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Abstract—FRASA, Feedback Retransmission Approximation for
Slotted ALOHA, is proposed to study the stability region of finite-
user slotted ALOHA under collision channel. With FRASA, the
stability region is derived in closed form for any number of users
in the system. The result derived from FRASA is shown to be
identical to the analytical result of finite-user slotted ALOHA
when there are two users. It is shown that the stability region
obtained from FRASA is a good approximation to the stability
region of finite-user slotted ALOHA. The convex hull bound,
which is convex, piecewise linear and outer-bounds the stability
region of FRASA, is provided.p-convexity, an essential property
that the stability region of FRASA should have to ensure the
convex hull bound to be close to the boundary, is characterized.
From these, it is derived that the stability region of FRASA can
never be convex when there are more than two users. A separate
convex and piecewise linear inner bound on the stability region
of FRASA, the supporting hyperplane bound, is also given. More
insights on the characterization of the capacity region of other
types of wireless random access networks can be obtained from
the analytical findings with FRASA.

Index Terms—Stability Region, Random Access, Slotted
ALOHA, FRASA.

I. I NTRODUCTION

T HE study of the stability region of slotted ALOHA has
attracted many researchers [1]–[9]. Despite the simplicity

of slotted ALOHA, this problem is extremely difficult when
M , the number of users in the system, exceeds two, even
on the collision channel assumption. Under this assumption,
successful transmissions occur if and only if there is one active
transmitter, because of the interference among the stations.
The inherent difficulty in the analysis is due to the effect of
queueing in each transmitter. More specifically, the probability
of successful transmission depends on the number of active
transmitters, which in turn depends on whether the queues in
the transmitters are empty or not. However, it is still an open
problem to obtain the stationary joint queue statistics in closed
form.

Instead of finding the exact stability region, previous re-
searchers have attempted to bound the stability region [1]–[3],

Manuscript received XXX YY, ZZZZ; revised XXX YY, ZZZZ. The
material in this paper was presented in part at the 15th IEEE International
Conference on Network Protocols, Beijing, China, October,2007.

K.-H. Hui is with the Department of Electrical Engineering and Computer
Science at Northwestern University, Evanston, IL 60208, USA (e-mail: nwu-
khh575@northwestern.edu).

O.-C. Yue and W.-C. Lau are with the Department of Information Engi-
neering at The Chinese University of Hong Kong, Shatin, HongKong (e-mail:
onching@ie.cuhk.edu.hk; wclau@ie.cuhk.edu.hk).

[6], [8]. However, they did not require the bounds to beconvex
or piecewise linear, which are important in traffic engineering
[10]. Requiring such properties reduces the traffic engineering
problem into convex or linear programming, which are rela-
tively more tractable. Therefore, we are motivated to derive
convex and piecewise linear bounds on the stability region.
We hope this work can serve as a basis and can be extended
to consider multi-hop networks and interference models other
than collision channel.

In this paper, we propose FRASA,Feedback Retransmission
Approximation for Slotted ALOHA, as a surrogate to approxi-
mate finite-user slotted ALOHA. By considering FRASA, we
make the following contributions:

1) We obtain inclosed formthe boundary of the stability
region of FRASA under collision channel forany num-
ber of users in Section III. The results obtained from
FRASA are identical to the analytical results of finite-
user slotted ALOHA forM = 2.

2) We demonstrate by simulation in Section IV that the
stability region obtained from FRASA is a good ap-
proximation to the stability region of finite-user slotted
ALOHA. We also demonstrate that FRASA has a wider
range of applicability than the existing bounds.

3) In Section V we provide aconvex hull bound, which is
convex, piecewise linear and outer-bounds the stability
region of FRASA. This bound can be computed by using
the transmission probability vector only. In Section VI
we introducep-convexity, which is essential to ensure
the convex hull bound to be close to the boundary of
the stability region of FRASA. The nonconvexity of the
stability region of FRASA whenM > 2 follows from
these results.

4) A convex and piecewise linear inner bound on the stabil-
ity region of FRASA, called thesupporting hyperplane
bound, is given in Section VII.

For the rest of the paper, we present related works in Section
II. In Section VIII we conclude the paper and discuss future
works.

II. RELATED WORKS

The study of the stability region ofM -user infinite-buffer
slotted ALOHA was initiated by [1] decades before, and is
still an ongoing research. The authors in [1] obtained the exact
stability region whenM = 2 under collision channel. [2] and
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[3] usedstochastic dominanceand derived the same result as
in [1] for the case ofM = 2.

For generalM , there were attempts to find the exact stability
region, but there was only limited success. [5] establishedthe
boundary of the stability region, but it involves stationary joint
queue statistics, which still do not have closed form to date.
[9] obtained in closed form a partial characterization on the
boundary of the stability region underpartial interference.

Instead, many researchers focused on finding bounds on the
stability region for generalM . [1] obtained separate sufficient
and necessary conditions for stability. [2] and [3] derived
tighter bounds on the stability region by using stochastic
dominance in different ways. [6] introducedinstability rank
and used it to improve the bounds on the stability region.
However, the bounds in [2] and [6] are not always applicable.
Also, the bounds obtained may not be piecewise linear.

With the advances in multi-user detection, researchers also
studied this problem with themultipacket reception(MPR)
model. [7] studied this problem in the infinite-user, single-
buffer and symmetric MPR case. [8] considered the problem
with finite users and infinite buffer. They obtained the bound-
ary for the asymmetric MPR case with two users, and also the
inner bound on the stability region for generalM .

III. T HE FRASA MODEL

In slotted ALOHA, there is a queue of infinite buffer at
each transmitter. Packet arrivals are assumed to be Bernoulli.
When a packet arrives, it joins the end of the queue. The head-
of-line packet is transmitted when the transmitter decidesto
transmit, and it remains at head-of-line until it is successfully
transmitted. This is depicted in the upper part of Fig. 1.

Due to the complexity introduced by the queues, we propose
FRASA, Feedback Retransmission Approximation for Slotted
ALOHA, as a surrogate to approximate finite-user slotted
ALOHA. In FRASA, the buffer in each transmitter can hold
one packet only. Whenever there is a packet in the buffer,
if the transmitter decides not to transmit the packet, or the
transmitter cannot successfully transmit the packet due to
collision, the packet will be removed from the buffer and
put back in the buffer again after a random delay which is
geometrically distributed. Therefore, theaggregate arrivalof
packets to the buffer, which includes the new arrivals and the
retransmissions, is assumed to be Bernoulli or memoryless.
Similar approximation was introduced by [11]. FRASA is
shown in the lower part of Fig. 1.

Assume there areM links in the network, and the set of
links is denoted byM = {n}M

n=1. Let λ = (λn)n∈M and
p = (pn)n∈M be the arrival rate vector and the transmission
probability vector respectively. Definepn = 1 − pn for all
n ∈ M. Let χn be the aggregate arrival rate of linkn ∈ M
where χn is between zero and one. For eachn ∈ M, we
define the mean of the random delay in the feedback loop to

be
1

1 − λn

. Denote this FRASA system byS. We define the

stability of the FRASA systemS as follows.
Definition 1: The FRASA systemS is stable if for each

link n ∈ M, the number of packets in the corresponding
transmitter, i.e., the packets in the single buffer plus the

Random Delay

Fig. 1. Slotted ALOHA model: (Upper) Original; (Lower) FRASA.

feedback loop, does not grow to infinity. Otherwise,S is
unstable.

Equivalently, since the number of packets in the single
buffer must be finite, the stability of the feedback loop in
each link determines the stability of the corresponding link
in the FRASA system. Also, throughout this paper, we use
the results from [12] to determine when a system is stable:
on the assumption that the arrival and the service processes
of a queue are stationary, the queue is stable if the average
arrival rate is less than the average service rate, and the queue
is unstable if the average arrival rate is larger than the average
service rate.

