
VMM Emulation of Intel Hardware Transactional Memory

Maciej Swiech Kyle C. Hale Peter Dinda
Department of Electrical Engineering and Computer Science

Northwestern University
{m-swiech,k-hale,pdinda}@northwestern.edu

ABSTRACT
We describe the design, implementation, and evaluation of
emulated hardware transactional memory, specifically the
Intel Haswell Restricted Transactional Memory (RTM) ar-
chitectural extensions for x86/64, within a virtual machine
monitor (VMM). Our system allows users to investigate RTM
on hardware that does not provide it, debug their RTM-
based transactional software, and stress test it on diverse
emulated hardware configurations, including potential fu-
ture configurations that might support arbitrary length trans-
actions. Initial performance results suggest that we are able
to accomplish this approximately 60 times faster than under
a full emulator. A noteworthy aspect of our system is a novel
page-flipping technique that allows us to completely avoid
instruction emulation, and to limit instruction decoding to
only that necessary to determine instruction length. This
makes it possible to implement RTM emulation, and poten-
tially other techniques, far more compactly than would oth-
erwise be possible. We have implemented our system in the
context of the Palacios VMM.Our techniques are not specific
to Palacios, and could be implemented in other VMMs.

1. INTRODUCTION
Hardware transactional memory (HTM) [4] is an endur-

ing concept that holds considerable promise for improving
the correctness and performance of concurrent programs on
hardware multiprocessors. Today’s typical server platforms
are already small scale NUMA machines. A mid-range server
may have as many as 64 hardware threads spread over 4
sockets. Further, it is widely accepted that the growth of
single node performance depends on increased concurrency
within the node. For example, the U.S. national exascale
efforts are crystallizing around a model of billion-way par-
allelism [1], of which a factor of 1000 or more is anticipated
to be within a single node [12]. Given these trends, correct
and efficient concurrency within a single node or server is of
overarching importance, not just to systems software, but
also to libraries and applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROSS ’14, June 10, 2014, Munich, Germany
Copyright 2014 ACM 978-1-4503-2950-7/14/06 ...$15.00.
http://dx.doi.org/10.1145/2612262.2612265

HTM promises better correctness in concurrent code by
replacing locking with transactions over instructions. Unlike
locks, such transactions are composable, meaning that it is
less likely to introduce deadlock and livelock bugs as a code-
base expands. Furthermore, transactions have the potential
for running faster than locks because the hardware is able
to detect violations of transaction independence alongside of
maintaining coherence.

Intel has made HTM a component of its Haswell plat-
form, and chips with the first implementation of this feature
are now widely available. This paper focuses on the re-
stricted transactional memory (RTM) component of Intel’s
specification. RTM is a bit of a misnomer—it might bet-
ter be called explicit transactional memory. With RTM, the
programmer starts, aborts, and completes transactions us-
ing new instructions added to the ISA. Our work does not
address the other component of Intel’s specification, hard-
ware lock elision (HLE), which is a mechanism for promot-
ing some forms of existing lock-based code to transactions
automatically—i.e., it is implicit transactional memory.

Our paper focuses on how to extend a virtual machine
monitor (VMM) so that it can provide the guest with Intel
Haswell RTM capability even if the underlying hardware
does not support it. Furthermore, the limitations of this
emulated capability can differ from that of the underlying
hardware.

There are three primary use cases. The first is in testing
RTM code against different hardware models, to attempt
to make the code resilient to different and changing hard-
ware. As we describe in more detail in Section 2, transaction
aborts are caused not only by the detection of failures of
transaction independence, but also by other events that are
strongly dependent on specific hardware configurations and
implementations. Hence, a transaction that may succeed on
one processor model might abort on another model.

The second use case is to consider potential future RTM
implementations, including those that might allow arbitrary
length transactions. Current RTM hardware implementa-
tions limit transaction length due to cache size and write
buffer size limitations. Our system is free of such limita-
tions unless they are explicitly configured. Conceivably, this
functionality could also be used to bridge RTM and software
transactional memory.

The third use case is in debugging RTM code via a con-
trolled environment. Through emulation, it is possible to
introduce abort-generating events at specific points and ob-
serve the effects. It is also possible to collect detailed trace
data from running code.

We have designed, implemented, and evaluated a system
for Intel RTM emulation within the Palacios VMM. Our
techniques are not specific to Palacios, and could be imple-
mented in other VMMs as well. Our implementation will be
available as part of the open-source Palacios codebase when
this paper is published. Our contributions are as follows:

• We have designed a page-flipping technique that allows
instruction execution while capturing instruction
fetches, and data reads and writes. This technique
avoids the need for any instruction emulation or
complex instruction decoding other than determining
instruction length. This greatly simplifies RTM
emulation and could be applied to other services.

• We have designed an emulation technique for RTM
based around the page-flipping technique,
redo-logging, undefined opcode exceptions, and
hypercalls. The technique is extensible, allowing for
the inclusion of different hardware models, for
example different cache sizes and structures.

• We have implemented the RTM emulation technique in
Palacios. The entire technique comprises about 1300
lines of C code.

• We have evaluated our VMM-based RTM emulation
technique and compared it with Intel’s
emulator-based implementation of Haswell RTM in
the Software Development Emulator [6]. Our
implementation is approximately 60 times faster
when a transaction is executing, and has full
performance when none are.

