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1. INTRODUCTION

Since at least Veblen’s (1899) classic work on conspicuous consumption, economists and social scientists have
recognized that social comparisons can influence individual decisions. People compare their consumption,
their income, and their belongings to those of people around them, and they strive to maintain their position
within their community. A myriad of empirical work has demonstrated that “happiness” does not depend
on absolute levels of wealth or consumption of a good, but on the context in which this wealth is held 1.
This effect is best described by the following canonical example. Imagine you have the choice between living
in two different worlds

—A: Your yearly income is $50,000 and others earn $25,000.
—B: Your yearly income is $100,000 and others earn $200,000.

If people’s concern were over absolute wealth, world B is clearly better for every individual. However, if
your concerns are relative, then you may prefer to live in world A. Indeed, various studies have showed that
respondents offer favor world A.

We study such social comparisons and striving for status in a network context. As in the real social world,
in this paper people do not live in isolated and closed communities. People have a variety of social contacts,
and these contacts can overlap. People are indirectly connected, and therefore indirectly influenced, by
people who may be quite distant in social and geographic space. We study how the status considerations and
network structure influences individual outcomes and aggregate consumption of goods. Prominent scholars,
such as Robert Frank (1985, 2000), argue that increasing inequality has led to excessive spending, as people
try to emulate and compete with the rich. This process accelerates as more people are exposed to the lives
of the rich and what they consume. We demonstrate these phenomena in a theoretical setting.

To study these phenomena we consider a game where individuals choose a consumption level for a given
good. This good can be thought of as a private good with status implications, like cars or designer clothing.
Alternatively, the good can be thought of as a public good – charity organizations, city opera houses, and
the like – where individuals receive recognition in proportion to their contribution to the good in the form
of published donor lists, for example. Agents gain value and incur individual costs as a function of their
consumption level.

Agents additionally compare themselves in both relative and absolute terms to their neighbors in a network.
We adopt a status loss model equivalent to that of [Stark and Wang 2005] where agents suffer a loss as they
compare to themselves to those with higher consumption in their reference group. This utility specification
finds its basis in the work of classic sociology and social psychology ( [Merton 1938])and captures the idea that
humans tend to look to those doing better than themselves to judge their relative position. Mathematically,
the specification has features of both cardinal and ordinal social comparison. That is, an agent’s loss due to
social status is a function of both the degree to which his neighbors out-perform him and on the fraction of his

1See Truyts [2010] for a survey of the empirical work in this area
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neighbors that are out-performing him. We feel that this is an important feature for a model of interpersonal-
comparisons 2 For example, assume that agents compare themselves on the basis of brand quality of car.
Imagine that an agent owns a Toyota Corolla (a cheaper car) and consider the following scenarios

(1) Most of the agent’s neighbors also own a Corolla but one owns a Mustang (a medium-priced car).
(2) Most neighbors own a Corolla but one owns a Ferrari (an expensive car)
(3) All of the agent’s neighbors own a Mustang.

In a model of purely ordinal social comparisons, the agent would experience the same status loss in
scenarios 1 and 2 but this doesn’t match with our intuitive notions of a status comparison. In a purely
cardinal model, such as when an agent compares his consumption to the average consumption of neighbors,
scenarios 2 and 3 are identical. In particular, the effect of an agent purchasing a Mustang would be the
same in both scenarios. In our view, it seems reasonable that an agent would have a greater incentive to
upgrade his car in scenario 3 because he needs to catch up to his entire neighborhood, rather than just a
single high-consuming individual. We employ a simple model of social comparison that distinguishes these
cases.

In our model, networks play a fundamental role as an agent’s social comparison is only with his neighbors
in the network. Much of the previous work in the social status literature addresses scenarios where each agent
compares their consumption against the consumption patters of the entire population. While this approach
is reasonable for a number of examples (for example, a small population of office workers comparing on
suit quality), the network model is allows for a more subtle treatment of reference groups. For example, I
may not choose to compare myself against the consumption patterns of celebrities but my friends might
choose to do so. If their consumption pattern changes because of these celebrities and, in turn, cause my
consumption to change, then I was indirectly influenced by the consumption of celebrities that I claimed to
not care about. This phenomena, and others like it, raise a host of interesting research questions. How does
the global structure of the network change the set of equilibria? How does an individual agent’s actions vary
as a function of his place in the network?

Our model is one of the first to address social comparisons in such a network setting. This paper tackles
the primary theoretical challenges of this endeavor. Our primary objective is to solve for and analyze the
Nash equilibria of the model.

We find that this model induces a supermodular game and thus exhibits strategic complementarities
between the consumption levels of neighbors in the social network. Using tools from the supermodular
game literature, we show that consumption at the minimum and maximum equilibria increases with status
considerations, indicating that external organizations like charities or luxury good retailers have incentives
to perpetuate the perception of their goods as status symbols. Welfare decreases with status concerns but
individual utility decreases at varying rates, according to the degree of status spending surrounding each
agent. This supports the intuition that attempts to “keep up with the Joneses,” as people start to care more
and more about the Joneses, cause agents to over-spend. This happens for all agents, even those that don’t
even know the Joneses, demonstrating the spillover effects of the network structure.