WhenS is stable, for eachn ∈ M, we have

χn = λn + χn(1 − pn)

+χnpn

[

1 −
∏

n′∈M\{n}

(1 − χn′pn′)

]

. (1)

The second term on right hand side of (1) represents the arrival
rate of the packets to the feedback loop due to the transmitter’s
decision of not transmitting the packet, while the third term on
right hand side of (1) denotes the arrival rate of the packetsto
the feedback loop due to the transmitter’s attempt to transmit
the packet which results in a collision. WhenS is stable, the
arrival rate and the departure rate of the feedback loop are
equal. Therefore, together with the arrival of new packets,the
three terms on right hand side of (1) constitute the aggregate
arrival rateχn. Simplifying (1), we get

λn = χnpn

∏

n′∈M\{n}

(1 − χn′pn′), (2)

which states that whenS is stable, the loading supported by
each link is equal to the successful transmission probability of
the corresponding link. Since the feedback loop of each link
is stable, we get for eachn ∈ M

χn(1−pn)+χnpn

[

1−
∏

n′∈M\{n}

(1−χn′pn′)

]

< 1−λn. (3)

Substituting (2) into (3), we obtainχn < 1. On the other hand,
whenS is unstable, the feedback loop of at least one link, say
link n, is unstable. Then the departure rate of the feedback loop
of link n is 1−λn. This implies that the aggregate arrival rate
of link n is χn = λn+(1−λn) = 1, which means that there is
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always a packet in the single buffer of the transmitter of link
n. Therefore, we arrive at the following alternative definition
of the stability of the FRASA systemS.

Definition 2: The FRASA systemS is stable if for each
n ∈ M, χn < 1. We define linkn to be infinitely backlogged
when χn = 1. If S contains at least one link with infinite
backlog,S is unstable.

To determine the stability region of FRASA, we first con-
sider areduced FRASA system. In a reduced FRASA system,
we let M − 1 of the links have fixed aggregate arrival rates
and the remaining link is assumed with infinite backlog. Take
n̂ ∈ M to be the link with infinite backlog,i.e., χn̂ = 1, and
denote this reduced FRASA system bySn̂. Hence, linkn̂ is
active with probabilityχn̂pn̂ = pn̂, while for n 6= n̂, link n
is active with probabilityχnpn. Therefore,λ =

(

λn

)

n∈M
is

the successful transmission probability vector and

λn =















χnpn(1 − pn̂)
∏

n′∈M\{n,n̂}

(1 − χn′pn′), n 6= n̂

pn̂

∏

n′∈M\{n̂}

(1 − χn′pn′), n = n̂
,

(4)
with λn̂ > 0. Then,λn = λn, ∀n ∈ M is theparametric form
of the boundary of the stability region ofSn̂. We can obtain
a non-parametric version by using (4) as follows.

Lemma 1:ConsiderSn̂. When

λn̂(1 − pn̂)

pn̂

≥
λn(1 − pn)

pn

≥ 0 (5)

is satisfied for alln ∈ M \ {n̂}, the hypersurfaceFn̂, i.e.,
∏

n′∈M

[λn̂(1 − pn̂) + λn′pn̂] = pn̂[λn̂(1 − pn̂)]M−1 (6)

is the non-parametric formof the boundary of the stability
region ofSn̂.

Proof: Refer to Appendix A.
Recall the system is stable if all queues in the system are

stable [5], [6], [8], and notice the expression
λn(1 − pn)

pn

in

(5) is identical to theinstability rank introduced in [6]. When

max
n∈M

λn(1 − pn)

pn

=
λn̂(1 − pn̂)

pn̂

holds as in (5), link̂n is the

most probable one to be the first unstable link. Hence, we let
link n̂ to be infinitely backlogged and use Lemma 1 to obtain
the stability region of FRASA as in the following Theorem.

Theorem 1:R =
⋃

n̂∈M

Rn̂ is the stability region of

FRASA, whereRn̂ is represented by:

λn̂(1 − pn̂)

pn̂

≥
λn(1 − pn)

pn

≥ 0, ∀n ∈ M \ {n̂}, (7)
∏

n′∈M

[λn̂(1 − pn̂) + λn′pn̂] < pn̂[λn̂(1 − pn̂)]M−1. (8)

The union here is actually a disjoint union.
Proof: Refer to Appendix B.

We first illustrate our results forM = 2. When

λ1(1 − p1)

p1
≥

λ2(1 − p2)

p2
≥ 0

Fig. 2. Stability region withM = 2: (Upper) From [2]; (Lower) From
FRASA.

holds, the boundary of the stability region of FRASA is

λ1[λ1(1 − p1) + λ2p1] = p1λ1(1 − p1),

which is reduced to

λ1 = p1

(

1 −
λ2

1 − p1

)

after simplification. Geometrically, it is a straight line joining
the points(p1, 0) and (p1p2, p2p1). This is depicted in the
bottom left of Fig. 2. By symmetry, we also get

λ2 = p2

(

1 −
λ1

1 − p2

)

as the boundary of the stability region of FRASA when

λ2(1 − p2)

p2
≥

λ1(1 − p1)

p1
≥ 0

holds. This is a straight line joining the points(0, p2) and
(p1p2, p2p1). This is shown in the bottom center of Fig. 2. The
bottom right of Fig. 2 contains the final result of the stability
region obtained from FRASA. The stability region derived in
[2] is illustrated in the top row of Fig. 2 for comparison. We
see that the final results are identical to each other.

Next we consider the case ofM = 3 and each link has
a transmission probability of 0.3. Figs. 3(a), 3(b) and 3(c)
illustrate the results of Lemma 1 forS1, S2 andS3 respectively.
The single-colored hyperplanes in Figs. 3(a), 3(b) and 3(c)
form the partition of the positive orthant generated by (5),
while the multi-colored hypersurfaces come from (6). The
union of these regions constitutes the stability region in Fig.
3(d) as stated in Theorem 1. Another example is shown in
Figs. 4(a)-4(d), in which each link transmits with probability
0.6.

IV. VALIDATION OF THE FRASA MODEL

A. Simulation Results

In this Section, we first use simulation to verify if FRASA
is a good approximation to finite-user slotted ALOHA. Since
whenM = 2, we obtain identical results for both FRASA and
finite-user slotted ALOHA, we considerM = 3 here.

First, to check whether the slotted ALOHA system is stable
or not by simulation, we extend the algorithm proposed in
[13]. For each simulation run, we partition the simulation
time into N batches, whereN ≥ 2. We calculate the
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(a) R1, stability region with link 1
having maximum instability rank.
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(b) R2, stability region with link 2
having maximum instability rank.
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(c) R3, stability region with link 3
having maximum instability rank.
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(d) R, the whole stability region.

Fig. 3. Stability region of FRASA withM = 3 and transmission probabilities 0.3 by Lemma 1 and Theorem 1.

0
0.2

0.4
0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

Loading on Link 1Loading on Link 2

Lo
ad

in
g 

on
 L

in
k 

3

(a) R1, stability region with link 1
having maximum instability rank.

0

0.2

0.4

0.6

0
0.2

0.4
0.6

0

0.2

0.4

0.6

Loading on Link 1
Loading on Link 2

Lo
ad

in
g 

on
 L

in
k 

3

(b) R2, stability region with link 2
having maximum instability rank.
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(c) R3, stability region with link 3
having maximum instability rank.
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(d) R, the whole stability region.

Fig. 4. Stability region of FRASA withM = 3 and transmission probabilities 0.6 by Lemma 1 and Theorem 1.

average queue lengths for each batch,Qn,w(b), starting from
the second batch. We discard the first batch to remove any
transient behavior in the system. Then we compute the sample
mean and sample variance of the average queue length,i.e.,
E
[

Qn,w

]

andV ar
(

Qn,w

)

, respectively. We use the difference
between the last and the second observation,i.e., Q̂n,w, in the
hypothesis testing. If,

Q̂n,w
√

2V ar
(

Qn,w

)

> t1−a,N−2, ∃n ∈ M, (9)

where t1−a,N−2 is the (1-a)-percentile oft-distribution with
N−2 degrees of freedom, is satisfied, we assume the system is
unstable; otherwise all queues in the slotted ALOHA system is
stable and so does the system. If the system is unstable, there
must exist̂n ∈ M such that the length of queuên has positive
linear growth rate, making the hypothesis (9) satisfied with
high probability. Otherwise, the expectation of̂Qn,w would
be zero for alln ∈ M, and with high probability (9) would
be false. We performW simulation runs and then use majority
vote to determine whether the system is stable.