Related work: Herlihy and Moss introduced HTM [4]. Re-
cent work by Rajwar, Herlihy, and Lai showed how HTM
could be extended such that hardware resource limitations
would not be programmer visible [11]. Unbounded transac-
tional memory [2] shows that hardware designs that allow
arbitrarily long transactions are feasible, and this work also
demonstrated that using such transactions would allow for
significant speedups in Java and Linux kernel code. Ham-
mond et al. [3] have argued for using such powerful trans-
actions as the basic unit of parallelism, coherence, and con-
sistency. In contrast to such work, our goal is simply to
efficiently emulate a specific commercially available HTM
system that will have model-specific hardware resource lim-
itations. By using our system, programmers will be able
to test how different hardware limits might affect their pro-
grams. However, because the conditions under which our
system aborts a transaction are software defined, and the
core conflict detection process will work for a transaction of
any size, provided sufficient memory is available, our system
could also be employed to test models such as the ones de-
scribed above. IBM has produced their own implementation
of HTM in the BlueGene/Q architecture [13].

Our system leverages common software transactional data
structures, such as hashes and redo logs. Moore et al. de-
veloped an undo log-based hardware transactional memory
system [10] which lets all writes go through to memory and
rolls them back upon conflict detection. Our emulator rolls
a redo log forward on a commit.

2. HASWELL TRANSACTIONAL MEMORY
The Haswell generation of Intel processors include an im-

plementation of hardware transactional memory. The spec-
ification for transactional synchronization extensions (TSX)

has the goals of providing support for new code that ex-
plicitly uses transactions, backward compatibility of some
such new code to older processors, and allowing for hardware
differences and innovation under the ISA-visible model [5].
There are two models supported by TSX, hardware lock
elision (HLE) and restricted transactional memory (RTM).
Our focus in this paper is on RTM.

In the RTM model, four additional instructions have been
added to the ISA: XBEGIN, XEND, XABORT, and XTEST.
If they are executed on hardware which does not support
them, a #UD (undefined opcode) exception is generated.
Code can use the XTEST instruction to determine if it is
executing within a transaction. An RTM transaction is typ-
ically written in a form like this:

start_label:
XBEGIN abort_label
<body of transaction, may use XABORT>
XEND

success_label:
<handle transaction commited>

abort_label:
<handle transaction aborted>

The XBEGIN instruction signifies the start of a transaction,
and provides the hardware with the address to jump to if
the transaction is aborted. The body of the transaction
then executes. If no abort conditions arise, the transaction
is committed by the XEND.

Conceptually, the core on which the body of the trans-
action, from XBEGIN to XEND, executes does reads and
writes that are independent of those from other cores, and
its own writes are not seen by other cores until after the
XEND completes successfully. If another core executes a
conflicting write or read, breaking the promise of indepen-
dence, the hardware will abort the transaction, discard all
of the completed writes, and jump to the abort label. The
code in the body of the transaction may also explicitly abort
the transaction using the XABORT instruction. The spe-
cific reason is written into RAX so the abort handling code
can decide what to do.

Beyond conflicting memory reads and writes on other cores,
and the execution of the XABORT instruction, there are nu-
merous reasons why a transaction may abort. These form
three categories: instructions, exceptions, and resource lim-
its. Within each category, there are both implementation-
independent and implementation-dependent items. One of
the benefits of our emulated RTM system is to allow the
testing of RTM code under different implementations.
Instructions: The XABORT, CPUID, and PAUSE instruc-
tions are guaranteed to abort in all implementations. In ad-
dition, the specification indicates a very diverse set of other
instruction classes may also cause aborts, depending on the
specific RTM implementation.

An important point is that our system does not require
decoding and emulating general instructions, and to abort
on one of these classes of instructions we need only decode
an instruction sufficiently to identify its class. Any such
decoding need happen only for the instructions within the
transaction. Furthermore, many of these instructions are
already detected in the VMM out of necessity (e.g., control
and segment register updates, I/O instructions, virtualiza-
tion instructions, most privileged instructions), and others
can be readily intercepted without decoding (e.g. RFLAGS
updates, debug registers, ring transitions, TLB instructions,
software interrupts).

Exceptions: An exception on the core executing a trans-
action generally causes the transaction to abort, although
the specification has variable clarity about which exception
aborts are implementation-dependent and which are guar-
anteed. We assume that all exceptions that the Intel spec-
ification says “may” cause aborts “will” cause aborts. This
behavior can easily be changed within our hardware model.
As the VMM is already responsible for injection of general
and special interrupts, it can easily detect aborts due to
asynchronous exceptions. Detecting synchronous exceptions
is slightly more challenging, as we discuss later.