We conclude with a study of the effect of network structure on consumption and welfare. We characterize
the set of supportable equilibria of a network by a notion of connectivity of groups of nodes, called cohe-
sion; namely for agents to exert high consumption in equilibrium, they must be well-connected to other
high-consumption agents, who must also be connected to other high-consumption agents. Using this charac-

2Much of the previous work in the social status literature uses a comparison model that is either ordinal or cardinal, but not

both. Two popular examples are comparing your consumption to the average consumption of your reference group or caring

about your position in the distribution of consumption for your reference group
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terization, we are able to show that adding edges to the network can either increase or decrease consumption
(and also welfare) as it alters the connectivity of groups of nodes.

The remainder of this paper is laid out as follows. Section 2 discusses related work in the economics
and computer science literature. In section 4, we solve for the Nash equilibria of this game and we give
comparative statics results based on these equilibria in 5. In section 6, we discuss the connection between
the network structure and the set of supportable equilibria. We conclude with a discussion of the benefits
and shortcomings of this model and give a detailed overview of future directions for this work.

2. RELATED WORK

While the study of status-seeking behavior is mostly new to computer science, there is a variety of previous
work on social status in economics. By and large, this work considers agents who compare themselves to
the same fixed reference group. Early work in this area, where a continuum of agents split their budgets
between a visible and non-visible good, showed that status concerns lead to overspending on visible goods. 3

Furthermore, these outcomes are Pareto-dominated by, and produce the same social hierarch as, the outcome
that would have occurred if all agents ignored their status concern. However, the ability for poorer agents to
increase their status via the visible good promotes all members of society to spend more, to guard against
a loss in status. Later work in the social status literature focused on the welfare effects of changing the
exogenous distribution of wealth (budgets). A more equal distribution of wealth (one which has a greater
density around the center of the support) demonstrates increased conspicuous consumption amongst the
middle class but a drop in conspicuous consumption by the poor and rich. However, in the case where
there is a discrete number of agents, it was demonstrated that social status need not effect outcomes if
agent’s budgets are sufficiently spread out (i.e. when it is simply too costly to compete with neighbors). For
our purposes, the important commonality of the work is the assumption that all agents’ status is jointly
determined in one group - be it a closed social community or the whole society.

The most closely related paper to ours is Ghiglino and Goyal [2010] who consider spending on a visible
and non-visible good on a fixed social network. However, they focus on a full market model where each
agent is endowed with an initial amount of each good and prices are determined endogenously by this
game. Interestingly, they show that an agent’s consumption of the visible good is determined by his network
centrality.

In terms of theory, the work most relevant to our model of competitive status is the study of social context
games in [Ashlagi et al. 2008]. This setting specifies a graph G, an underlying game H, and some aggregation
function, such as max/min/mean. The payoff for an agent i depends on both the payoffs from H and the
aggregation of payoffs for i’s neighbors in H. By contrast, our work assumes no distinction between the
payoffs due to the game and the payoffs due to social comparisons. [Brandt et al. 2009] study the complexity
of computing equilibria in the social context of ranking functions, where the underlying game produces
some ordinal ranking of players and each player’s utility weakly increases as he improves his position in the
ranking.

More widely, our work contributes to the research on games played on a fixed network. The game in our
paper has several interpretations, including provision of public goods and charitable contributions, and thus
we share applications with other network literature.4

3For example, Frank (1985) considers a model where agents produce a positional and non-positional good. When agents care

about their position within society, agents will under produce the non-positional goods. [Clark and Oswald 1998]Oded Stark
and You Qiang Wang (2005) [Stark and Wang 2005] considers the case of a finite set of players in but in a setting where

consumption levels are fixed and agents are free to choose the set of agents that they associate with and thus base their relative
status on a fixed number of full connected agents. [Stark and Wang 2005]
4[Bramoulle and Kranton 2007] introduced public goods game and study the characteristics of the Nash equilibrium. [Galeotti

et al. 2009] study the effect of change in the degree of a node under the various assumptions of the positive or negative
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3. THE MODEL

There are n agents V = {1, 2, ..., n} working to procure a good (e.g., income, luxury goods like automobiles,
or public goods like charity contributions). Each agent i chooses an consumption level ei ∈ [0,∞], represent-
ing the degree to which he produces the good. Let e denote the consumption profile, and e−i denote the
consumption profile of all agents other than i. Agents are arranged in a network according to a connected,
undirected graph G = (V,E). An edge between agents i and j indicates that each agent’s payoff is directly
affected by the other’s consumption. We will denote the neighbors of agent i by Ni = {j ∈ V |(i, j) ∈ E}.
The payoffs consist of two components:

(1) Economic Costs and Benefits. We specify a simple form of costs and benefits that captures the
basic tradeoffs between individual costs and benefits and possibly positive consumption externalities.
We suppose the consumption of the good is proportional to the consumption level, with an agent-
specific proportionality factor αi > 0, referred to as the agent’s type. Thus, given consumption profile
e, the contribution to the payoff of agent i is αi · ei. As is standard in economics literature, we assume
the cost of consumption is quadratic in consumption level contributing − 1

2e
2
i to the payoff of agent i.

With this specification, the network costs and benefits remain simple enough so we can engage our main
interest which is social status. All results from sections 4 and 5 extend to general convex costs in the
obvious manner 5.

