = 0.4,p7 = 0.5, pg = 0.6, pg = 0.7, p10 = 0.8.
Al )\2, A3 A A5 A6 A7 A8 A9 Upper FRASA (Sim) Lower
x1073 | x1073 | x10723 | x1072 | 1072 | x10~3 | x10~3 | x10~3

G1 0 0 0 0 0 0 0 0 0.8 0.8 (0.801) 0.8
0 0.15 0.35 0.5 0.5 1 2 3 0.769 | 0.769 (0.766) | 0.654
G2 0.15 0.15 0.35 0.5 0.5 1 2 3 0.769 | 0.768 (0.768) | 0.637
G3 0.3 0.3 0.7 1 1 2 4 6 0.738 | 0.736 (0.735)| 0.412
G4 0.3 0.3 0.7 1 1 2 4 6.86* 0.734 | 0.732 (0.731)| 0.402
0.01 0.327* 0.735* 1.26* 1.96* 2.94* 4.41* 6.86* 0.725 | 0.722 (0.719) | 0.041

TABLE XIlI
COMPARISON FORA)s FORM = 10 AND p; = p2 = p3 = P4 = P5 = p6 = P7 = P8 = P9 = p1o = 0.1.

Al A2,A3,\4 A5,26,A7,A8,\9 Upper FRASA (Slm) Lower
G1 0 0 0 0.1 0.1 (0.100) 0.1

0 0.019 0.019 0.083 | 0.081 (0.082) | 0.077

G2 | 0.019 | 0.019 0.019 0.081 | 0.079 (0.079) | 0.073

G3 | 0.036 | 0.036 0.036 0.064 | 0.050 (0.050) | 0.043

G4 | 0.039 | 0.036 0.036 0.064 | 0.049 (0.049) | 0.043

0.039* | 0.039* 0.036 0.063 | 0.046 (0.046) | 0.041

VI. p-CONVEXITY and only if
> pa<lL (12)
From the examples shown in previous Section, the bounds neM

on the stability region of FRASA obtained from Theorems  Proof: Refer to Appendix F. [ |

2 and 3,i.e, H and H respectively, need not be identical. The p-convexity of the stability region of FRASA can be
Recall that botl#{ and are completely characterized by theegarded as a measure of contention level in the system.
transmission probability vector only. Intuitively, fdt = H, can be viewed as the proportion of time that links active.

we requireH to be a convex set, which means the transmissioz pn < 1 represents the case that the increase in channel
probability vector may need to satisfy some “convexity”dbn ,,c iy

tions. In this Section, we formalize these ideas and ingeti utilization outweighs the increase in contention due totémid

the necessary and sufficient condition fat and 7 to be ©f one more link to the system. This is possible because when
identical. the channel utilization is small, the probability that a revk

(ghoose an idle time slot to transmit is large, therefore the
contention introduced by this new link will be small and the
stability region of FRASA will bep-convex. On the other
hand, if Z pn > 1, the contention level will be so large that

We first definep-convexity, and characterize the conditio
on the transmission probability vector fprconvexity to hold.

Definition 3: We use the corner pointiP" (M\{7}) for
eachn € M to form a hyperplan@™. If the corner points
1P M) ando i ite sides a*, or I (M) lies it s not beneficial to i i

and® lie on opposiie siaes ai-, or I€S it is not beneficial to introduce one more link to the system.

on QM the stability region of FRASA is said to heconvex Even in the ideal casé,e, TDMA with perfect scheduling,

Theorem 4:The stability region of FRASA ip-convex if it is impossible to assign time slots to the links such that
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TABLE XIV
COMPARISON FORAjs FORM = 10 AND p1 = p2 = p3 = pg = p5 = 0.1, ps = p7 = ps = pg = p1o = 0.05.