Exception delivery within the context of a transaction
abort has unusual, although sensible semantics. For syn-
chronous exceptions, the abort causes the exception to be
suppressed. For example, if a transaction causes a divide-
by-zero exception, the hardware will abort the transaction,
but eat the exception. For interrupts, the abort causes the
interrupt to be held pending until the abort has been pro-
cessed. For example, if a device interrupt happens during
the execution of a transaction, the hardware will abort the
transaction, and begin its fetch at abort_label before the
interrupt vectors.
Resource limits: The specification indicates that trans-
actions may only involve memory whose type is writeback-
cacheable. Use of other memory types will cause an abort.
Additionally, pages involved in the transaction may need to
be accessed and dirty prior to the start of the transaction
on some implementations. Finally, the specification warns
against excessive transaction sizes and indicates that“the ar-
chitecture provides no guarantee of the amount of resources
available to do transactional execution and does not guar-
antee that a transactional execution will ever succeed.”

Our interpretation of these parts of the specification is
that a typical implementation is expected to be built on top
of cache coherence logic. The implication is that transac-
tions will behave differently on different hardware just to
cache differences. The line size will likely define the con-
flict granularity for transactions. Two writes to the same
cache line, but to different words, will likely conflict. Hence,
the larger cache line, the more likely a transaction is to fall
victim to an abort caused by a false conflict.

Our system allows the inclusion of a hardware model that
can capture these effects, allowing the bullet-proofing of code
that uses transactions, and the evaluation of the effects of
different prospective hardware models on the code. Inter-
estingly, because it is a software system, it creates the effect
of hardware without resource limits.

3. DESIGN AND IMPLEMENTATION
The implementation of our RTM emulation system is in

the context of our Palacios VMM [9], but its overall de-
sign could be used within other VMMs. We now describe
our system, starting with the assumptions we make and the
context of our implementation, followed by an explanation
of the page-flipping approach the system is based on, and
finally the architecture and operation of the system itself.

3.1 Assumptions
We assume that our system is implemented in the context

of a VMM for x86/x64 that implements full system virtu-
alization. Such VMMs can control privileged processor and
machine state that is used when the guest OS is running,
and can intercept guest manipulations of machine state. We

assume the VMM infrastructure provides the following func-
tionality for control and interception:

1 Shadow paging. We assume shadow paging in the
VTLB model [7, Chapter 31] is available. It is not
essential that the guest run with shadow paging at all
times, merely that it is possible to switch to shadow
paging during transaction execution.

2 Explicit VTLB invalidation. We assume that the
VMM allows us to explicitly invalidate some or all
entries in the shadow paging VTLB, independent of
normal shadow page fault processing.

3 Shadow page fault hooking. We assume that the VMM
allows us to participate in shadow page fault
handling. More specifically, we assume it is possible
for us to install a shadow page fault handler that is
invoked after a shadow page fault has been
determined to be valid with respect to guest state.
Our handler can then choose whether to fix the
relevant shadow page table entry itself, or can defer
to the normal shadow page table fixup processing.

4 Undefined opcode exception interception. We assume
the VMM allows us to intercept the x86/x64
undefined opcode exception when it occurs in the
guest.

5 CPUID interception. We assume the VMM allows us
to intercept the CPUID instruction and/or set
particular components of the result of CPUID
requests.

6 Exception interception. We assume the VMM allows
us to selectively enable interception of exceptions and
install exit handlers for them.

7 Exception/interrupt injection cognizance. We assume
the VMM can tell us when a VM entry will involve
the injection of exceptions or interrupts into the
guest. If the VMM uses guest-first interrupt delivery
in which an interrupt can vector to guest code
without VMM involvement, then it must be possible
to disable this for the duration of the transaction so
that the VMM can see all interrupt and exception
injection activity.

The hardware virtualization extensions provided by In-
tel and AMD are sufficient for meeting the above assump-
tions. The same capabilities that the hardware provides
could also be implemented in translating VMMs or paravir-
tualized VMMs. Common VMMs already meet 1, 2, 3, 5,
and 7 as a matter of course. Items 4 (undefined opcode inter-
ception) and 6 (exception interception) are straightforward
to implement. In AMD SVM, for example, there is simply
a bit vector in the VMCB where one indicates which excep-
tions to intercept. On VM exit due to such an interception,
the hardware provides the specific exception number.

Palacios already met most of the assumptions given in
Section 3.1. Shadow paging capabilities in Palacios reflect
efforts to allow dynamic changes for adaptation. Palacios
did not include support for assumptions 4 and 6 (exception
interception). Perhaps ironically, our initial implementation
of these two is for AMD SVM. However, Intel’s VT also pro-
vides an exception bitmap to select which exceptions in the
guest require a VM exit, so these changes could be read-
ily made for VT. In Palacios, exception/interrupt injection
cognizance (assumption 6) is implemented with a check im-
mediately before VM entry, in SVM or VT-specific code.

For the sake of initial implementation simplicity, we focused
here again on the SVM version.

3.2 Architecture
Figure 1 illustrates the architecture of our system. It

shows a guest with two virtual cores, one executing within
a transaction, the other not. The figure illustrates two
core elements, the per-core MIME (Section 3.3), which ex-
tracts fine-grain access information during execution, and
the global RTME (Section 3.4), which implements the Intel
RTM model. The RTME configures the MIMEs to feed the
memory reference information into the conflict hash data
structures (for all cores), and the per-core redo log data
structure (for each core executing in a transaction). The
conflict hash data structures are used by the RTME to detect
inherent memory access conflicts that should cause transac-
tion aborts regardless of the hardware resource limitations.
Additionally, the memory references feed a pluggable cache
model, which detects hardware-limitation-specific conflicts
that should cause transaction aborts. The RTME is also fed
by the instruction sequences from cores operating in trans-
actions, and by intercepted exceptions from the guest and
injected exceptions or interrupts from the VMM, which also
are needed to assess whether an abort should occur.