Using the previous algorithm as a subroutine, we use the
following approach to find the boundary of the stability region.
This is based on bisection method [14]. We letλ1 and λ2

increase from zero to one. Given anyp = (p1, p2, p3), for any
λ1 andλ2 between zero and one, let the initial search range of
λ3 be [0, 1] and setλ3 to be the midpoint of the search range.
Then we letλ = (λ1, λ2, λ3) be the arrival probabilities of
the links and simulate the slotted ALOHA system. We use the
previous algorithm to check the stability of the system. If that
algorithm indicates that the system is stable, we set the next
search range ofλ3 to be the upper half of the original one;
otherwise, we use the lower half as the next search range. We
iterate until the search range is sufficiently small. Then we

take the midpoint of the final search range to be the boundary
value of λ3 for the given values ofλ1 and λ2. We repeat
this procedure for any combination ofλ1 and λ2 to get the
boundary of the stability region.

For illustrative purposes, we only show the cross-sections
of the stability regions. We first let all links transmit with
probability 0.3. In Fig. 5(a) we depict the cross-sections of
the stability region by fixingλ2, while in Fig. 5(b) the cross-
sections of the stability region are obtained by fixingλ1. The
solid lines represent the simulation results while the dash-dot
lines are obtained from FRASA. In Figs. 6(a) and 6(b) we
show the corresponding results by changing the transmission
probabilities of all links to 0.6. We observe that there is
a close match between the stability region of FRASA and
the stability region of slotted ALOHA. Slotted ALOHA and
FRASA are similar in many ways. First, both define stability
as the situation that the number of packets in the transmitter
of each link does not grow to infinity. Second, if in every
time slot, the transmission attempts of all links are the same
for both slotted ALOHA and FRASA, the number of packets
in the transmitter of each link are the same for both systems,
except for a subtle difference: in slotted ALOHA the packets
are located in the queue, while in FRASA, the packets are
in the feedback loop. Also, the probability that there is a
packet in the buffer are similar for both systems: when both
systems are stable, the queue in slotted ALOHA and the single
buffer in FRASA can be empty; on the other hand, when both
systems are unstable, there is always a packet in the queue in
slotted ALOHA, while the single buffer in FRASA is always
occupied. Therefore, the stability region of FRASA is a good
approximation to the stability region of slotted ALOHA.
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Fig. 5. Cross-section of stability region withM = 3 and transmission
probabilities 0.3.
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Fig. 6. Cross-section of stability region withM = 3 and transmission
probabilities 0.6.

B. Comparison to Previous Bounds

Here, we demonstrate that FRASA is a good approximation
to finite-user slotted ALOHA by showing the boundary values
obtained from FRASA lie inside the upper and lower bounds
in [6]. We fix the loading of the firstM − 1 links, evaluate
the “FRASA” value ofλM , and evaluate the “Upper” bound
and “Lower” bound ofλM by using Theorems 3 and 5 in [6]
respectively. Before showing this, we point out that the bounds
in [6] are applicable only when the instability rank assumption,
i.e., link M has the highest instability rank, holds. This is
best illustrated by the following examples. Consider a slotted
ALOHA system with two users. We let both links transmit
with probability 0.6. We keep increasingλ1 while assuming
λ1(1 − p1)

p1
≤

λ2(1 − p2)

p2
, and evaluate the upper bound on

λ2 by using Theorem 3 in [6]. Whenλ1 > p1p2, the upper

bound,i.e., λ2,max, satisfies
λ2(1 − p2)

p2
≤

λ2,max(1 − p2)

p2
<

λ1(1 − p1)

p1
, showing that the instability rank assumption does

not hold. We change the transmission probabilities of both
links to 0.3 and repeat the whole process, but evaluate the
lower bound onλ2 by using Theorem 5 in [6]. It is found
that whenλ1 > p1p2, the lower bound,i.e., λ2,min, satis-

fies
λ2,min(1 − p2)

p2
<

λ1(1 − p1)

p1
, and we cannot conclude

whether the instability rank assumption is valid or not. These
results are depicted in Figs. 7(a) and 7(b) respectively. Inthe
case ofM = 2, we already have the complete characterization
on the boundary of the stability region, therefore we can
explicitly evaluateλ2 and show that whenλ1 > p1p2, the
instability rank assumption does not hold, and the Theorems
in [6] are not applicable. WhenM > 2, if there are some
λn satisfyingλn > pn

∏

n′∈M\{n}

pn′ , it is difficult to predict
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Fig. 7. Restricted application of the upper and lower boundsin [6].

whether the instability rank assumption is valid or not. When
the instability rank assumption is not valid, one may tempt
to switch the order of the links to keep the validity of the
assumption. But in this case, we even cannot determine the
stability of the links with instability ranks higher than that of
link M , because the bounds on linkn depend on the loadings
on the links having smaller instability ranks than linkn [6].
Therefore, when using the bounds in [6], we cannot set the
loadings on the firstM−1 links too large in order to maintain
the instability rank assumption.

However, such restriction does not exist in computing the
“FRASA” value of λM . We first let link M be the link with
the highest instability rank,i.e., n̂ = M . Then we solve (6)
for λM , which is an equation of degreeM − 1, and get
M − 1 values of λM . Exactly one of them is the desired
value, which makes the instability rank of linkM the highest.
Otherwise, we find the link with the highest instability rank
among the firstM − 1 links. We let it equalŝn and solve
(6) for λM , which is an equation of degree one. In this case,
we get a nonnegative value which is the desired value ofλM .
Otherwise, we conclude that with the loadings on the first
M − 1 links, it is impossible to keep the system stable no
matter how smallλM is.

To compare the numerical values computed from FRASA
against the bounds in [6], we consider the numerical examples
in [2] and [6]. The examples are reproduced in Tables I-XIV.
The values of the loadings are classified into four groups in
each table. In G1, one or more values ofλn are zero. In G2, all

λn are approximately equal to
1

2
pn

∏

n′∈M\{n}

pn′ . In G3, all

λn are close topn

∏

n′∈M\{n}

pn′ . In G4, one or moreλn satisfy

λn > pn

∏

n′∈M\{n}

pn′ , and theseλn are marked with asterisks

in the tables. In all cases, the values predicted from FRASA lie
inside the upper and lower bounds in [6]. Simulations are also
performed for all examples in [2] and [6], and the results are
shown in brackets in the tables. While the difference between
the simulation result and the corresponding “FRASA” value
can be as large as 40% (the first case of G4 in Table II),
for most cases, 82 (resp. 90) out of 96, the simulation results
deviate from the corresponding “FRASA” values by at most
±2% (resp.±10%). The examples also show that the bounds
in [6] may not be always applicable, as in the case of G4 in
Table IV.

For the first case of G4 in Table II, we plot the contour
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TABLE I
COMPARISON FORλM FORM = 3 AND p1 = p2 = p3 = 0.5.

λ1 λ2 CHB Upper FRASA (Sim) Lower
G1 0 0 0.5 0.5 0.5 (0.500) 0.5

0 0.12 0.38 0.38 0.38 (0.383) 0.38
G2 0.06 0.06 0.38 0.38 0.370 (0.365) 0.341
G3 0.12 0.123 0.257 0.257 0.170 (0.158) 0.140
G4 0.12 0.13* 0.25 0.25 0.13 (0.131) 0.13

TABLE II
COMPARISON FORλM FORM = 3 AND p1 = 0.6, p2 = 0.7, p3 = 0.8.