A1,A2,A3,A4,\5 A6 A7,A8 Ao Upper FRASA (Slm) Lower

G1 0 0 0 0 0.05 0.05 (0.050) 0.05
0 0.01 0.01 0.01 0.048 | 0.048 (0.048) | 0.048

G2 0.025 0.01 0.01 0.01 0.041 | 0.040 (0.041) | 0.039
G3 0.05 0.02 0.02 0.02 0.033 | 0.027 (0.026) | 0.026
G4 0.025 0.018 | 0.018 | 0.025* | 0.039 | 0.038 (0.037)| 0.036
0.015 0.015 | 0.025* | 0.025* | 0.041 | 0.040 (0.040) | 0.039
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Fig. 9. Convex hull bound on the stability region of FRASAlit/ = 3 Fig. 10. Convex hull bound on the stability region of FRASAtlwi\/ = 3
and transmission probabilities 0.3 by Theorems 2 and 3. and transmission probabilities 0.6 by Theorems 2 and 3.

there_is no contention..Hence,_ contention is ine_:vitablehia t FRASA is p-convex.
situation, and the stab|lllty region pf FRASA will not l;e Proof: Refer to Appendix G. -
COonvex. Co_nsequentl)_/, 'F IS “”deS'T"?‘b'e to allow the links t From Theorems 4 and 5, we know that (11) guarantees the
be active with transmission probability vect@r,, ),.c - . .
o . stability region of FRASA to bep-convex. Then, can (11)
From (11), we obsgrvg thatto ma.k.ef the stab|!|ty region to tf%lessure the convexity of the stability region of FRASA? Recal
p-convex, .the transmission probapllltles .Of a_II Ilnks Shbb.é .. Theorem 1 that the boundary of the stability region of FRASA
set according t_o the number of nc_e|ghbor|ng links in pfox".’“‘. consists ofM hypersurfacesi.e., F; for all 7 € M. Also,
For example, if we assurr11e all links have the same pr'or'tIYemma 2 says that for each e M, the hypersurfacé, is
we may set each,, to be W contained inside the convex hidl;. If (11) holds, we need an
From Theorem 3, we knoWw{ C . We observe that if additional condition to guarantee the convexity of the iditstb
the stability region of FRASA with link setM is p-convex, region of FRASA: for alln € M, F;; is a hyperplane, meaning
then the stability region of FRASA with link sett’, where thatF; = H;. This additional condition is satisfied when
M c M and |M/| > 2, is a|sop-convexl It is because if M = 2 as illustrated in Section IlI. Therefore, favl = 2,
(11) is satisfied, thenz pn < 1 must be satisfied also. WeP-Convexity is equivalent to convexity and (11) guarantées t
e convexity of the stability region of FRASA. However, this is
now give a necessary and sufficient condition for the equalitot the case foll/ > 2 since if such a hyperplane exists for
of H andH based on this observation. somen, the boundary of the stability region of FRASA is
Theorem 5:H = H if and only if the stability region of linear in\;, contradicting to the non-parametric form (6) that
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the boundary is of degree at least twoip when M > 2. 0,p)
Hence, the nonconvexity of the stability region of FRASA
when M > 2 follows.

Consider again the examples in Figs. 9 and 10. In Fig. 9,
Z pn = 0.9 < 1, therefore the stability region ip-convex

nem
andH = H. On the other hand, in Fig. 102 Ppn =18 >1, 0p) A P
- nem .
and’H C H. In other words, the convex hull bound is tighter PR
if and only if the stability region igp-convex. We remark that (7,0) o0 (71,0)

even if the stability region may not be-convex, the convex
hull bound is still a valid convex and piecewise linear outgfig 11. supporting hyperplane bound.
bound on the stability region of FRASA.

To illustrate the importance gf-convexity, we also compute
the “CHB” value, i.e, the upper bound from Theorem 3 inwe require the inner bound to occupy the maximum hypervol-
Tables |-X. We observe that when the stability region aime, then this problem is equivalent to finding a maximum-
FRASA is p-convex, the convex hull bound is tighter tharhypervolume convex subset of the stability region of FRASA.
the bound given by [6]; otherwise, the convex hull bound %o the best of our knowledge, this is studied only fdr= 2
looser. By Theorems 3 and 5, the convex hull bound is lI00§E5]. In this case, the problem is to find the maximum-area
when the stability region is ngb-convex. This demonstratesconvex subset of a polygon. We recall some related defirsition
that there is a tradeoff between the convexity and the t&g®n A reflex vertexs a vertex of a polygon such that the angle at
of the bounds. the vertex inside the polygon is reflex. ghord is a maximal
line segment contained in the polygon.