When no virtual core is executing in a transaction, we
revert to normal execution of instructions by the hardware.
The switch to the illustrated mode of operation occurs when
an XBEGIN instruction is detected via an undefined opcode
exception. Only this particular exception needs to be inter-
cepted during normal (non-transactional) execution.

3.3 Memory and Instruction Meta-Engine
A core requirement of transactional memory emulation is

being able to determine the memory addresses and data used
by the reads and writes of individual instructions. When a
transaction is active on any core, all cores must log their ac-
tivities, producing tuples of the form {vcore, sequencenum,

rip, address, size, value, type} where sequencenum or-
ders the tuples of a given vcore, rip is the address of the in-
struction being executed, address is the address being read
or written, size is the size of the read or write, value is the
value read or written, and type indicates whether the refer-
ence is a read, write, or instruction fetch.

Our design accomplishes this fine-grain capture of the
memory operations and data of instruction execution via
the Memory and Instruction Meta-Engine, or the MIME.
One of the major contributions of this work is the novel
page-flipping technique on which the MIME is based. This
technique allows us to avoid instruction emulation and most
aspects of instruction decoding. The MIME’s page-flipping
technique is based on the indirection and forced page faults
made possible through shadow paging, and breakpoints to
the VMM made possible through the hypercall mechanism.
Shadow paging and shadow page faults: It is necessary
for the VMM to control the pages of physical memory that
the guest has access to. Conceptually, with the VMM, there
are two levels of indirection. Guest virtual addresses (GVAs)
are mapped to guest physical addresses (GPAs) by the guest
OS’s page tables (the gPT), and GPAs are in turn mapped
to host physical addresses (HPAs) by the VMM.

In shadow paging, the GVA→GPA and GPA→HPA map-
pings are integrated by the VMM into a single set of shadow
page tables (the sPT) that express GVA→HPA mappings

that combine guest and VMM intent. The VMM makes
the hardware use this integrated set of page tables when the
guest is running. Any architecturally visible change to guest
paging state needs to invoke the VMM so that the VMM can
adjust the integrated page tables to incorporate it. In order
to do so, the VMM intercepts TLB-related instructions and
control register reads and writes. Hence, any operation the
guest performs to alert the hardware TLB of a change in-
stead alerts the VMM of the change. The VMM’s shadow
paging implementation thus acts as a“virtual TLB”(VTLB)
and the shadow page tables are the VTLB state.

Suppose the guest creates a mapping (a page table en-
try) for the GVA 0xdeadb000, which it does by writing this
mapping to the gPT. The new mapping is not guaranteed
to be architecturally visible until the TLB is informed. The
guest does this by using an INVLPG instruction to flush any
matching entry from the TLB. The VMM intercepts this in-
struction, where it informs the VMM that any entry that
has the VTLB (the sPT) must be removed. When the guest
later accesses some address on the newly mapped page, for
example 0xdeadbeef, the hardware walks the sPT, and on
finding no entry, raises a page fault. The page fault is also
intercepted by the VMM, which starts a walk of the gPT,
looking for 0xdeadb000. If no such entry existed in the gPT,
the VMM would then inject a page fault into the guest. In
this case, however, the gPT has a corresponding entry, and
so the sPT is updated to include this entry, as well as a map-
ping to the appropriate HPA. Since the page fault occurred
as a result of inconsistency between the sPT and gPT, it is
referred to as a shadow page fault, and the guest OS is un-
aware that it ever happened. The next time the guest tries
to access any address on the page 0xdeadb000 the sPT will
have the correct mapping.
Breakpoint hypercalls: In addition to forced shadow page
faults, the MIME also relies on being able to introduce
breakpoints that cause an exit back to the VMM, which
we accomplish with a hypercall. Both AMD and Intel sup-
port special instructions, vmmcall in the case of AMD, that
force an exit to the VMM. To set a breakpoint at a given in-
struction, we overwrite it with a vmmcall, after first copying
out the original instruction To resume execution, we sim-
ply copy back in the original instruction content and set the
instruction pointer to it.
Process: We now describe the MIME process for executing
an instruction using the following example:

prev: addq %rbx, %rax
cur: INSTRUCTION
next: movq %rdx, %rbx
...
target:
...

Here, cur is the address of the instruction we intend to exe-
cute, while next is the address of the subsequent instruction,
and target is a branch target if the current instruction is a
control-flow instruction.
Write-only data flow instruction: Let us make the current
instruction more specific, for example, suppose it is

cur: movq %rax, (%rcx)

This instruction writes the memory location in the register
%rcx with the 8 byte quantity in the register %rax. MIME
executes this instruction, and other instructions in the fol-
lowing way. We begin this process with the requirement that

vcore 0 vcore 1reads
writes

Out‐of‐trans
reads

committed
writes

Guest No Transaction TRANSACTION

Instruction
Execution

Instruction
Execution

VMM Exit Handling

Exception Exits
Exception Injects

#PF,
hcall

#PF,
hcall

MIMEMIME

d d
In‐trans

d

Execution ExecutionException Injects hcall

ABORT or
COMMIT

InstructionsInstructions

C Redo Log
Conflict
Hashes

writes
reads
writes

reads
writes

reads,
writes

RTME

inherent conflicts

resource

Cache
Model

RTME

VMM

resource
conflicts

Figure 1: Overall architecture of the system

the sPT is completely empty.Note that the last step in the
following reestablishes this for the next instruction.