(2) Social Status. Status concerns of agents cause them to experience a disutility from being less produc-
tive than their neighbors. Given consumption profile e, we posit a status loss function S(ei, e−i;G) =
−
∑
j∈Ni

1
|Ni|+1 max{ej − ei, 0}, adopted from that of [Stark and Wang 2005]. The status loss function

contributes β · S(ei, e−i;G) to agent i’s payoff, where β > 0 controls the extent of the status effect
on agents’ payoffs. Note this implies agent i has lower status when he produces a lower level of good
relative to his neighbors, and this status loss is higher as the gap between the quantity of i’s good and
his neighbors’ goods increases.

Thus, in summary, given consumption profile e, social network G = (V,E), and parameters β, an agent i
of type αi has a payoff of:

ui(e;αi, β,G) = αiei −
1

2
e2i − β

∑
j∈Ni

1

|Ni|+ 1
max{ej − ei, 0}.

When it is clear from the context, we drop the parameters and graph specification from the utility function.
We define the status game as follows. Given the graph structure G = (V,E), agents simultaneously choose

consumption levels ei ∈ [0,∞) and receive payoffs ui(e;G). We are interested in the Nash equilibria of the
game. An consumption profile e∗ is Nash equilibrium vector if and only if for all agents i, ui(e

∗
i , e
∗
−i;G) ≥

ui(ei, e
∗
−i;G) for all ei.

externalities imposed by the actions of neighbors. [Ballester and Calvó-Armengol 2007] show a connection between equilibrium

strategies and network centrality in a game with a simple model of network externalities. [Conitzer and Sandholm 2004] consider
a model of charitable contributions where agents specify amounts that they are willing to contribute, contingent upon other

agents contributing certain amounts. They introduce a bidding language for agents to express their preferences and provide

optimal algorithms for determining clearing contribution levels for a restricted class of bids. [Ghosh and Mahdian 2008] give a
similar model where an individuals value for contribution to a charity is equal to the sum of contribution levels of all of the

agent’s neighbors minus his own contribution. They give a mechanism which has the maximum aggregate contribution as an
equilibrium under the condition that the graph is strongly connected.
5All proofs for these sections are done with the general convex case. It remains the focus of future work to extend the results

in section 6 to a more general setting
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4. EQUILIBRIUM ANALYSIS

In this section, we first characterize the best-response function and then we demonstrate that this game is
a supermodular game. We use this property to show (1) the existence of a maximum and minimum Nash
equilibrium and (2) the total consumption at these equilibrium is (weakly) increasing in parameters αi and
β. We also prove that iterated best-response converges to these two equilibrium polynomially quickly from
particular initial configurations.

Our game supports a potentially infinite set of Nash equilibria {e}. In this section, we argue that these
equilibria form a complete lattice6 with respect to the partial order � defined by e � e′ if ei ≥ e′i for all i,
and that the maximum element emax and minimum element emin of the lattice can be reached in polynomial
time by a natural best-response dynamic from particular initial configurations.

4.1 Best-Response Functions

In order to prove that the set of Nash equilibria form a complete lattice, we will define a best-response
function whose fixed points are Nash equilibria and argue that this is an isotone function on the lattice of
consumption profiles defined by partial order �.

The best-response of agent i to consumption profile e is Bi(e−i) ≡ arg maxe ui(e, e−i;G). In solving this
maximization problem, agent i must weigh the marginal economic benefits less the costs of his consumption,
which is simply αi − ei, against the marginal effect of his action on his status loss. To see the effect of ei on
agent i’ s status, consider the following reformulation of the status loss function S(ei, e−i;G) :

S(ei, e−i;G) = −
∑
j∈Ni

1

|Ni|+ 1
max{ej − ei, 0}

=
−1

|Ni|+ 1

∑
j|ej>ei

ej +
1

|Ni|+ 1

∑
j|ej>ei

ei

=
−1

|Ni|+ 1

∑
j|ej>ei

ej + ei
1

|Ni|+ 1

∑
j|ej>ei

1

The second term is ei times the proportion of agents in i’s neighborhood that are playing a higher action. This
number 1

|Ni|+1

∑
j|ej>ei 1 is key to our analysis, as it indicates an agent’s relative rank in his neighborhood.

We will denote the proportion of higher-action players as p(ei, e−i;G) ≡ 1
|Ni|+1

∑
j∈Ni|ej>ei 1. Now the status

loss term can be written as

S(ei, e−i;G) =
−1

|Ni|+ 1

∑
j∈Ni|ej>ei

ej + ei · p(ei, e−i;G)

where p(ei, e−i;G) is piece-wise linear. Figure 1 in Appendix A.1 provides an example of the change in agent
i’s status loss as agent i changes his action.

Except at points of discontinuity, small positive change in consumption level also corresponds to a reduction
in status loss of β · p(ei, e−i;G). Intuitively, any best-response consumption level should be at a point where
the marginal cost of consumption is equal to the marginal gain in value for the good plus the marginal
reduction in status loss (when well-defined). We formalize this intuition in the following proposition. The
proof is deferred to Appendix B.

6Recall a complete lattice is a partially ordered set (L,�) in which each non-empty subset A of L has a greatest lower and least

upper bound.In particular, the lattice itself has a maximum and minimum element.
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Proposition 4.1. Fix the consumption profile e−i of other agents and let Bi(e−i) = arg maxei ui(ei, e−i)
be the best-response of agent i to e−i. Then

Bi(e−i) = arg min
ei
{ei |ei ≥ αi + β · p(ei, e−i;G)}.