First we consider the case that+p» > 1, i.e., the stability
region of FRASA is notp-convex. In this case, as depicted

In this Section, we give a convex and piecewise linear inné Fig. 11, the reflex vertex ipi1p,, pop;). By calculus,
bound on the stability region of FRASA by usisgpporting the maximum-hypervolume convex subset is either the region
hyperplanesRecall that a supporting hyperplane of a convexelow the chord betweefp;,0) and (0,p,), or the region
set is a hyperplane such that it intersects with the convex §€low the chord betweef0,p2) and (p,,0), depending on
and the convex set entirely belongs to only one of the closttf values ofp; andp.. This is a special case of the result
half spaces generated by the hyperplane. This inner boundnid15]. Suppose the region below the chord between 0)
obtained based on the result of Lemma 2. and (0,p,) is the maximum-hypervolume convex subset of

Theorem 6 (Supporting Hyperplane Boundor eachi ¢  the stability region of FRASA. If we partition this chord

M, we construct a supporting hyperplag which supports about(p1p,, p2p, ), we obtain two line segments: one of these
the convex hulH; in Lemma 2 atil®”' (M) such that lies on a supporting hyperplane of the boundary between
(p1,0) and (p1D,, p2P, ), While the other lies on a supporting

hyperplane of the boundary betwe@h p,) and (p15,, p2D; )-
Similar observations can also be found when the region
We let S, be the closed half space beloR;. Then the below the chord betweeff), p;) and(p,,0) is the maximum-
intersection of all these half spaces in the positive orthamypervolume convex subset of the stability region of FRASA.
ie, S = ﬂ Si N{A: A\, > 0,Yn € M}, is a convex and This means when the stability region is netconvex, if we

VIlI. SUPPORTINGHYPERPLANEBOUND

1) it lies belowH;; and
2) it has positive intercepts on all coordinate axes.

) AEM . . require the inner bound to have the maximum hypervolume,
piecewise linear inner bound_ on the stability region of FRAS 4 . supporting hyperplanes we need in Theorem 6 coincide.
Proof: Refer to Appendix H. u On the other hand, if the stability region of FRASA pis

Consider the case thaf = 2 as in Fig. 11. First we chooseconyex, as stated in previous Sectiprconvexity is equivalent
the hyperplanes as stated in Theorem 6. Specifically, tlee ligy convexity. Whenp;, + p» < 1, the stability region is
segment betwee(p:,0) and (pi17,, p2p,) is the convex hull ,,_convex and also convex, and the stability region itself is
Hi. Then we choose any poirip;,0) on Ai-axis such that the maximum-hypervolume convex subset. In this case, the
pipy < Py < p1 and form the hyperplang,, i.e, the line |ine segments of the boundary are already the supporting
passing througlp;, 0) and(p1p,, p2p; ). Similarly, we choose hyperplanes we need.

a point(0, p,) on Aq-axis such thap.p, < p, < po and form

the hyperplané®;. These hyperplanes are shown as the red
dashed lines in Fig. 11. The intersection of the closed half
spaces below the red lines in the positive quadrant is therinn In this paper, we proposed FRASA, Feedback Retrans-
bound from Theorem 6. mission Approximation for Slotted ALOHA, to serve as a

This supporting hyperplane bound is arbitrary, in the sensarrogate to approximate finite-user slotted ALOHA. From
that for eachn € M, as long as the hyperplane constructeBRASA, we obtained in closed form the exact stability region
satisfies the requirements listesl,will be an inner bound. If for any number of users in the system under collision channel

VIII. CONCLUSION
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We illustrated that the results from FRASA are identicalte t (in case there are more than an¢hat maximize the instability
analytical results of finite-user slotted ALOHA when thereank, choose one of them to b arbitrarily). Then from
are two users. Simulation showed that the stability regidremma 1,

obtained from FRASA is a good approximation to the stability I

region of finite-user slotted ALOHA. We demonstrated that H a1 =pa) + Awpa] = palAa(l —pa) "

our results from FRASA has a wider range of applicability " M N . .

than the existing bounds. We also established a convex Hglthe boundary of the stability region of FRASA. Consider a
bound, which is convex, piecewise linear and outer-bounB8INtA = (An)ner in M-dimensional space wheve, < p;

the stability region of FRASA. This convex hull bound can b@ndA, = 0,Vn € M\ {a}. This point lies inside the stability
generated by using the transmission probability vectoy.onf€gion of FRASA. Substituting into the above equation, we
We introducedp-convexity, which is essential to ensure th@€tAa[Aa(1 —pa)]Y~1 on LHS andpa[Aa (1 — pa)]M~" on
convex hull bound to be close to the boundary of the stabilifyHS. Therefore, when (7) holds,

region of FRASA. From these results, we deduced that the 1 o N (1 M1

stability region of FRASA is nonconvex when there are more I D@ =pa) + Awpal < palda(d = pa)]
than two users. A separate convex and piecewise linear inner