λ1 λ2 CHB Upper FRASA (Sim) Lower
G1 0 0 0.8 0.8 0.8 (0.802) 0.8

0 0.05 0.743 0.6 0.6 (0.601) 0.6
0.03 0 0.76 0.68 0.68 (0.683) 0.68

G2 0.018 0.028 0.744 0.616 0.603 (0.594) 0.508
G3 0.03 0.05 0.703 0.48 0.423 (0.375) 0.24
G4 0.035 0.0561* 0.689 0.436 0.344 (0.204) 0.115

0.025 0.0563* 0.702 0.475 0.421 (0.360) 0.278

TABLE III
COMPARISON FORλM FORM = 3 AND p1 = 0.63, p2 = 0.52, p3 = 0.51.

λ1 λ2 CHB Upper FRASA (Sim) Lower
G1 0 0 0.51 0.51 0.51 (0.510) 0.51

0 0.045 0.466 0.463 0.463 (0.464) 0.463
0.07 0 0.453 0.437 0.437 (0.440) 0.437

G2 0.07 0.045 0.409 0.390 0.381 (0.375) 0.341
G3 0.14 0.09 0.308 0.271 0.204 (0.164) 0.123
G4 0.12 0.095* 0.320 0.286 0.233 (0.203) 0.167

0.15* 0.093 0.297 0.257 0.166 (0.117) 0.092

TABLE IV
COMPARISON FORλM FORM = 3 AND p1 = 0.1, p2 = 0.1, p3 = 0.1.
(NOTE: [6]’ S BOUND IS NOT APPLICABLE FOR THE EXAMPLE ING4)

λ1 λ2 CHB Upper FRASA (Sim) Lower
G1 0 0 0.1 0.1 0.1 (0.100) 0.1

0 0.03 0.097 0.097 0.097 (0.097) 0.097
G2 0.04 0.04 0.091 0.091 0.091 (0.091) 0.091
G3 0.078 0.078 0.082 0.083 0.082 (0.082) 0.082
G4 0.078 0.082* 0.076 0.082 0.076 (0.077) 0.081

TABLE V
COMPARISON FORλM FORM = 3 AND p1 = 0.3, p2 = 0.2, p3 = 0.1.

λ1 λ2 CHB Upper FRASA (Sim) Lower
G1 0 0 0.1 0.1 0.1 (0.102) 0.1

0 0.06 0.093 0.093 0.093 (0.094) 0.093
G2 0.11 0.06 0.081 0.081 0.080 (0.079) 0.079
G3 0.21 0.12 0.058 0.063 0.058 (0.057) 0.058
G4 0.11 0.13* 0.072 0.073 0.071 (0.071) 0.071

of the stability region of FRASA in Fig. 8 to investigate the
reason for such a large discrepancy between the stability region
of slotted ALOHA and FRASA. This contour plot shows
that whenλ1 and λ2 are approximately equal to 0.035 and
0.0561 respectively, the contour lines are very close together,
meaning that the boundary of the stability region atλ1 = 0.035
and λ2 = 0.0561 is almost parallel to theλ3-axis, i.e., the
boundary is very sensitive to small changes inλ1 and λ2.
Therefore, in this situation, it is difficult to obtain the boundary
of the stability region of slotted ALOHA by simulations.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Loading on Link 1
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Fig. 8. Contour plot of the stability region of FRASA for the first case of
G4 in Table II.

V. CONVEX HULL BOUND

Although Theorem 1 gives us a closed-form expression for
the stability region of FRASA, this stability region is not con-
vex whenM > 2 (as shown in the next Section). Therefore we
are motivated to derive outer and inner bounds on the stability
region of FRASA that are convex and piecewise linear, which
can be used to find the upper and lower bounds on network
capacity respectively. In this Section, we first develop an outer
bound on the stability region of FRASA that is guaranteed to
be convex and piecewise linear by usingcorner pointsof the
stability region of FRASA. For eachM′ ⊆ M, we obtain a
corner pointΠp

M(M′) =
(

Π
p
M(M′)

n

)

n∈M
, where

Πp
M(M′)

n =











pn

∏

n′∈M′\{n}

pn′ , n ∈ M′

0, n ∈ M \M′

. (10)

These corner points, by construction, lie on the boundary ofthe
stability region of FRASA because they satisfy the parametric
form (4). We first obtain the following Lemma, stating the
relationship between the boundary of the stability region of
FRASA and the corner points.

Lemma 2:The boundary of the stability region ofSn̂, i.e.,
the hypersurfaceFn̂, is contained in the convex hullHn̂ gener-
ated by the corner pointsΠp

M(M′∪{n̂}) for all M′ ⊆ M\{n̂},
i.e., every point satisfying (6) is a convex combination of the
corner pointsΠp

M(M′∪{n̂}) for all M′ ⊆ M\ {n̂}.
Proof: Refer to Appendix C.

By using Lemma 2 and Theorem 1, we obtain the following
Theorems about using convex hulls to bound the stability
region of FRASA. To obtain the bounds from these Theorems,
we only have to know the coordinates of all corner points,
which can be computed from (10) based on the transmission
probability vector only.

Theorem 2 (Bound of Convex-Hull Union):The convex
hull generated byΠp

M(M′∪{n̂}) for all M′ ⊆ M \ {n̂}
together with0, i.e., the origin, is a piecewise linear outer
bound onRn̂. Denote this convex hull byHn̂. Therefore,
the union of theseHn̂ for all n̂ ∈ M, i.e., H =

⋃

n̂∈M

Hn̂,

is a piecewise linear outer bound on the stability region of
FRASA. The union here is also disjoint.

Proof: Refer to Appendix D.
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TABLE VI
COMPARISON FORλM FORM = 5 AND p1 = p2 = p3 = p4 = p5 = 0.5.

λ1 λ2 λ3 λ4 CHB Upper FRASA (Sim) Lower
G1 0 0 0 0 0.5 0.5 0.5 (0.500) 0.5

0 0 0 0.015 0.485 0.485 0.485 (0.487) 0.485
0 0 0.015 0.015 0.47 0.47 0.470 (0.469) 0.462
0 0.015 0.015 0.015 0.455 0.455 0.453 (0.455) 0.422

G2 0.015 0.015 0.015 0.015 0.44 0.44 0.437 (0.433) 0.337
G3 0.03 0.03 0.03 0.03 0.38 0.38 0.364 (0.348) 0.048
G4 0.03 0.03 0.03 0.033* 0.377 0.377 0.360 (0.344) 0.046

0.033* 0.032* 0.031 0.03 0.374 0.374 0.356 (0.330) 0.039
0.0325* 0.032* 0.0315* 0.03 0.374 0.374 0.356 (0.329) 0.038

TABLE VII
COMPARISON FORλM FORM = 5 AND p1 = 0.4, p2 = 0.5, p3 = 0.6, p4 = 0.7, p5 = 0.8.

λ1 λ2 λ3 λ4 CHB Upper FRASA (Sim) Lower
G1 0 0 0 0 0.8 0.8 0.8 (0.802) 0.8

0 0 0 0.005 0.794 0.78 0.78 (0.782) 0.78
0 0 0.005 0.005 0.788 0.76 0.759 (0.761) 0.744
0 0.005 0.005 0.005 0.780 0.74 0.738 (0.737) 0.686

G2 0.002 0.003 0.005 0.005 0.780 0.74 0.738 (0.731) 0.629
G3 0.004 0.006 0.01 0.01 0.759 0.68 0.672 (0.664) 0.409
G4 0.004 0.006 0.01 0.017* 0.751 0.652 0.640 (0.626) 0.173

0.004 0.006 0.011* 0.017* 0.750 0.648 0.635 (0.617) 0.152
0.002 0.0073* 0.011* 0.017* 0.751 0.651 0.639 (0.621) 0.312

TABLE VIII
COMPARISON FORλM FORM = 5 AND p1 = 0.77, p2 = 0.74, p3 = 0.63, p4 = 0.52, p5 = 0.51.