Note Bi is technically a function of the parameters αi, β and the network structure G. As before, when these
are clear from the context, we omit them from the function.

From a graphical perspective, the best-response for agent i is the minimum consumption level ei such
that the line y = x lies weakly above the graph of αi + β · p(ei, e−i;G). Figure 2 provides examples which
demonstrate this intuition. Figure 2a in Appendix A.1 shows a case where there is an exact consumption
level ei where the marginal cost of consumption is equal to the marginal gain plus the marginal reduction in
status loss, i.e., ei = αi +β · p(ei, e−i;G). In the case shown in Figure 2b, there’s no exact consumption level
which balances the marginal costs and benefits because p(ei, e−i;G) exhibits a discontinuity when agent i
increases his consumption level. To get a feel for why this is the best-response, playing any consumption
level less than the crossing point causes a large increase in loss of status compared with the small decrease in
cost of consumption while playing anything greater than this point has a larger marginal cost than marginal
gain.

Corollary 4.2. For any equilibrium action level e∗i of agent i, e∗i ∈ [αi, αi + |Ni|
|Ni+1|β].

We now show this game is a supermodular game, as defined by Milgrom and Roberts [1990]. Supermodular
games are characterized by games that exhibit strategic complementarities and, in turn, have nice compara-
tive statics properties. We make use of these properties in sections 4 and 5. A game is a supermodular game
if it satisfies the following properties:

—Each player’s strategy space is a compact subset of R.
—ui is upper semi-continuous in ei and e−i
—ui has increasing differences in (ei, e−i); for e′i > ei and e′−i > ei,

ui(e
′
i, e
′
−i)− ui(ei, e′−i) ≥ ui(e′i, e′−i)− ui(ei, e′−i)

Theorem 4.3. The social status game is a supermodular game.

Proof. The first property follows from the previous corollary while the second property is straightforward
from the utility function. It remains to show why the utility function satisfies the increasing difference
property. Consider two consumption levels for player i e′i > ei and two consumption vectors for all other
players e′−i ≥ ei. First we would like to show

S(e′i, e
′
−i)− S(ei, e

′
−i) > S(ei, e

′
−i)− S(ei, e−i)

Each agent j ∈ Ni contributes a status loss of
max{ej−ei,0}
|Ni|+1 and thus raising consumption from ei to e′i

reduces the status loss that agent j imposes on i by
min{ej−ei,e′i−ei}

|Ni|+1 . If we raise ej to some e′j , then the

change in agent i’s consumption level becomes (weakly) more valuable. Since the status function satisfies the
increasing difference property and value and cost of consumption do not depend on other agents, ui(ei, e−i)
has increasing differences in (ei, e−i).

Theorem 4.4. Amongst the non-empty set of all Nash equilibria, there exists a maximum equilibrium
emax and minimum equilibrium emin.

That is, the consumption level of agent i in emax (emin) is greater (less) than his consumption in any other
equilibrium

ACM Journal Name, Vol. 2, No. 3, Article 1, Publication date: May 2010.



• 1:7

4.2 Best-Responses Dynamics

In this section we consider best-response dynamics in our setting. While the convergence property may follow
from the supermodular property, we go further and show these dynamics converge in polynomial time. In
our setting, this corresponds to a best-response dynamic in which agents update strategies simultaneously in
each round. Arguably more natural is a sequential best-response dynamic in which, in each round each agent
i sequentially computes a best-response to the consumptions of other agents. We first formally define the
sequential best-response dynamics. Label agents in an arbitrary order {1, . . . , n}. We allow agents to update
consumptions in round-robin fashion according to that ordering as shown in the pseudocode of Algorithm 1.7

Algorithm 1 Best-Response(e0)

t← 0
repeat

e← et

for i = 1 to n do
ei ← arg maxe ui(e, e−i;G)

end for
et+1 ← e
t← t+ 1

until et = et−1

Here we prove via a standard potential function argument that these dynamics also converge and moreover
do so in polynomial time.

Theorem 4.5. For an consumption level profile e0 where e0i = αi + |Ni|
|Ni|+1β, Algorithm 1 on input e0

converges in time O(n4) to the maximum Nash equilibrium emax. Similarly, for an consumption level profile
e0 where e0i = αi, Algorithm 1 on input e0 converges in time O(n4) to the minimum Nash equilibrium emin.

Proof. We prove the first claim, that Algorithm 1 on input e0i = αi + |Ni|
|Ni|+1β converges to emax in

polynomial time (the proof of the second claim is similar). We first show by induction that at every round
t ≥ 1 until the last round of Algorithm 1, the consumption profile et is strictly dominated by et−1 according
to partial order � and so the consumption profiles computed by the algorithm form a chain in the lattice.
Note that in e0, each agent exerts an consumption at least as large as his consumption in any equilibrium by
Corollary 4.2. Thus after the first round, each agent’s consumption weakly decreases and at least one agent’s
consumption strictly decreases (otherwise we have reached an equilibrium). Now consider an arbitrary round
t. In this round, by induction each agent best-replies to an intermediate consumption profile that is weakly
dominated by the one he considered in his last best-response computation. Hence, by Proposition 4.1, each
agent’s consumption weakly decreases and at least one agent’s consumption strictly decreases (otherwise we
have reached an equilibrium).

