Northwestern University

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING McCORMICK SCHOOL OF ENGINEERING AND APPLIED SCIENCE EVANSTON, IL 60208

ECE 307 – COMMUNICATIONS

Winter 2020

Prof. Michael Honig

0. Introduction

- Electrical communication systems
- · Basic elements of a communication system
- · Limitations on performance: bandwidth, noise, nonideal effects
- Modulation: motivation and categories
- Chronology of communication theory and practice

I. Signal Analysis Review

- I1. Signal Classifications
- I2. Fourier Transform
 - Delta function
 - Transform theorems
 - Convolution
 - Fourier transform of periodic signals
- I3. Linear Systems and Transforms
 - Definition and examples
 - Impulse response and superposition integral
 - Time-invariant systems
 - Transfer function
- I4. Correlation and Power Spectrum
 - Inner product and norm

- Cauchy-Schwarz inequality
- Autocorrelation and cross-correlation
- Power and energy spectral density
- Input-output relations
- I5. Hilbert Transform
 - Definition and properties
 - Analytic signals

II. Continuous-Wave Modulation

- II1 Linear: Double-Sideband, Amplitude, Single-Sideband, Vestigial
- II2 Exponential: Frequency, Phase
 - · Spectral analysis
 - FM bandwidth
- III. CW Modulation Systems
 - Superheterodyne receiver
 - Multiplexing: Frequency-Division, Time-Division

IV. Random Processes

- Probability review (random variables, pdf's, expectation)
- Description in terms of joint pdf's
- Strict- and wide-sense stationarity
- Ergodicity
- Gaussian process
- Correlation and Power Spectral Density
- Linear Systems and Random Processes
- Representation of Narrowband Noise

- IV. Noise in CW Modulation
 - SNR in Coherent Demodulation of AM, DSB, SSB
 - SNR in AM Envelope Detection
- V. Introduction to digital modulation

Textbook:

R. Ziemer and W. Tranter, *Principles of Communications,* Sixth Edition, New York: John Wiley & Sons, Inc., 2009.