λ1 λ2 λ3 λ4 CHB Upper FRASA (Sim) Lower
G1 0 0 0 0 0.51 0.51 0.51 (0.514) 0.51

0 0 0 0.0025 0.508 0.507 0.507 (0.507) 0.507
0 0 0.003 0.0025 0.505 0.504 0.504 (0.508) 0.503
0 0.007 0.003 0.0025 0.500 0.497 0.497 (0.496) 0.482

G2 0.0005 0.007 0.003 0.0025 0.500 0.496 0.496 (0.496) 0.476
G3 0.001 0.014 0.006 0.005 0.490 0.483 0.482 (0.486) 0.439
G4 0.001 0.014 0.006 0.0057* 0.489 0.482 0.482 (0.483) 0.438

0.001 0.014 0.0089* 0.0057* 0.487 0.479 0.479 (0.477) 0.425
0.001 0.015* 0.0089* 0.0057* 0.486 0.478 0.477 (0.479) 0.420

TABLE IX
COMPARISON FORλM FORM = 5 AND p1 = p2 = p3 = p4 = p5 = 0.1.

λ1 λ2 λ3 λ4 CHB Upper FRASA (Sim) Lower
G1 0 0 0 0 0.1 0.1 0.1 (0.100) 0.1

0 0 0 0.03 0.097 0.097 0.097 (0.097) 0.097
0 0 0.03 0.03 0.093 0.093 0.093 (0.093) 0.093
0 0.03 0.03 0.03 0.09 0.09 0.090 (0.091) 0.089

G2 0.03 0.03 0.03 0.03 0.863 0.087 0.086 (0.085) 0.085
G3 0.064 0.064 0.064 0.064 0.067 0.072 0.067 (0.067) 0.066
G4 0.064 0.064 0.064 0.066* 0.066 0.071 0.066 (0.067) 0.066

0.061 0.062 0.066* 0.066* 0.067 0.072 0.067 (0.068) 0.067

Theorem 3 (Convex Hull Bound):H, the convex hull gen-
erated byΠp

M(M′) for all M′ ⊆ M, is a convex and
piecewise linear outer bound on the stability region of FRASA.

Proof: Refer to Appendix E.

In finding the bounds onλM given the loadings on the
other links, we do not have to rely on the instability rank
assumption as in [6]. To apply Theorem 2, we first assume
link M to have the highest instability rank, and generate the
corresponding convex hull. If the assumption is valid, we can
find a lower bound and an upper bound from the convex hull.
Otherwise, we choose from the remaining links the link with
the highest instability rank and repeat the process. Theorem 3
can be applied in any case in finding the upper bound.

We demonstrate the results from these Theorems in the
following examples. Figs. 9(a), 9(b) and 9(c) illustrate the
results of Theorem 2, assuming the transmission probabilities
of all links are 0.3. The polytopes shown in these figures
are the convex hullsH1, H2 and H3 generated by the
corresponding corner points respectively. Fig. 9(d) showsH,
the union of the convex hulls in Figs. 9(a), 9(b) and 9(c). Fig.
9(e) depictsH, the convex hull generated by all corner points.
The polytopes in Figs. 9(d) and 9(e) are identical. To show
that this is not necessarily true, we give another example in
which the transmission probabilities of all links are 0.6. In this
example,H in Fig. 10(d) is contained insideH in Fig. 10(e).
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TABLE X
COMPARISON FORλM FORM = 5 AND p1 = 0.05, p2 = 0.15, p3 = 0.2, p4 = 0.25, p5 = 0.3.

λ1 λ2 λ3 λ4 CHB Upper FRASA (Sim) Lower
G1 0 0 0 0 0.3 0.3 0.3 (0.303) 0.3

0.008 0 0 0 0.297 0.297 0.297 (0.295) 0.297
0.008 0.03 0 0 0.284 0.284 0.284 (0.284) 0.283
0.008 0.03 0.04 0 0.267 0.267 0.265 (0.264) 0.263

G2 0.008 0.03 0.04 0.06 0.241 0.241 0.236 (0.236) 0.228
G3 0.015 0.05 0.08 0.1 0.175 0.195 0.171 (0.170) 0.165
G4 0.008 0.03 0.04 0.115* 0.212 0.217 0.207 (0.208) 0.202

0.006 0.02 0.09* 0.115* 0.188 0.201 0.185 (0.183) 0.181

TABLE XI
COMPARISON FORλM FORM = 10 AND p1 = p2 = p3 = p4 = p5 = p6 = p7 = p8 = p9 = p10 = 0.5.

λ1 λ2,λ3 λ4,λ5 λ6,λ7,λ8 λ9 Upper FRASA (Sim) Lower
G1 0 0 0 0 0 0.5 0.5 (0.500) 0.5

0 0.00045 0.00045 0.00045 0.00045 0.496 0.496 (0.495) 0.437
G2 0.00045 0.00045 0.00045 0.00045 0.00045 0.496 0.496 (0.492) 0.362
G3 0.0009 0.0009 0.0009 0.0009 0.0009 0.492 0.492 (0.488) 0.005
G4 0.00097 0.00097 0.000977* 0.000977* 0.00098* 0.491 0.491 (0.492) 0.002

0.00097 0.00097 0.00097 0.000977* 0.00098* 0.491 0.491 (0.492) 0.003

TABLE XII
COMPARISON FORλM FORM = 10 AND p1 = p2 = p3 = 0.1, p4 = 0.2, p5 = 0.3, p6 = 0.4, p7 = 0.5, p8 = 0.6, p9 = 0.7, p10 = 0.8.

λ1 λ2, λ3 λ4 λ5 λ6 λ7 λ8 λ9 Upper FRASA (Sim) Lower
×10

−3 ×10
−3 ×10

−3 ×10
−3 ×10

−3 ×10
−3 ×10

−3 ×10
−3

G1 0 0 0 0 0 0 0 0 0.8 0.8 (0.801) 0.8
0 0.15 0.35 0.5 0.5 1 2 3 0.769 0.769 (0.766) 0.654

G2 0.15 0.15 0.35 0.5 0.5 1 2 3 0.769 0.768 (0.768) 0.637
G3 0.3 0.3 0.7 1 1 2 4 6 0.738 0.736 (0.735) 0.412
G4 0.3 0.3 0.7 1 1 2 4 6.86* 0.734 0.732 (0.731) 0.402

0.01 0.327* 0.735* 1.26* 1.96* 2.94* 4.41* 6.86* 0.725 0.722 (0.719) 0.041

TABLE XIII
COMPARISON FORλM FORM = 10 AND p1 = p2 = p3 = p4 = p5 = p6 = p7 = p8 = p9 = p10 = 0.1.

λ1 λ2,λ3,λ4 λ5,λ6,λ7,λ8,λ9 Upper FRASA (Sim) Lower
G1 0 0 0 0.1 0.1 (0.100) 0.1

0 0.019 0.019 0.083 0.081 (0.082) 0.077
G2 0.019 0.019 0.019 0.081 0.079 (0.079) 0.073
G3 0.036 0.036 0.036 0.064 0.050 (0.050) 0.043
G4 0.039* 0.036 0.036 0.064 0.049 (0.049) 0.043

0.039* 0.039* 0.036 0.063 0.046 (0.046) 0.041

VI. p-CONVEXITY

From the examples shown in previous Section, the bounds
on the stability region of FRASA obtained from Theorems
2 and 3, i.e., H and H respectively, need not be identical.
Recall that bothH andH are completely characterized by the
transmission probability vector only. Intuitively, forH = H,
we requireH to be a convex set, which means the transmission
probability vector may need to satisfy some “convexity” condi-
tions. In this Section, we formalize these ideas and investigate
the necessary and sufficient condition forH and H to be
identical.

We first definep-convexity, and characterize the condition
on the transmission probability vector forp-convexity to hold.

Definition 3: We use the corner pointsΠp
M(M\{n̄}) for

eachn̄ ∈ M to form a hyperplaneΩM. If the corner points
Πp

M(M) and0 lie on opposite sides ofΩM, or Πp
M(M) lies

on ΩM, the stability region of FRASA is said to bep-convex.