1 We enter the guest with %rip=cur.
2 The instruction fetch causes a shadow page fault, which

exits back to the VMM, which hands it to the MIME.
3 The MIME discovers this is an instruction fetch by

comparing the faulting address and the current %rip

and noting the fault error code is a read failure. In
response, it creates an sPT entry for the page the
instruction is on. While the page is fully readable
and writable by the MIME, the sPT entry allows the
guest only to read it. The MIME then overwrites
next with a hypercall, saving the previous content.

4 We enter the guest with %rip=cur.
5 The instruction fetch now succeeds. Instruction

execution now succeeds as well, up to the data write.
The data write produces a shadow page fault, which
exits back to the VMM, which hands it the MIME.

6 The MIME discovers this is a data write by noting
that the fault code is a write failure.

7 In response to the data write, the MIME maps a
temporary staging page in the sPT for the faulting
address, and it stores the address of the write.

8 We enter the guest with %rip=cur.
9 The instruction fetch and the data write now succeed

and the instruction finishes, writing its result in the
temporary staging page.

10 %rip advances to next, resulting in the fetch and
execution of the hypercall (note that the code page is
now mapped in), which exits back to the VMM,
which hands it to the MIME.

11 The MIME now reads the value that was written by
the instruction on the temporary staging page. It can
now make this write available for use by other
systems. For example, the RTM system will place it
into its own data structures if a transaction is
occurring. If no other system is interested, it copies
the write back to the actual data page.

12 At this point the MIME has generated two tuples for
the record: the instruction fetch and the data write.

13 The MIME now restores the instruction at next

14 The MIME invalidates all pages in the VTLB. Strictly
speaking, only two pages are unmapped from the
sPT, the code page and the temporary staging page.

15 If MIME-based execution is to continue with next,
goto 1, otherwise we are done.

Read-only data flow instruction: For an instruction like

cur: movq (%rcx), %rax.

which reads 8 bytes from the memory location given in %rcx

and writes that result into the register %rax, execution is
quite similar. At stage 5, a shadow page fault due to the
data read will occur. In stage 6, the MIME will detect it is
a data read and sanity check it if needed. In stage 7, the
MIME will map the staging page read-only, and copy the
data to be read to it. This data can come from a different
system. For example, the RTM system might supply the
data if the read is for a memory location that was previously
written during the current transaction. After the instruction
finishes, it will then provide two tuples for the record: the
instruction fetch and the data read.
Read/write data flow instruction: It is straightforward to
execute an instruction such as

cur: addq %rax, (%rcx)

which reads the 8 bytes from memory at %rcx adds them to
the contents of %rax and then writes the 8 byte sum back
to the memory at the address in %rcx. For all but the final
write, the execution is identical to that of the read-only in-
struction given above. After completing stage 7, the staging
page will be mapped read-only, and thus there will be an ad-
ditional shadow page fault corresponding to the write. This
fault will be handled in the same manner as with the write-
only instruction. After the instruction finishes execution, it
will then provide three tuples for the record: the instruction
fetch, the data read, and the data write.
Control flow instruction: If a control flow instruction reads
data (e.g., an indirect jump) or writes data (e.g., a stack
write on a call), these reads and writes are handled in the
same manner as the preceding data flow instructions. Since
all the conditions to be checked (e.g., flags) are known at
this point, we can “emulate” the instruction, placing the hy-
percall at the jump target.

Generalization: Although the above description uses sim-
ple two operand instructions and the simplest memory ad-
dressing mode as examples, it’s important to note that the
technique works identically for different numbers of operands
and for arbitrary addressing modes. Indeed, even for im-
plicit memory operands, the hardware will produce shadow
page faults alerting us to their presence. The primary limi-
tation is that an instruction with multiple reads and/or mul-
tiple writes to the same page may not have all of its reads
and writes captured. We describe this in detail later. All
addressing mode computations, as well as segmentation, are
done well before a page fault on instruction or data refer-
ences can result. The hardware does this heavy-lifting.
Instruction decoding and emulation: Step 3 of the pro-
cessing described above requires basic instruction decoding.
The issue is that x86/x64 instructions are of variable length
(from 1 to 15 bytes). Hence, in order to determine what next
is, we need to be able to determine the size of the current
instruction. If the MIME does not need to trace control-flow
instructions, this is the only requirement. If control-flow in-
structions are to be handled by the MIME, then we must
further decode control-flow instructions to the point where
we can also determine their target address. Our implemen-
tation uses the open source Quix86 decoder [8] to do this
decoding for us. No emulation is done at all—we rely on the
hardware to do instruction execution for us instead.
Read optimization in RTM: In our earlier description of
handling read-only instructions and read-write instructions,
we describe the use of a staging page during the read—when
a data read is detected, we copy the value to be read to a
staging page and present this page to the guest. In RTM,
this is required when a core executing a transaction reads a
value it has previously written during the transaction. At
this point, in order to maintain isolation, the written value
exists only in a redo log and must be copied from it. For
a core that is not executing in a transaction, or for an in-
transaction read of a value that was not previously written
in the transaction, the staging page can be avoided and the
read allowed to use the actual data page. This optimization
is included in our RTM system.