Thus, the region formed by (7) and (8) is part of the stability

n’eM

APPENDIX A region ofS. By taking the union over all possible values of
PROOF OFLEMMA 1 7, we obtain the stability region of FRASH
Starting from the parametric form (4), fare M\ {7}, APPENDIXC
XnPn(1 = ps) H (1 = Xn'Prr) PROOF OFLEMMA 2
An n’ €M\ {n,n} Let IT = (II,,)nerm be a point satisfying (6). Then, from
Ao on H (1= o p) the parametric form (4),
neM\{n} XnPn(1 = ps) H (1= XwPnr), n#n
_ Xnpn(1— Pa) o — n'eM\{n,n}
pﬁ(l—ann) ! Pa H (1_Xn’pn’)v n="n
Therefore, n'eM\{n}
\pe N (12)
Yn = nPn If TI is a convex combination dfi*”” M U{2}) for all M’ C
Ai(1 = pa)pn + Anpapn M\ {@}, then
and the conditiord < y,, < 1 is translated into _ _ R
=X PnDs, > orme | Bun m#n
Aﬁ(l - pﬁ) Z )\n(l _pn) 2 0. Hn _ M’ ne M'CM\{n} n’eM'\{n}
Pa Pn Pa Z (bM/ H ]_?n,, n=mn
Combining these results, M CM\{n} n'eM’ 13)
No=pan ] (1= xwpw) where
n’e M\ {n} / .
i > ém=landgrr >0,YM C M\ {i}.
=p ]I - T MICM\ {7}
, ) [ A (1= pa)pn + )\n’pﬁpn/:| _ _
n'eM\{n} i We will show that{ ¢y } s c ar) () @lways exists. When =
= ps H a(l—pa) i, we get
" wertygay AT Pa)F dwpa” _
weM\(n oo o I Pw= I =xwpa)
we obtain M'CM\{A} n'eM’ n’eM\{A}
H (1= pa) + Awpal = palAa(l — pa)]M 1 Consider this as a multinomial ifp, } e A1\ 14} - By €quating
nlEM the coefficient of J] pn for all M” C M\ {#}, we get
as the boundary of the stability region $f. m neMn
> o = [ xw- (14)
APPENDIXB M MITCM CM\{A} n’eM’

PROOF OFTHEOREM 1

By (7), the positive orthant is partitioned infd regions.

In the region thatmax An(1 = Pn) — A (1 _pﬁ), link 7 is M \ {n,n} with n # n, we get

nemM . . Dp
the most probable one to gg the first link to become unstable, Z dM = Xn H Xn'-
therefore we let link: be the only link with infinite backlog M s MU} C M CM\{A) n'eM”

Also by equating the coefficient ofH pn for all M C
n'em’
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Observe that this is only a special case of (14), it sufficd$en, for eacm € M, e (M\{R}) — (HZM(M\W}))

to consider (14) only. Notice that (14) is a system of lineag a point in A7-dimensional space with
equations. By Gaussian elimination, we see that foAdll C

nem

~ M .
MA\A{n}, PN e — {pnpm,n)v n#n
’ 1" " 07 n = ﬁ/ ’
¢MN = Z (_1)|M [—[M"] H Xn’
M
M MICICM\ {2} neM andIP™' M) = (HZ W’) . Is another point with
ne
“ M w I a-xw)zo .
nEM! e M\(M”U{A}) e M = pph, ¥n e M.
Also, by considering\” = () in (14), we obtain To determine whether the stability region of FRASA ps
convex, we need the following two Lemmas.
Z om = 1. Lemma 3:Let X'y be aM x M matrix, with the first row
M CM\ {7} equalso — ITP" (M\{1) " and forn € M\ {1}, the n-th row
_ o _ s PN MR} _ e M (M) | Then
Therefore, every point satisfying (6) is a convex combivati
of TP (M'U{aD) for all M’ C M\ {A}. m |Xm| = (~1) U [[ e [] 572 @5)
n'eM  n’eEM
APPENDIX D Lemma 4:Let yMMbe aM x M matrix, with the first row