Theorem 4:The stability region of FRASA isp-convex if

and only if
∑

n∈M

pn ≤ 1. (11)

Proof: Refer to Appendix F.
The p-convexity of the stability region of FRASA can be

regarded as a measure of contention level in the system.pn

can be viewed as the proportion of time that linkn is active.
∑

n∈M

pn ≤ 1 represents the case that the increase in channel

utilization outweighs the increase in contention due to addition
of one more link to the system. This is possible because when
the channel utilization is small, the probability that a newlink
choose an idle time slot to transmit is large, therefore the
contention introduced by this new link will be small and the
stability region of FRASA will bep-convex. On the other
hand, if

∑

n∈M

pn > 1, the contention level will be so large that

it is not beneficial to introduce one more link to the system.
Even in the ideal case,i.e., TDMA with perfect scheduling,
it is impossible to assign time slots to the links such that
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TABLE XIV
COMPARISON FORλM FORM = 10 AND p1 = p2 = p3 = p4 = p5 = 0.1, p6 = p7 = p8 = p9 = p10 = 0.05.

λ1,λ2,λ3,λ4,λ5 λ6 λ7,λ8 λ9 Upper FRASA (Sim) Lower
G1 0 0 0 0 0.05 0.05 (0.050) 0.05

0 0.01 0.01 0.01 0.048 0.048 (0.048) 0.048
G2 0.025 0.01 0.01 0.01 0.041 0.040 (0.041) 0.039
G3 0.05 0.02 0.02 0.02 0.033 0.027 (0.026) 0.026
G4 0.025 0.018 0.018 0.025* 0.039 0.038 (0.037) 0.036

0.015 0.015 0.025* 0.025* 0.041 0.040 (0.040) 0.039
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(c) H3, convex hull ofR3.
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(d) H, bound of convex-hull union.
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(e) H, convex hull bound.

Fig. 9. Convex hull bound on the stability region of FRASA with M = 3

and transmission probabilities 0.3 by Theorems 2 and 3.

there is no contention. Hence, contention is inevitable in this
situation, and the stability region of FRASA will not bep-
convex. Consequently, it is undesirable to allow the links to
be active with transmission probability vector(pn)n∈M.

From (11), we observe that to make the stability region to be
p-convex, the transmission probabilities of all links should be
set according to the number of neighboring links in proximity.
For example, if we assume all links have the same priority,

we may set eachpn to be
1

M
.

From Theorem 3, we knowH ⊆ H. We observe that if
the stability region of FRASA with link setM is p-convex,
then the stability region of FRASA with link setM′, where
M′ ⊆ M and |M′| ≥ 2, is alsop-convex. It is because if
(11) is satisfied, then

∑

n∈M′

pn ≤ 1 must be satisfied also. We

now give a necessary and sufficient condition for the equality
of H andH based on this observation.

Theorem 5:H = H if and only if the stability region of
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(b) H2, convex hull ofR2.
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(c) H3, convex hull ofR3.
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(d) H, bound of convex-hull union.
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(e) H, convex hull bound.

Fig. 10. Convex hull bound on the stability region of FRASA with M = 3

and transmission probabilities 0.6 by Theorems 2 and 3.

FRASA is p-convex.
Proof: Refer to Appendix G.

From Theorems 4 and 5, we know that (11) guarantees the
stability region of FRASA to bep-convex. Then, can (11)
assure the convexity of the stability region of FRASA? Recall
Theorem 1 that the boundary of the stability region of FRASA
consists ofM hypersurfaces,i.e., Fn̂ for all n̂ ∈ M. Also,
Lemma 2 says that for eacĥn ∈ M, the hypersurfaceFn̂ is
contained inside the convex hullHn̂. If (11) holds, we need an
additional condition to guarantee the convexity of the stability
region of FRASA: for all̂n ∈ M, Fn̂ is a hyperplane, meaning
that Fn̂ = Hn̂. This additional condition is satisfied when
M = 2 as illustrated in Section III. Therefore, forM = 2,
p-convexity is equivalent to convexity and (11) guarantees the
convexity of the stability region of FRASA. However, this is
not the case forM > 2 since if such a hyperplane exists for
some n̂, the boundary of the stability region of FRASA is
linear inλn̂, contradicting to the non-parametric form (6) that
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the boundary is of degree at least two inλn̂ when M > 2.
Hence, the nonconvexity of the stability region of FRASA
whenM > 2 follows.

Consider again the examples in Figs. 9 and 10. In Fig. 9,
∑

n∈M

pn = 0.9 ≤ 1, therefore the stability region isp-convex

andH = H. On the other hand, in Fig. 10,
∑

n∈M

pn = 1.8 > 1,

andH ( H. In other words, the convex hull bound is tighter
if and only if the stability region isp-convex. We remark that
even if the stability region may not bep-convex, the convex
hull bound is still a valid convex and piecewise linear outer
bound on the stability region of FRASA.

To illustrate the importance ofp-convexity, we also compute
the “CHB” value, i.e., the upper bound from Theorem 3 in
Tables I-X. We observe that when the stability region of
FRASA is p-convex, the convex hull bound is tighter than
the bound given by [6]; otherwise, the convex hull bound is
looser. By Theorems 3 and 5, the convex hull bound is loose
when the stability region is notp-convex. This demonstrates
that there is a tradeoff between the convexity and the tightness
of the bounds.

VII. SUPPORTINGHYPERPLANEBOUND

In this Section, we give a convex and piecewise linear inner
bound on the stability region of FRASA by usingsupporting
hyperplanes. Recall that a supporting hyperplane of a convex
set is a hyperplane such that it intersects with the convex set
and the convex set entirely belongs to only one of the closed
half spaces generated by the hyperplane. This inner bound is
obtained based on the result of Lemma 2.

Theorem 6 (Supporting Hyperplane Bound):For eachn̂ ∈
M, we construct a supporting hyperplanePn̂ which supports
the convex hullHn̂ in Lemma 2 atΠp

M(M) such that

1) it lies belowHn̂; and
2) it has positive intercepts on all coordinate axes.

We let Sn̂ be the closed half space belowPn̂. Then the
intersection of all these half spaces in the positive orthant,
i.e., S =

⋂

n̂∈M

Sn̂ ∩ {λ : λn ≥ 0, ∀n ∈ M}, is a convex and

piecewise linear inner bound on the stability region of FRASA.
Proof: Refer to Appendix H.

Consider the case thatM = 2 as in Fig. 11. First we choose
the hyperplanes as stated in Theorem 6. Specifically, the line
segment between(p1, 0) and (p1p2, p2p1) is the convex hull
H1. Then we choose any point(p′1, 0) on λ1-axis such that
p1p2 ≤ p′1 ≤ p1 and form the hyperplaneP1, i.e., the line
passing through(p′1, 0) and(p1p2, p2p1). Similarly, we choose
a point(0, p′2) on λ2-axis such thatp2p1 ≤ p′2 ≤ p2 and form
the hyperplaneP2. These hyperplanes are shown as the red
dashed lines in Fig. 11. The intersection of the closed half
spaces below the red lines in the positive quadrant is the inner
bound from Theorem 6.

This supporting hyperplane bound is arbitrary, in the sense
that for eachn̂ ∈ M, as long as the hyperplane constructed
satisfies the requirements listed,S will be an inner bound. If

(p1, 0)(p′
1
, 0)(p

2
, 0)(p

2
, 0)

(0, p
1
)

(0, p′
2
)

(0, p2)

(p1p2
, p2p1

)

Fig. 11. Supporting hyperplane bound.

we require the inner bound to occupy the maximum hypervol-
ume, then this problem is equivalent to finding a maximum-
hypervolume convex subset of the stability region of FRASA.
To the best of our knowledge, this is studied only forM = 2
[15]. In this case, the problem is to find the maximum-area
convex subset of a polygon. We recall some related definitions.
A reflex vertexis a vertex of a polygon such that the angle at
the vertex inside the polygon is reflex. Achord is a maximal
line segment contained in the polygon.