We conclude by noting that due to the form of the best-response function as stated in Proposition 4.1, each
agent’s consumption in any best-response is either a constant plus one of |Ni| multiples of p(ei, e

−i;G) =
1

|Ni|+1

∑
j∈Ni|ej>ei 1, in case where there exists an B(e−i) = αi + βp(B(e−i), e−i), or the consumption level

of a neighbor, i.e. e∗i = ej for some j, in the case where B(e−i) > αi + βp(B(e−i), e−i). By induction, any

7Actually, the order of updates is not important; as can be seen from the following proof, so long as each agent updates at least

every d steps, the dynamic converges in time polynomial in d and n.
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neighbor consumption must be in the from ej = αj + β m
|Nk|+1 for some m and k ∈ Nj . Thus each best-

response function Bi takes on at most n2 distinct values (he can copy up to n agents, who each have n
distinct values they can contribute). Therefore, the maximum length of a chain in the lattice is n3. Therefore
the algorithm can take at most n3 rounds, and so converges in time O(n4) as claimed.

5. ECONOMIC RESULTS

In this section, we explore various properties of equilibrium consumption levels, including the amount of
consumption of the good and the social welfare of the agents. We are particularly interested in the effects
of status considerations on these properties. In absence of status effects (i.e., β = 0), an agent’s utility-
maximizing consumption level is equal to his type, ei = αi, regardless of the consumptions of others e−i.
This is because at consumption level ei = αi, the marginal contribution of consumption −ei + αi is zero
(when β = 0). Thus these consumption levels define the unique Nash equilibrium when β = 0 and will be
our baseline for comparison.

Definition 5.1. The status-free consumption profile esf is defined by esfi = αi.

We will compare the properties of this status-free consumption profile to the properties of the minimum
equilibrium emin and the maximum one emax for various settings of the parameters and network structures.

5.1 Consumption

We first study the effects of the parameters on consumption in equilibrium. We define the consumption of
the good at profile e to be

∑n
i=1 ei. The level of consumption is of particular interest when the good has

some public benefit, e.g., contribution to a charity. Naturally consumption increases with type and status
concerns.

Theorem 5.2. The minimum-producing equilibrium is emin and the maximum-producing one is emax.
Furthermore,

—consumption at emin is increasing in αi and weakly increasing with respect to β,
—and consumption at emax is increasing in both αi and β.

The above theorem implies that consumption in equilibria weakly dominates consumption in the status-
free consumption profile. In fact, it is not hard to see that in heterogenous settings, this comparison is strict:
the consumption of the status-free consumption profile is strictly less than any equilibrium.

5.2 Welfare

We next study the effects of the parameters on welfare in equilibrium. We define the social welfare of profile
e to be

∑n
i=1 ui(e;G). Naturally, in this case, the status-free consumption profile maximizes welfare, the

minimum-equilbrium emin is the maximum-welfare equilibrium, and the maximum-equilibrium emax is the
minimum-welfare one. This is because profiles with higher consumption can only decrease each agent’s payoff
as ui(ei, e−i;G) is maximized at ei = αi and decreasing in ej for j 6= i.

We show that raising β causes a direct loss of welfare stemming from a higher cost of equilibrium con-
sumption and a greater weight on loss due to social status. However, raising β can cause an indirect loss
or gain in social status depending on the magnitude of an agent’s status premium in comparison to their
neighbors.

We first show that holding other agents’ consumption fixed, the equilibrium utility for an agent is decreasing
in β, the agent’s concern for status.

Proposition 5.3. Consider a fixed setting of parameters αi, β and δ = 0, and fix any consumption
profile e for these parameters. Let β′ > β, choose an arbitrary agent i, and let ei = B(e−i;αi, β,G) and
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e′i = B(e−i;αi, β
′, G) be agent i’s best-response to the old and new parameters, respectively. Then e′i > ei

and ui(ei, e−i;αi, β,G) ≥ ui(e′−i, e−i;αi, β′, G).

While increasing agent i’s concern for status might cause him to raise his consumption and actually reduce
his status loss, the increased cost of consumption and increased weight on status loss outweighs any value
gained.

We next show that increasing status concern for all agents results in (weakly) lower welfares for all agents
in both emax and emin.

Proposition 5.4. Consider a fixed setting of parameters αi, β. Let β′ > β. Then for all i, the following
two inequalities hold

ui(e
max;αi, β,G) ≥ ui(emax;αi, β

′, G)

ui(e
min;αi, β,G) ≥ ui(emin;αi, β

′, G)

To be clear, emax and emin refer to the maximum and minimum equilibrium for the particular set of param-
eters.