3.4 Restricted Transactional Memory Engine
As shown in Figure 1, the RTME uses per-virtual core

MIMEs to capture instructions and their memory accesses
in a step-by-step manner during execution. The only in-
structions it needs to emulate are the XBEGIN, XEND,
XABORT, and XTEST instructions. Because these instruc-
tions are not available in the hardware, they cause an un-
defined opcode exception which is caught by the VMM and
delivered to the RTME.

The initial XBEGIN is emulated by capturing its abort
target, advancing RIP to the next instruction, and switching
all virtual cores to MIME-based execution. Additionally, the
RTME has the VMM enable exiting on all exceptions with
callbacks to the RTME. A special check is enabled in the
interrupt/exception injection code which is run before any
VM entry. This check tests if an injection will occur on
entry, and if so it invokes a callback to the RTME before
the entry. Either callback is interpreted by the RTME as
requiring a transaction abort for that virtual core.

From the next entry on, MIME-based execution occurs
on all virtual cores. On all virtual cores, the writes seen by
the MIME are written to the conflict hash data structures.

For a virtual core that is not executing in a transaction,
the writes are also reflected to guest memory, and all reads
are serviced from guest memory. For a virtual core that
is executing in a transaction, writes are sent to the redo
log instead of to guest memory. Reads are serviced from
guest memory, except if they refer to a previous write of the
transaction, in which case they are serviced from the redo
log. For all cores, reads and writes are also forwarded to the
cache model by the RTME.

In addition to the callbacks described earlier, the RTME
is also called back by the MIME as it executes its state
machine. This allows the RTME to examine each instruc-
tion and its memory operations to see if an abort is mer-
ited. Instructions are checked against the list given earlier.
For all memory operations, the RTME checks the conflict
hash data structures and the cache model. The former in-
dicates whether a conflict would have occurred assuming an
ideal, infinite cache. For example, if this core is not in a
transaction, and has just written a memory location that
some other core that is in a transaction previously wrote,
a conflict is detected and the other core needs to abort its
transaction. The cache model determines if a conflict due
to hardware limitations has occurred. For example, if the
current write is coming from a core that is executing in a
transaction, and that write would cause a cache eviction
of a previous write from the transaction, the cache model
would detect this conflict and indicate that the current core
needs to abort its transaction. A final source of an abort is
when the RTME detects the XABORT instruction during
the MIME instruction fetch.

Handling a transaction abort is straightforward: the writes
in the redo log are discarded, the relevant error code is
recorded in a guest register, the guest RIP is set to the abort
address, and the guest is re-entered. Transaction commits
occur when the XEND instruction is detected, and are also
straightforward: the RTME plays the redo log contents into
the guest memory, advances the RIP, and re-enters the guest.
For either an abort or a commit, we also check if it is the
last active transaction. If so, we switch all cores back to reg-
ular execution (turning off MIME, callbacks, and exception
interception, except for the illegal opcode exception, which
is needed to detect the next XBEGIN).

XTEST instructions are identified by the RTME through
a UD exception, if the instruction is run during an active
RTM section, then the ZF flag is set, otherwise it is cleared.
Redo log considerations: Our redo log structure is not,
strictly speaking, a log. Rather, it stores only the last write
and read to any given location. However, during MIME exe-
cution, there exist short periods where the most recent write
or read is actually stored on the MIME staging page. A ver-
sioning bit is used so that when the MIME-based execution
of an instruction completes, it is possible to update the redo
log with newer entries on the staging page. These aspects
of the design allow us to compactly record all writes and
internal reads of a transaction.
Conflict detection: In addition to the conflict hashes, con-
flict detection in the RTME uses a global transactional mem-
ory (TM) state, a global transaction context, a per-core TM
state, and a per-core transaction number. The global TM
state indicates whether any core is running a transaction,
while the per-core TM state indicates whether the specific
core is executing a transaction. Each core assigns sequence
numbers to its transactions in strictly ascending order, and

the per-core transaction number is the number of the cur-
rent, or most recent transaction on that core. The global
transaction context gives the number of the currently active
transaction, or most recently completed (aborted or com-
mitted) transaction on each core.