First we consider the case thatp1+p2 > 1, i.e., the stability
region of FRASA is notp-convex. In this case, as depicted
in Fig. 11, the reflex vertex is(p1p2, p2p1). By calculus,
the maximum-hypervolume convex subset is either the region
below the chord between(p1, 0) and (0, p1), or the region
below the chord between(0, p2) and (p2, 0), depending on
the values ofp1 and p2. This is a special case of the result
in [15]. Suppose the region below the chord between(p1, 0)
and (0, p1) is the maximum-hypervolume convex subset of
the stability region of FRASA. If we partition this chord
about(p1p2, p2p1), we obtain two line segments: one of these
lies on a supporting hyperplane of the boundary between
(p1, 0) and (p1p2, p2p1), while the other lies on a supporting
hyperplane of the boundary between(0, p2) and(p1p2, p2p1).
Similar observations can also be found when the region
below the chord between(0, p2) and(p2, 0) is the maximum-
hypervolume convex subset of the stability region of FRASA.
This means when the stability region is notp-convex, if we
require the inner bound to have the maximum hypervolume,
the supporting hyperplanes we need in Theorem 6 coincide.

On the other hand, if the stability region of FRASA isp-
convex, as stated in previous Section,p-convexity is equivalent
to convexity. Whenp1 + p2 ≤ 1, the stability region is
p-convex and also convex, and the stability region itself is
the maximum-hypervolume convex subset. In this case, the
line segments of the boundary are already the supporting
hyperplanes we need.

VIII. C ONCLUSION

In this paper, we proposed FRASA, Feedback Retrans-
mission Approximation for Slotted ALOHA, to serve as a
surrogate to approximate finite-user slotted ALOHA. From
FRASA, we obtained in closed form the exact stability region
for any number of users in the system under collision channel.
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We illustrated that the results from FRASA are identical to the
analytical results of finite-user slotted ALOHA when there
are two users. Simulation showed that the stability region
obtained from FRASA is a good approximation to the stability
region of finite-user slotted ALOHA. We demonstrated that
our results from FRASA has a wider range of applicability
than the existing bounds. We also established a convex hull
bound, which is convex, piecewise linear and outer-bounds
the stability region of FRASA. This convex hull bound can be
generated by using the transmission probability vector only.
We introducedp-convexity, which is essential to ensure the
convex hull bound to be close to the boundary of the stability
region of FRASA. From these results, we deduced that the
stability region of FRASA is nonconvex when there are more
than two users. A separate convex and piecewise linear inner
bound, supporting hyperplane bound, was also introduced.

APPENDIX A
PROOF OFLEMMA 1

Starting from the parametric form (4), forn ∈ M \ {n̂},

λn

λn̂

=

χnpn(1 − pn̂)
∏

n′∈M\{n,n̂}

(1 − χn′pn′)

pn̂

∏

n′∈M\{n̂}

(1 − χn′pn′)

=
χnpn(1 − pn̂)

pn̂(1 − χnpn)

Therefore,

χn =
λnpn̂

λn̂(1 − pn̂)pn + λnpn̂pn

and the condition0 ≤ χn ≤ 1 is translated into

λn̂(1 − pn̂)

pn̂

≥
λn(1 − pn)

pn

≥ 0.

Combining these results,

λn̂ = pn̂

∏

n′∈M\{n̂}

(1 − χn′pn′)

= pn̂

∏

n′∈M\{n̂}

[

1 −
λn′pn̂pn′

λn̂(1 − pn̂)pn′ + λn′pn̂pn′

]

= pn̂

∏

n′∈M\{n̂}

λn̂(1 − pn̂)

λn̂(1 − pn̂) + λn′pn̂

,

we obtain
∏

n′∈M

[λn̂(1 − pn̂) + λn′pn̂] = pn̂[λn̂(1 − pn̂)]M−1

as the boundary of the stability region ofSn̂.

APPENDIX B
PROOF OFTHEOREM 1

By (7), the positive orthant is partitioned intoM regions.

In the region thatmax
n∈M

λn(1 − pn)

pn

=
λn̂(1 − pn̂)

pn̂

, link n̂ is

the most probable one to be the first link to become unstable,
therefore we let link̂n be the only link with infinite backlog

(in case there are more than onen that maximize the instability
rank, choose one of them to bên arbitrarily). Then from
Lemma 1,

∏

n′∈M

[λn̂(1 − pn̂) + λn′pn̂] = pn̂[λn̂(1 − pn̂)]M−1

is the boundary of the stability region of FRASA. Consider a
point λ = (λn)n∈M in M -dimensional space whereλn̂ < pn̂

andλn = 0, ∀n ∈ M\{n̂}. This point lies inside the stability
region of FRASA. Substituting into the above equation, we
get λn̂[λn̂(1 − pn̂)]M−1 on LHS andpn̂[λn̂(1 − pn̂)]M−1 on
RHS. Therefore, when (7) holds,

∏

n′∈M

[λn̂(1 − pn̂) + λn′pn̂] < pn̂[λn̂(1 − pn̂)]M−1

is the condition for the reduced FRASA systemSn̂ to be stable.
Thus, the region formed by (7) and (8) is part of the stability
region of S. By taking the union over all possible values of
n̂, we obtain the stability region of FRASA.

APPENDIX C
PROOF OFLEMMA 2

Let Π = (Πn)n∈M be a point satisfying (6). Then, from
the parametric form (4),

Πn =















χnpn(1 − pn̂)
∏

n′∈M\{n,n̂}

(1 − χn′pn′), n 6= n̂

pn̂

∏

n′∈M\{n̂}

(1 − χn′pn′), n = n̂
.

(12)
If Π is a convex combination ofΠp

M(M′∪{n̂}) for all M′ ⊆
M\ {n̂}, then

Πn =















pnpn̂

∑

M′ : n∈M′⊆M\{n̂}

φM′

∏

n′∈M′\{n}

pn′ , n 6= n̂

pn̂

∑

M′⊆M\{n̂}

φM′

∏

n′∈M′

pn′ , n = n̂

(13)
where

∑

M′⊆M\{n̂}

φM′ = 1 andφM′ ≥ 0, ∀M′ ⊆ M\ {n̂}.

We will show that{φM′}M′⊆M\{n̂} always exists. Whenn =
n̂, we get

∑

M′⊆M\{n̂}

φM′

∏

n′∈M′

pn′ =
∏

n′∈M\{n̂}

(1 − χn′pn′).

Consider this as a multinomial in{pn}n∈M\{n̂}. By equating

the coefficient of
∏

n′∈M′′

pn′ for all M′′ ⊆ M\ {n̂}, we get

∑

M′ : M′′⊆M′⊆M\{n̂}

φM′ =
∏

n′∈M′′

χn′ . (14)

Also by equating the coefficient of
∏

n′∈M′′

pn′ for all M′′ ⊆

M\ {n, n̂} with n 6= n̂, we get
∑

M′ : M′′∪{n}⊆M′⊆M\{n̂}

φM′ = χn

∏

n′∈M′′

χn′ .
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Observe that this is only a special case of (14), it suffices
to consider (14) only. Notice that (14) is a system of linear
equations. By Gaussian elimination, we see that for allM′′ ⊆
M\ {n̂},

φM′′ =
∑

M′ : M′′⊆M′⊆M\{n̂}

(−1)|M
′|−|M′′|

∏

n′∈M′′

χn′

=
∏

n′∈M′′

χn′

∏

n′′∈M\(M′′∪{n̂})

(1 − χn′′) ≥ 0.

Also, by consideringM′′ = ∅ in (14), we obtain
∑

M′⊆M\{n̂}

φM′ = 1.

Therefore, every point satisfying (6) is a convex combination
of Πp

M(M′∪{n̂}) for all M′ ⊆ M\ {n̂}.

APPENDIX D
PROOF OFTHEOREM 2

Consider the reduced FRASA systemSn̂ and let M′ ⊆
M \ {n̂}. From (10), for everyn ∈ M \ {n̂}, all corner
pointsΠp

M(M′∪{n̂}) with n ∈ M′ and0 lie on the boundary
λn̂(1 − pn̂)

pn̂

=
λn(1 − pn)

pn

, all corner pointsΠp
M(M′∪{n̂})

with n /∈ M′ ∪{n̂} and0 lie on the boundary
λn(1 − pn)

pn

=

0. Also, for all n ∈ M \ {n̂}, the condition0 ≤ χn ≤ 1
implies none of the corner points lie outside the region
λn̂(1 − pn̂)

pn̂

≥
λn(1 − pn)

pn

≥ 0. Hence, for alln ∈ M\{n̂},

λn̂(1 − pn̂)

pn̂

=
λn(1 − pn)

pn

and
λn(1 − pn)

pn

= 0 are the

boundaries of bothRn̂ andHn̂. Therefore, from Lemma 2,
Rn̂ ⊆ Hn̂, andR =

⋃

n̂∈M

Rn̂ ⊆
⋃

n̂∈M

Hn̂ = H. Since the

boundaries
λn̂(1 − pn̂)

pn̂

=
λn(1 − pn)

pn

and
λn(1 − pn)

pn

= 0

are linear and the convex hull generated by a set of points is
piecewise linear,H is piecewise linear.