Raising β causes a welfare loss in two ways: it raises each agent’s consumption, which in turn raises their
cost of consumption, and increases the concern each agent has for status, which only causes a loss to each
agent. Additionally, there is the indirect effect that the raised consumption by an agent’s neighbors might
further increase the difference in consumption between the agent and his neighbors, further increasing his
loss from social status. Recall that the equilibrium consumption for agent i is the minimum ei such that
ei ≥ αi + βp(ei, e−i). For all agents i, define fi such that ei = αi + fiβ. We refer to the term fiβ as an
agent’s status premium. We use status premium to distinguish between neighbors of agent i who have a
higher consumption: those who consume ej > ei because they have a greater value for the good and those
who consume more because they have a higher status premium. In the next proposition, we show that

Proposition 5.5. Fix a set of agents and a graph G and a setting where |αi − αj | > β for all i, j.
Let emax denote the maximum equilibrium for this game. For each agent i, the marginal status loss at the
maximum equilibrium with respect to β is equal to

1

|Ni|+ 1

∑
emax
j >emax

i

((αj − αi) + 2β(fj − fi))

This holds analogously for emin.

The above equation demonstrates the direct and indirect effect on status loss with respect to β. There
is a constant marginal status loss of αj − αi caused by raising concern for status. The role of the status
premium in the above equation reflects the additional status loss due to increased consumption. Neighbors
with a higher status premium induce an increasing marginal status loss to agent i while neighbors with
a lower status premium than i actually have a decreasing marginal status loss on agent i. Note that the
assumption that |αj − αi| > β is to ensure that the equilibrium rank of an agent in his neighborhood does
not change as β changes. If this condition fails, it could be that raising β actually decreases the total status
loss than an agent experiences, however he would still suffer a loss of welfare overall due to his increased
cost of consumption.

6. NETWORK EFFECTS

We conclude by studying the effect of the social network structure on both consumption and welfare. In
particular, we discuss the implications of adding or deleting links from the network. For clarity, we focus on
the setting where agents have a homogenous type αi = α (in which case esf = emin). In such settings, we
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can derive the following general characterization of consumption levels sustainable in equilibrium in terms
of the cohesion of nodes in the network.

Definition 6.1. For a given set of nodes T , we define the cohesion of T to be the largest number ρ such
that for any node i ∈ T , at least a ρ fraction of Ni are also in T . We say a set of nodes T is ρ-cohesive if the

cohesion of T is at least ρ. Formally, T is ρ-cohesive if ∀i ∈ T , |Ni∩T |
|Ni|+1 ≥ ρ.

Theorem 6.2. Given consumption profile e, define fi such that ei = α + fiβ for all i. Let Sf = {i ∈
N |fi ≥ f}. If e is an equilibrium, then Sf is f -cohesive for all f ∈ [0, |N ||N |+1 ].

Intuitively, if an agent i is playing ei = αi + fiβ and Sfi is not fi-cohesive, then he could reduce his
consumption by a small amount without affecting his rank is his neighborhood. This would imply his original
consumption was too high and thus e would not have been an equilibrium. The full proof is deferred to the
appendix.

From the above theorem, it is clear that adding or deleting links will change the set of supportable equilibria
as it changes the cohesion of subsets of nodes. Indeed, the following examples show that these effects can
have arbitrary consequences for consumption and welfare.

Example 6.3. Consider the homogenous setting where αi = α and agents arranged according to the
complete graph on 10 nodes, K10, and a complete graph on 3 nodes K3 such that there’s an edge between
node i ∈ K10 and j ∈ K3. This graph is shown in 3a. The maximum consumption level of node j is α+ 3

4β.
Thus for any e > α + 3

4β, at most a 9
11 fraction of i’s neighborhood can play e in equilibrium (the i’s 9

neighbors in K10 can play a high consumption level but j cannot). Then, by theorem 6.2, i can play at most
α+ 9

11β in equilibrium. Indeed, emax on this graph is e = α+ 9
11β for all the nodes in K10 and e = α+ 2

3β
for all nodes in K3. However, if we add the edge between agent i and another node k ∈ K3, then for any
e > α + 3

4β, the cohesion in i’s neighborhood drops to 9
12 , implying that agent i can play at most α + 9

12β
in emax. Additionally, this edge didn’t raise the emax consumption levels for the nodes in K3 because the
cohesion is bounded at 2

3 due to the node in K3 that doesn’t have an edge with i. Thus adding this edge
strictly decreased the consumption of the good.

7. CONCLUSION

This paper presents a network of social status. Agents have economic costs and benefits of providing a
good and they compare their production to those in their neighborhood. When a graph is connected but not
complete, agents’ incentives are affected by not only by their neighbors, but by actions of agents at a distance
in the network. We study the Nash equilibria of the game; we find the equilibrium set forms a lattice. Best
response dynamics naturally converge to either the minimum or maximum equilibria. We compare equilibrium
outcomes for different types of agents and show that striving for status has significant impact on agents’
production and welfare. While status concerns increase aggregate production, they decrease social welfare
(even pointwise) as agents over-produce the good relative to the economic costs and benefits. Furthermore,
adding or deleting links can affect production (and also welfare) in arbitrary ways.