When any core is running a transaction, all cores must
record the memory accesses they make, we accomplish this
through the use of two hash tables. The first, called the ad-
dress context hash, is a chained hash mapping memory lo-
cations to timestamped accesses. Each entry in the hashed
bucket represents the global transaction context at the time
of a memory operation, which acts as a ordering, or times-
tamp. In this way we are able to both record all memory
accesses done by a core, as well as keep track of when they
occurred. Since all memory accesses are tagged with the
global context, when a core is checking for conflicts it can
simply look at accesses made with the same context as its
current transaction number. Entries in the hash have the
form {addr : (global_ctxt)→(global_ctxt)→...}

The second hash table, called the access type hash, keeps
track of the type of memory operation that was run on an
address in a given context (read, write, or both). When
a memory operation is run by a core, it creates one entry
for each core in its hash. Data is duplicated in this man-
ner to facilitate quick lookup on conflict checking as well
as garbage collection. Entries in this hash have the form
{addr|core_num|t_num : access_type}

Suppose we are running on a guest with two virtual cores,
and core 0 begins a transaction. Each core will begin running
its MIME and recording its memory accesses. Now suppose
core 1 runs an instruction which writes to memory address
0x53. It will first note the global transactional context, and
add a node to the bucket for address 0x53 in the address
context hash with this context. It will then make two new
entries for the access type hash, one for each core in the
system. Each entry will map address 0x53, a core number,
and that core’s transaction number to a structure indicating
the access was a write.

If the memory accesses of a core executing a transaction
conflict with those of any other core, the transaction must be
aborted. To check for conflicts, we use the context hashes.
Conflict checking could be done after each instruction, or
when attempting to commit a transaction. In our imple-
mentation, conflict checking is cheap relative to instruction
run time and so we generally do it after each instruction.

In Figure 2 we illustrate the process of conflict detection.
At the end of an instruction in a transactional block, core 0
walks its redo log of writes, shown as step 1. In step 2, core
0 checks if any conflicting memory accesses have been made
by looking at every other core’s address context hash. In
the figure, core 0 checks for conflicting accesses to memory
address 0x53. In step 3, core 0 finds an entry for 0x53 in
core 1’s address context hash, and walks the list of contexts
during which core 1 accessed 0x53. Core 0’s current trans-
action number is 2, so the entry made during context {2,3}
is a potential conflict. In step 4 core 0 checks the entry for
address 0x53 in core 1’s access type hash to identify the kind
of access made. Having found that core 1 wrote to address
0x53 when core 0 was in transaction 2, a conflict is detected,
and core 0 must abort its transaction, shown as step 5.
Garbage collection: Memory use expands during execu-
tion as the redo logs and conflict hashes grow in size. Redo
logs are garbage collected at the end of each transaction.

0x1a

0x53

0x66

0,0 0,1 1,1

0,0 2,3 3,4

1,1 1,2 2,2

…

Memory Address to Context Hashtable, Core 1

Address + Context to Type Hashtable, Core 1

0x1a, Core 0, Transaction 0 R/W

0x1a, Core 1, Transaction 0 R/W

0x53, Core 0, Transaction 2 W

0x66,HVA,DATA 0x53,HVA,DATA 0x1a,HVA,DATA

0x53, Core 1, Transaction 3 W

…

CONFLICT

Check other core’s
memory accesses

Check if access
type conflicts

Redo log (writes), Core 0

Conflict Detection, Core 0 – transaction 2 1

2

3

4 5

Figure 2: An example of a write/write conflict de-
tected by core 0 on a write from core 1

Since the conflict hashes contain information from multiple
generations of transactions, we must answer the questions
of how to determine which entries are garbage, and when to
perform this garbage collection.

Garbage collection leverages the access type hash. We
start by noting the current global transaction context, then
we iterate over all the keys of the access type hash, and for
each key (an address), we walk over its corresponding list of
contexts. If we find a context that is strictly less than the
global context, this means that there is no core left that may
need to check that memory operation, as it happened dur-
ing transactions that are no longer active. We can generate
from this stale context the corresponding keys for the access
type hash, and delete those keys from it. Finally, we delete
the stale context from the list, and delete the key from the
address context hash if the list is now of zero length. A lock-
ing strategy is employed to assure that a garbage collection
and MIME accesses are mutually exclusive.

When to garbage collect is a more difficult question, as
when we have an opportunity to do so, we cannot be certain
about the state of other cores, or when the next opportunity
to collect may occur. Currently in our implementation each
core will garbage collect on every transaction completion.

4. EVALUATION
We considered three factors when evaluating our RTM

implementation: its size, how it runs code with transactions,
and the performance of the implementation relative to the
native execution rate of the hardware and compared to a
different emulator.
Test environment: All testing was done on a Dell Pow-
erEdge R415. This is a dual socket machine with each socket
having a quadcore AMD Opteron 4122 installed, giving a to-
tal of 8 physical cores. The machine has 16 GB of memory.
It ran Fedora 15 with a 2.6.38 kernel. Our guest environ-
ment uses two virtual cores that run a BusyBox environment
based on Linux kernel 2.6.38. The virtual cores are mapped
one-to-one with unoccupied physical cores. This machine
does not have an HTM implementation.
Implementation size: Our implementation of RTM em-
ulation is an optional, compile-time selectable extension to