APPENDIX E
PROOF OFTHEOREM 3

Notice thatH is the convex hull ofH. Since the union of
convex sets need not be convex, it is trivial to see thatH ⊆ H.
Therefore from Theorem 2,R ⊆ H. By the same reason as
in proving Theorem 2,H is also piecewise linear.

APPENDIX F
PROOF OFTHEOREM 4

Introduce the following notations:

pM(x,y) =
∏

n′∈M\{x,y}

pn′ ,

pM(x) =
∏

n′∈M\{x}

pn′ .

Then, for each̄n ∈ M, Πp
M(M\{n̄}) =

(

Π
p
M(M\{n̄})

n

)

n∈M
is a point inM -dimensional space with

Πp
M(M\{n̄})

n =

{

pnpM(n,n̄), n 6= n̄

0, n = n̄
,

andΠp
M(M) =

(

Π
p
M(M)

n

)

n∈M
is another point with

Πp
M(M)

n = pnpM(n), ∀n ∈ M.

To determine whether the stability region of FRASA isp-
convex, we need the following two Lemmas.

Lemma 3:Let XM be aM ×M matrix, with the first row
equals0 − Πp

M(M\{1}), and forn ∈ M \ {1}, the n-th row
is Πp

M(M\{n}) − Πp
M(M\{1}). Then

∣

∣XM

∣

∣ = (−1)M (M − 1)
∏

n′∈M

pn′

∏

n′′∈M

pM−2
n′′ . (15)

Lemma 4:Let YM be aM ×M matrix, with the first row
equalsΠp

M(M)−Πp
M(M\{1}), and forn ∈ M\{1}, then-th

row is Πp
M(M\{n}) − Πp

M(M\{1}). Then

∣

∣YM

∣

∣ = (−1)M

(

∑

n∈M

pn − 1

)

∏

n′∈M

pn′

∏

n′′∈M

pM−2
n′′ . (16)

∣

∣XM

∣

∣ is calculated as follows:

∣

∣XM

∣

∣ = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 p2p
M
(2,1) · · · pMpM(M,1)

p1p
M
(1,2) 0 · · · pMpM(M,2)
...

...
. . .

...
p1p

M
(1,M) p2p

M
(2,M) · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
∏

n′∈M

pn′

∏

n′′∈M

pM−2
n′′

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 · · · 1
1 0 · · · 1
...

...
. . .

...
1 1 · · · 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)M (M − 1)
∏

n′∈M

pn′

∏

n′′∈M

pM−2
n′′

The first equality is obtained by subtracting the first row of
XM from all other rows inXM. The second equality results
from the observation that if for alln′′ ∈ M we multiply pn′′

to both then′′-th row and column, then we have a factor
of

∏

n′′∈M

pn′′ from each element inXM.
∣

∣YM

∣

∣ is obtained

similarly as shown below:

∣

∣YM

∣

∣ = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

−p1p
M
(1) p1p2p

M
(2,1) · · · p1pMpM(M,1)

p2p1p
M
(1,2) −p2p

M
(2) · · · p2pMpM(M,2)

...
...

. . .
...

pMp1p
M
(1,M) pMp2p

M
(2,M) · · · −pMpM(M)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
∏

n′∈M

pn′

∏

n′′∈M

pM−2
n′′

∣

∣

∣

∣

∣

∣

∣

∣

∣

−p1 p1 · · · p1

p2 −p2 · · · p2

...
...

. . .
...

pM pM · · · −pM

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)M

(

∑

n∈M

pn − 1

)

∏

n′∈M

pn′

∏

n′′∈M

pM−2
n′′
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The proof of Theorem 4 goes as follows. We first construct
a normal vector perpendicular to the hyperplaneΩM. If we
let {en}n∈M be the set of basis vector whereen is a unit
vector in the direction of increasingλn, then

n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

e1 e2 · · · en

N2
1 N2

2 · · · N2
M

...
...

. . .
...

NM
1 NM

2 · · · NM
M

∣

∣

∣

∣

∣

∣

∣

∣

∣

with

Nn̄
n = Πp

M(M\{n̄})
n − Πp

M(M\{1})
n

will be a normal vector ofΩM. Therefore,
∣

∣XM

∣

∣ is the inner
product of0 − Πp

M(M\{1}) andn, while
∣

∣YM

∣

∣ is the inner
product ofΠp

M(M) − Πp
M(M\{1}) and n. Πp

M(M) lies on
ΩM is equivalent to

∣

∣YM

∣

∣ = 0. Πp
M(M) and0 lie on opposite

sides of ΩM is equivalent to that
∣

∣XM

∣

∣ and
∣

∣YM

∣

∣ have
opposite signs. With the condition that0 never lies onΩM,
p-convexity is achieved if and only if

∣

∣XM

∣

∣

∣

∣YM

∣

∣ ≤ 0. From
Lemmas 3 and 4, the condition is equivalent to

(−1)2M (M −1)

(

∑

n∈M

pn−1

)

∏

n′∈M

p2
n′

∏

n′′∈M

p
2(M−2)
n′′ ≤ 0.

After simplification, it reduces to (11).

APPENDIX G
PROOF OFTHEOREM 5

Notice thatH is the convex hull ofH. The corner points
either lie on the boundary ofH or in the interior ofH. If
the stability region of FRASA isp-convex, we only need to
show that all corner points lie on the boundary ofH. It is
because if all corner points are on the boundary ofH, then
the union

⋃

n̂∈M

Hn̂ is convex and henceH = H. Consider

M = 2. When forming the convex hullH, either

1) Πp
M(M) lies on ΩM, meaning thatΩM is part of the

boundary ofH; or
2) Πp

M(M) and 0 lie on opposite sides ofΩM, which
meansΩM will not be the boundary ofH because there
is a corner pointΠp

M(M) lying beyondΩM.

In both cases,Πp
M(M) lies on the boundary ofH. For general

values ofM greater than two, we consider allM′ ⊆ M
where2 ≤ |M′| < M in ascending order of|M′|. Because
the stability region of FRASA with link setM′ is also p-
convex, by repeating the arguments as above, we see that now
all corner points exceptΠp

M(M) are on the boundary ofH
andΩM is the boundary of the stability region farthest away
from 0. Now we consider the corner pointΠp

M(M). We can
apply similar arguments as above to show thatΠp

M(M) lies
on the boundary ofH. Hence,H = H. On the other hand, if
the stability region of FRASA is notp-convex, thenΠp

M(M)

lies in between0 andΩM. Therefore, at least one corner point
does not lie on the boundary ofH andH ( H.

APPENDIX H
PROOF OFTHEOREM 6

Consider the bound of convex hull unionH in Theorem 2.
Choose an arbitrarŷn ∈ M. When H is intersected with
the closed half spaceSn̂, the resultant polytope does not
contain the convex hullHn̂ by construction. Therefore, this
resultant polytope excludes the hypersurfaceFn̂. We repeat
this argument for all̂n ∈ M, then for alln̂ ∈ M, the convex
hull Hn̂ together with the hypersurfaceFn̂ are removed. The
boundary of the resultant polytope is consisted ofPn̂ for all
n̂ ∈ M and the boundary of the positive orthant only, and
hence the polytope isS. Therefore,S is a subset ofR and
constitutes an inner bound on the stability region of FRASA.
This bound is convex and piecewise linear since half spaces
are convex and piecewise linear, and these two properties are
preserved under intersection.
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