We leave open for future work the obvious and interesting network design questions. Given a fixed network
and initial agent types αi, how should a designer with limited resources increase types to maximize produc-
tion? Such a strategy amounts to marketing the good to particular agents in the network. Alternatively,
Given fixed types αi and an initial network, how should a designer with limited resources introduce edges to
maximize production? This strategy amounts to introducing particular agents in the network, e.g., through
charity balls.
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A. APPENDIX

A.1 Missing Figures
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(a) Status Loss Curve
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(b) Marginal Status Loss Curve

Fig. 1: Figure 1a plots the status loss curve as function of consumption of an agent whose neighbors’ consumption levels are

(1, 1.2, 1.3, 1.9). Figure 1b plots the marginal loss in status as a function of consumption when faced with the same profile.
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(a) Best-Response Curves
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(b) Best-Response Curve

Fig. 2: Given fixed consumption levels e−i, we plot the curve αi + β · p(ei; e−i;G) as a function of consumption level ei. The

intersection point between this curve and the line y = x is the best-response of agent i. Figure 2a (respectively 2b) depicts the

curve when the consumption levels of i’s neighbors are (0.75, 0.75, 0.75, 0.5) (respectively (0.6, 0.75, 0.75)).
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(a) Homogenous Case

Fig. 3: Figure 3a shows a graph for which adding an edge decreases emax, as in example 6.3. The entire K10, with the exception

of node i, is not shown. In this example, adding the edge represented by the dotted line decreases the consumption level that
agent i plays in emax and in fact causes aggregate consumption to decrease on this graph.

B. MISSING PROOFS FROM SECTION 4

B.1 Useful lemma

To prove Proposition 4.1, we first establish a lemma about the reduction in status loss when an agent raises
his consumption from ei to ei + x (holding fixed all other agents’ consumptions).

Lemma B.1. For any ei and x > 0, the difference in social status effects S(ei +x; e−i;G)−S(ei, e−i;G)
is equal to the following

S(e+ x, e−i)− S(e, e−i) =

∫ e+x

e

p(y, e−i)dy

Proof. Reorder e−i such that e1 ≤ e2..... As previously shown, δS(ei,e−i)
δei

= p(ei, e−i) for any ei ∈
[ej , ej+1). We can also say that δS(ei,e−i)

δei
= p(ei, e−i) for any ei ∈ [ej , ej+1 − ε] for small ε > 0.

WLOG, assume that ei−1 ≤ ei ≤ ei+1... ≤ ei+k ≤ ei + x. That is, let ei+1, ...ei+k be the set of neighbor
consumption levels that are greater than ei but less than ei + x. For convenience, let ek+1 = ei + x. Then
we can write S(ei + x; e−i)− S(ei, e−i) as the following telescoping sum

S(ei + x; e−i)− S(ei, e−i) =

k∑
j=i

S(ej+1, e−i)− S(ej , e−i)

Then for any interval, [ej , ej+1 − ε], S(ej+1 − ε, e−i) − S(ej , e−i) =
∫ ej+1−ε
ej

p(y, e−i)δy. (Since p(ei, e−i) is

monotonic, it is integrable). This yields

S(ei + x; e−i)− S(ei, e−i) =

k+1∑
j=i

∫ ej+1−ε

ej

p(y, e−i)δy
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Letting ε→ 0 and using linearity of integration gives the result

S(e+ x, e−i)− S(e, e−i) =

∫ e+x

e

p(y, e−i)dy

B.2 Proof of 4.1

We will now prove theorem 4.1 but we will do so using a more general utility function. Specifically, we assume
convex costs rather than quadratic. 4.1 then follows as a corollary.

Proposition B.2. Let ui(ei, e−i) = αi + βS(ei, e−i)−C(ei) where C(ei) is a twice-differentiable convex
function representing the cost of consumption. Denote the first derivative of C(ei) by c(ei). Fix the consump-
tion profile e−i of other agents and let Bi(e−i) = arg maxei ui(ei, e−i) be the best-response of agent i to e−i.
Then

Bi(e−i) = arg min
ei
{ei |c−1(ei ≥ αi + β · p(ei, e−i;G))}.

Proof. Define the set Y = {ei|c(ei) ≥ αi + βp(ei, e−i;G)} and let e∗i = minei∈Y ei. This proof is broken
down into two parts; First, we show that e∗i exists, then show that ui(e

∗
i , e−i;G) > ui(e

′
i, e−i;G) for all

consumption levels e′i 6= e∗i .
First we must establish the existence of a minimum element of Y . Fix the vector e−i and reorder such

that e1 ≤ e2.... Then for any ej 6= ej+1, any ei ∈ [ej , ej+1) satisfies p(ei, e−i;G) = p(ej , e−i;G) because
p(ei, e−i;G) is defined as the proportion of i’s neighbors that are playing a strictly higher consumption level
than ei.

We now use this claim to show that e∗i is the unique maximizer of ui(·, e−i;G).

—e∗ is better than any lower consumption level. For any x > 0, consider ui(e
∗
i )− ui(e∗i − x) =

αi · (e∗i )− S(e∗i , e−i;G)− C(e∗i )−
(
αi · (e∗i − x)− S(e∗i − x, e−i;G)− C(e∗i − x)

)

= αi · x+ β(S(e∗i )− S(e∗i − x))−
∫ e∗i

e∗i−x
c(y)dy

By definition, all e′i < e∗i satisfy

c(e′i) < αi + βp(e′i, e−i)

Yielding

αi · x+ β(S(e∗i )− S(e∗i − x))−
∫ e∗i

e∗i−x
c(y)dy > αi · x+ β(S(e∗i )− S(e∗i − x))−

∫ e∗i

e∗i−x
αi + βp(y, e−i)dy

= β(S(e∗i )− S(e∗i − x))− β
∫ e

e∗i−x
p(y, e−i)dy

By lemma B.1 to the S(e∗i )− S(e∗i − x) term , we get

= β

∫ e

e∗i−x
p(y, e−i)dy − β

∫ e

e∗i−x
p(y, e−i)dy = 0

Tying it all together gives ui(e
∗
i )− ui(e∗i − x) > 0
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—e∗ is better than any higher consumption level. For any x > 0, consider ui(e
∗
i )− ui(e∗i + x) =