_ row is ITP" (M\{(n}) — [1p™ (M\{1}) Then

Consider the reduced FRASA systesp and let M’ C
M\ {a}. From (10), for everyn € M \ {n}, all corner Vol = (=)™ 1 ) sM-2 (15
pointsIIP"" (M'U{a) with n € M’ andO lie on the boundary [Pl = DML D e IT pe 11 7 6)

Aa(1=ps) _ Aa(1—pn) M

n’'eM n'’eM

, all corner pointsIIP”" (M'U{7})

Da Dn |Xa1| is calculated as follows:
with n ¢ M’ U{n} andO lie on the boundary% = 0 P20y PMP(ar)
0. Also, for alln € M\ {n}, the condition0 < x, <1 plp/\ffg 0 “ PMP{ e
U Al c _ _ _ Yol — (1,2) (M,2)
implies none of the corner points lie outside the region | M‘ - : : .
Aall =pa) o AnlL=Pn) - Hence, for all € M\ {n} M M . :
Dh = Dn = ’ " Ty Dib vy P2Pony 0
Z(1— pa a1 — 1—py
Aa p):/\( )andi)\( Pn) 0 are the (1)(1) i
b_oundanes of botrR andH Therefore from Lemma 2, == H Pn H i
Ri € Hp, andR = U Ri C U Hs = H. Since the neEM  n’eEM co
o ﬁeM/\ . AEM ol 1 0
o — Da — — =M —
boundaries2l = Pa) _ Anll =Pn) g Al =pn) _ =M -1) [ pw H JAa

M e M
are linear and the convex huﬁ)generated by a 'set of points is e e

piecewise linearf{ is piecewise lineam The first equality is obtained by subtracting the first row of
Xpm from all other rows inXy,. The second equality results
from the observation that if for alt” € M we multiply ,,.,
APPENDIXE to both then”-th row and column, then we have a factor
PROOF OFTHEOREM 3 of H Pn from each element it¥(. |Vu| is obtained

Notice thatH is the convex hull ofH. Since the union of S|m|IarIy as shown below:
convex sets need not be convex, it is trivial to see Hiat .

Therefore from Theorem 2R C ‘H. By the same reason as _plp(l) p1p2pf‘2"71) plpMpg\]le)
in proving Theorem 2 is also piecewise lineam D}M’ _ pzplp{\frz) —pzp{;‘) o P2PMP (a9
APPENDIXF pupIPary PMD2PE A —PMDP(Rp
PROOF OFTHEOREM4 =

_pl pl PR pl

Introduce the following notations: P2 —Dy -+ P2

= - H Dn/ H pM 2 . . . .

M = neM  n'’eM

=11 7w . B

e M\ (2} PM PMm P

T () T T 5

n’eM\{z} nem n’'eM n'’eM
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The proof of Theorem 4 goes as follows. We first construct APPENDIXH
a normal vector perpendicular to the hyperplan&. If we PROOF OFTHEOREM 6
let {en}necrt be the set of basis vector wheeg is a unit  consider the bound of convex hull uni@é in Theorem 2.
vector in the direction of increasing,, then Choose an arbitrary, € M. WhenH is intersected with
the closed half space;, the resultant polytope does not
ﬁé Eé l\e; contain the convex hulH; by construction. Therefore, this
n=| ! M resultant polytope excludes the hypersurfage We repeat
: : DU this argument for alh € M, then for alli € M, the convex
NN NY hull H; together with the hypersurfadg, are removed. The
boundary of the resultant polytope is consistedPgffor all
with fn € M and the boundary of the positive orthant only, and
N? = HZM(M\{ﬁ}) _ HZM(M\{l}) hence the polytope i§. Therefore,S is a subset ofR and

constitutes an inner bound on the stability region of FRASA.
will be a normal vector of)M. Therefore,]XM\ is the inner This bound is convex and piecewise linear since half spaces
product of0 — P MY andn. while ‘yM| is the inner are convex and piecewise linear, and these two propertees ar

product of [P (M) — TP (M) andn. TP (M) Jies on preserved under intersectiam.
M is equivalent td Y| = 0. TP () ando lie on opposite

sides of QM is equivalent to thatX'x(| and | V| have REFERENCES
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