Palacios, and we made an effort to limit changes to the core
of Palacios itself. There were two major areas where we
had to modify the Palacios core, namely (1) handling of ex-
ceptions and interrupts, some of which are needed to drive
the RTME, and (2) page fault handling, allowing some page
faults to drive the MIME. These changes and the entirety of
the extension code comprise 1300 lines of C. Given the size
and very clear changes to the Palacios codebase, it should
be possible to port our implementation to other VMMs.
Test cases: To test the correctness of our implementation,
we needed a test suite which would present the implementa-
tion with various behaviors, and an ability to test the out-
come. GCC 4.7 includes support for compiling the Haswell
transactional instructions, but the test cases shipped with it
only evaluate the behavior of software transactional mem-
ory. We found we had to write our own test cases, which
test the following scenarios: (1) transaction calls XABORT
after making no changes to memory, (2) transaction calls
XABORT after having “written” to memory, (3) transac-
tion writes memory with an immediate value, (4) transac-
tion reads memory into a register, (5) transaction writes
a register to memory, (6) transaction reads and writes the
same memory location, (7) transaction thread writes to dis-
tinct, addresses, and (8) transaction and non-transactional
thread write to overlapping addresses. The test cases are
written using pthreads. After the threads set their affinity
for distinct virtual cores, and synchronize, they then repeat
their activity. Hence, over time, various possible orderings
of execution are seen, as are aborts due to external causes
(e.g., interrupts). These test cases form a “correctness test”
of our implementation, which it passes.
Performance: The MIME-based execution model must ob-
viously be slower than normal execution under the VMM
or at native speeds. To quantify this slowdown over na-
tive, we ran an additional microbenchmark on our system
and on a new, first-generation Haswell machine, an HP Pro-
liant DL320e with a single-socket, quad-core Intel Xeon E3-
1720v3 and 8GB RAM.

This benchmark consists of one thread pinned to a single
core that enters a transaction, writes to a memory location,
and then exits the transaction. The benchmark measures
the time spent running 10 such transactions, and is intended
to typify a common transactional code path. We averaged
this runtime over 100 runs. To ensure accurate timing for
RTM emulation, we used the TSC in passthrough mode to
measure elapsed time. We found that on native, the average
time spent running the 10 transactions was 2.57usec, while
under MIME, the average time was 853.88usec.

Future work on transactional memory emulation will in-
clude comparing performance of multi-threaded applications,
more complicated transational semantics including transac-
tion restarts, and testing transactions that the hardware
would not be able to support, such as those that exceed
architectural limits.

We also ran our test cases on Intel’s Software Development
Emulator (SDE), where we found a slowdown on the order
of 90,000×—our RTME runs approximately 60 times faster
during a transaction. Moreover, the SDE’s overhead occurs
all the time, as one might expect for full emulation. There
is a caveat in these numbers, however. The cache model we
are using in our RTME is the null model (no aborts due to
hardware resource limits), while Intel’s is not. That said, we
found that the average MIME “step” – the average time to

process a read or write – took on the order of 7,000 cycles.
This means that we would need to use a cache emulator
that took >400,000 cycles per read or write in order for our
system to slow down to speeds of emulation.

5. CONCLUSIONS
We developed an implementation of Intel’s HTM exten-

sions in the context of a VMM using MIME, a novel page-
flipping technique. Our implementation allows the program-
mer to write code with TSX instructions, allows for bullet-
proofing of code for various hardware architectures, as well
as allowing tight control of the environment under which a
transaction is occurring. We are able to achieve this with
limited instruction decoding, and at speeds approximately
60 times faster than under emulation.

6. REFERENCES
[1] Advanced Scientific Computing Advisory Committee. The

opportunities and challenges of exascale computing.
Technical report, Department of Energy, Fall 2010.

[2] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and
S. Lie. Unbounded transactional memory. In Proceedings of
the 11th International Symposium on High-Performance
Computer Architecture (HPCA ’05), February 2005.

[3] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory
coherence and consistency. In Proceedings of the 31st
annual international symposium on Computer architecture
(ISCA ’04), June 2004.

[4] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Proceedings of the 20th annual international symposium on
computer architecture (ISCA ’93), May 1993.

[5] Intel. Intel architecture instruction set extensions
programming reference.
http://software.intel.com/sites/default/files/m/3/2/
1/0/b/41417-319433-012.pdf, 2012.

[6] Intel. Intel software development emulator, November 2012.
v. 5.31.0.

[7] Intel. Intel 64 and ia-32 architectures software developer’s
manual volume 3c, chapter 32. http://download.intel.
com/products/processor/manual/325384.pdf, 2013.

[8] A. Kudryavtsev, V. Koshelev, B. Pavlovic, and
A. Avetisyan. Modern hpc cluster virtualization using kvm
and palacios. In Proceedings of the Workshop on Cloud
Services, Federation, and the 8th Open Cirrus Summit
(FederatedClouds ’12), September 2012.

[9] J. R. Lange, P. Dinda, K. C. Hale, and L. Xia. An
introduction to the palacios virtual machine
monitor—version 1.3. Technical Report NWU-EECS-11-10,
Department of Electrical Engineering and Computer
Science, Northwestern University, November 2011.

[10] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood.
Logtm: log-based transactional memory. In Proceedings of
the 12th International Symposium on High-Performance
Computer Architecture (HPCA ’06), February 2006.

[11] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
transactional memory. In Proceedings of the 32nd annual
international symposium on Computer Architecture (ISCA
’05), June 2005.

[12] S. Sachs and K. Yelick. Ascr programming challenges for
exascale. Technical report, Department of Energy, 2011.

[13] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht,
C. Barton, R. Silvera, and M. Michael. Evaluation of blue
gene/q hardware support for transactional memories. In
Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT
’12), September 2012.