αi · (e∗i )− S(e∗i , e−i;G)− C(e∗i )−
(
αi · (e∗i + x)− S(e∗i + x, e−i;G)− C(e∗i + x)

)
= −αi · x− β(S(e∗i + x)− S(e∗i )) +

∫ e∗i +x

e∗i

c(y)dy

By definition, any e′i > e∗i satisfies c(e′) > αi + βp(e′i, e−i). Combining this with lemma B.1 yields

> −αi · x− β
∫ e∗i +x

e∗i

p(y, e−i)dy + xαi + β

∫ e∗i +x

e∗i

p(y, e−i)dy = 0

Tying it all together shows ui(e
∗
i )− ui(e∗i + x) > 0

Thus playing e∗i is the unique best-response for player i to consumption vector e−i.

C. MISSING PROOFS FROM SECTION 5

C.1 Proof of theorem 5.2

We show the comparative statics on consumption via a corollary of supermodular game. Milgrom and Roberts
[1990] show the following

Theorem C.1. Suppose that the payoff function in a supermodular game are parameterized by t such that
u() has increasing differences in (ei, t). Then the maximum and minimum equilibrium are non-decreasing in
t.

Proposition C.2. ui(ei, e−i, αi, β) has increasing differences in (ei, αi) and (ei, β).

Proof. Consider e′i > ei, α
′
i > αi and β′ > β.

(ui(e
′
i, e−i, α

′
i, β)− ui(ei, e−i, α′i, β))− (ui(e

′
i, e−i, αi, β)− ui(ei, e−i, αi, β))

= (α′i − αi)(e′i − ei) > 0

So ui satisfies ID in (ei, αi).

(ui(e
′
i, e−i, αi, β

′)− ui(ei, e−i, αi, β′))− (ui(e
′
i, e−i, αi, β)− ui(ei, e−i, αi, β))

= (β′ − β)(S(e′i, e−i)− S(ei, e−i)) > 0

So ui satisfies ID in (ei, β).

Theorem 5.2 now follows from C.2 and the above property of supermodular games.

C.2 Proof of theorem 5.3

We now prove theorem 5.3 in the more general convex setting.

Proof. Note by the form of the best-response function given in Proposition 4.1, Bi is weakly increasing
in β and so e′i ≥ ei. Let σ = e′i − ei, let ε = β′ − β, and note both σ and ε are non-negative. Consider the
utility of agent i in the two settings:

ui(ei;αi, β,G) = αiei + βS(ei)− C(ei)

and

ui(e
′
i;αi, β

′, G) = αi(ei + σ) + (β + ε)S(e′i)− C(ei + σ)
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Subtract the first from the second

αiσ + εS(ei + σ) + β(S(ei + σ)− S(ei))− (C(ei + σ)− C(ei))

As we saw in the proof of 4.1, lemma B.1 implies the following

αiσ + β(S(ei + σ)− S(ei))− (C(ei + σ)− C(ei)) < 0

By definition, εS(ei + σ) ≤ 0. Hence the welfare of agent i weakly decreased, and strictly decreased if any of
the terms (e.g., the status) is negative.

D. MISSING PROOFS FROM SECTION 6

D.1 Proof of theorem 6.2

Proof. Pick an arbitrary f ∈ [0, |N
|N |+1 ] and let agent i be a member of Sf . For all agents j, define fj

such that ej = α + fjβ. Note that in this setting, ei > ej iff fi > fj . Let g(f, e−i;G) =
|Ni∩Sf |
|Ni+1| be the

fraction of i’s neighborhood that is playing fj ≥ f in e−i. For the sake of contradiction, assume that agent
i’s neighborhood is not f−cohesive, i.e.

f > g(f, e−i;G)

Then we will show that there exists a small negative deviation for agent i which satisfies the conditions of
theorem 4.1, contradicting that ei is the best-response for player i (and that e is an equilibrium).
Then let σ = f − g(f, e−i;G), let ε = min

j∈Ni|fj<f
f − fj , and let θ = min{σ, ε}. Because θ is small, any agent

j such that fj < f also satisfies fj < f − θ
2 . This implies

g(f, e−i;G) = g(f − θ

2
, e−i;G)

This yields the following

f − θ

2
> g(f − θ

2
, e−i;G) ≥ p(f − θ

2
, e−i;G)

Where the last inequality holds because g() gives the fraction i’s neighbors that are playing a weakly higher
consumption level while p() gives the fraction of i’s neighbors that are playing a strictly higher consumption
level. Finally the above inequality gives, α+ (f − θ

2 )β ≥ α+ p(f − θ
2 , e−i;G)β, so it satisfies the conditions

in theorem 4.1 for a best-response. This contradicts that ei was the best-response for player i.
So our assumption that player i’s neighborhood was not f -cohesive is false. Then for any agent in Sf ,

their neighborhood must be at least f -cohesive in Sf . Thus Sf is f -cohesive.
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