
Enriched Methods for Large�Scale Unconstrained

Optimization�

Jos�e Luis Morales � Jorge Nocedal y

January ��� ����

Abstract

This paper describes a class of optimization methods that interlace iterations of the
limited memory BFGS method �L�BFGS� and a Hessian�free Newton method �HFN�
in such a way that the information collected by one type of iteration improves the
performance of the other� Curvature information about the objective function is stored
in the form of a limited memory matrix� and plays the dual role of preconditioning
the inner conjugate gradient iteration in the HFN method and of providing a warm
start for L�BFGS iterations� The lengths of the L�BFGS and HFN cycles are adjusted
dynamically during the course of the optimization� Numerical experiments indicate that
the the new algorithms is very e�ective and is not sensitive to the choice of parameters�
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� Introduction

In optimization� as in other areas of scienti�c computing� much e�ort is expended in de�
signing algorithms that do not require the setting of parameters� This is a desirable goal�
for it frees the user from having to perform trial tests to attempt to discover a good setting
of parameters for each application� Hessian�free Newton �HFN� methods for unconstrained
optimization are notorious for their sensitivity on the termination rule used in the inner
conjugate gradient �CG� iteration� There is a delicate trade�o� between the quality of the
step and the cost of computing it� and �nding termination rules that are e	cient in a variety
of settings has proved to be very di	cult�

In this paper we describe a method for unconstrained optimization that retains some of
the key features of Newton�type iterations� and that is both fairly insensitive to the choice
of parameters and e	cient over a wide range of problems� The method interlaces iterations
of the limited memory BFGS method �L�BFGS� and HFN iterations in such a way that
the information gathered by one type of iteration improves the performance of the other�
Because of this property we call it 
enriched method�� and the goal of this paper is to show
that it constitutes a promising new approach for large�scale optimization� One of the salient
features of the enriched method is the use of limited memory matrices to provide both a
preconditioner for the CG iteration in the HFN step and warm�start information for the
L�BFGS iterations�

� Motivation and Outline of the New Method

The problem addressed in this paper consists of the unconstrained minimization of a func�
tion of a large number of variables�

minimize f�x�� f � Rn � R� �
���

We will assume that the gradient g of f is available but that computing second derivatives
is not possible� Two of the most e�ective algorithms for these types of problems are� �i�
Hessian�free inexact Newton methods �HFN� ���� ��� ��� which are often called 
truncated
Newton methods�� and �ii� limited memory quasi�Newton methods� such as L�BFGS ����
�� ���

Inexact Newton methods that use the exact Hessian matrix and employ a preconditioned
CG iteration to compute the step have proved to be very e�ective in the solution of large
problems� see� for example� Lin and Mor�e ��� and Conn� Gould and Toint ���� Hessian�free
methods cannot make use of the best preconditioning techniques since these require direct
access to the Hessian matrix� but they can bene�t from the limited memory quasi�Newton
preconditioners described in ����

In this paper we take the use of limited memory matrices one step further� We argue
that it is not economical to compute HFN steps at every iteration� and that it can be
advantageous to interlace them with L�BFGS steps� The key is to save� in the form of a
limited memory matrix� some of the information generated by the inner CG iteration of
the HFN method� and use this matrix to improve the quality of the L�BFGS iterations� In
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this manner we will be able to often bypass the expensive HFN steps and reuse some of the
valuable information they have collected�

Another way of motivating our approach is to note that the strengths and weaknesses
of the HFN and L�BFGS methods are complementary� The HFN method normally requires
much fewer iterations to approach the solution� but the e�ort invested in one iteration can
be very high and the curvature information gathered in the process is lost after the iteration
is completed� The L�BFGS method� on the other hand� performs inexpensive iterations�
but the quality of the curvature information it gathers can be poor� and as a result it can
be very ine	cient on ill�conditioned problems� Enriched methods aim to combine the best
features of both methods in an dynamic manner�

In the enriched method that will be tested below� l steps of the L�BFGS method are
alternated with t steps of the HFN method� where the choice of l and t will be discussed
below� We illustrate this as�

l � �L�BFGS�
H�m�
�� t � �HFN�PCG��

H�m�
�� repeat

�
�

During the cycle of L�BFGS iterations� a limited memory matrix H�m� is updated� wherem
denotes the number of correction pairs stored� The matrix obtained at the end of this cycle
is used to precondition the �rst of the t HFN iterations� During each of the remaining t� �
HFN iterations� the limited memory matrix H�m� is updated using information generated
by the inner preconditioned conjugate gradient �PCG� iteration� and is used to precondition
the next HFN iteration� see ��� for a detailed description of the preconditioning process�
Once the t HFN steps have been executed� the most current matrix H�m� is used as the
initial limited memory matrix in the new cycle of L�BFGS steps� The process continues in
this manner� alternating cycles of L�BFGS and HFN iterations� and transmitting curvature
information from one cycle to the next�

Clearly� the L�BFGS and HFN methods are particular cases of the enriched method�
since they are obtained by setting t � � and l � �� respectively� In our implementation
of the enriched method� the lengths of the cycles� l and t� are chosen dynamically as the
optimization process takes place� A detailed description of the algorithm will be given in
section ��

An earlier attempt to develop an enriched method is described in �
�� The results
presented in that paper indicate that it is bene�cial to transmit curvature information from
the HFN iteration to the L�BFGS iteration� and they hint at the potential of enriched
methods� The algorithm used in �
� was� however� quite rigid�

�a� 
� L�BFGS iterations were followed by one HFN iteration �l � 
�� t � ���

�b� the HFN steps were computed using an unpreconditioned CG iteration�

�c� to avoid the di	culties of choosing a good stopping test for the CG iteration� the
algorithm performed always � CG iterations to compute the HFN step� the only ex�
ception was when negative curvature was encountered� in which case the CG iteration
terminated immediately�






That simple algorithm was useful for testing some of the features of enriched methods� but
was not versatile enough to perform well over a large set of test problems� such as the CUTE
��� collection�

In this paper we present a sophisticated implementation of an enriched method which
includes preconditioning of the CG iteration� a dynamic strategy for determining the lengths
of the L�BFGS and HFN cycles� and a standard stopping test for the CG iteration� Depend�
ing on the characteristics of the optimization problem� the enriched method may resemble
the L�BFGS or HFN methods� or it may be a hybrid that combines the features of each
method to a degree that varies during the optimization process�

An important advantage of our implementation is that the enriched method is not very
sensitive to the choice of termination test in the CG iteration� The only parameter that
must be selected is the number m of correction pairs stored in the limited memory matrices
H�m�� Our tests indicate that� as in the L�BFGS method� the performance of the enriched
method varies gradually with the choice of m�

� Description of the Algorithm

We �rst show that the L�BFGS and enriched iterations can formally be viewed as a HFN
iteration� This framework will facilitate the description and implementation of enriched
methods�

Let us consider an inexact Newton�type iteration for solving problem �
��� given by

x� � x� �p� ���
�

where � is a steplength and the search direction p is an approximate minimizer of the
quadratic model

q�p� � f�x� � pT g�x� �
�



pTBp� �����

Here g denotes the gradient of the objective function f � and B is some symmetric and
positive de�nite matrix� The approximate minimization of the quadratic q is performed by
the CG method� In this paper we assume that� if negative curvature is encountered� the
CG iteration terminates immediately without exploring this negative curvature direction�

A Hessian�free inexact Newton method is a particular instance of this method in which
B is intended to be the Hessian r�f�x�� but is not computed explicitly� All products of the
form Bv are either approximated by �nite di�erences�

Bv �
g�x� �v�� g�x�

�
�

where � is a small parameter� or are computed by automatic di�erentiation techniques�
There is no consensus on the best termination test for the CG iteration� and various rules are
used in practice ���� ���� Preconditioning can be performed using �limited memory� quasi�
Newton matrices� as described in ���� This HFN method with quasi�Newton preconditioning
will be central to the derivation that follows�
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The L�BFGS iteration is a special case of the preconditioned HFN iteration� in which
only one CG iteration is allowed in the minimization of the model ������ The enriched
method will also be viewed as a special case of the preconditioned HFN method in which the
number of CG iterations varies during the course of the optimization calculation� Following
is a broad outline of the new algorithm�

ENRICHED ALGORITHM

Choose a starting point x� the memory parameter m� and an initial choice of the
length l of the L�BFGS cycle� set method � �L�BFGS�� first � �true�

While a convergence test is not satis�ed�

Repeat

compute p� call PCG � p� method� status� maxcg ��

compute �� call LNSRCH � � ��

compute x� � x� �p�

store s � x� � x and y � g� � g�

call ADJUST � l� t� �� method� status� first� maxcg ��

End repeat

End while�

The procedure PCG implements the preconditioned CG iteration� Its input parameters are
method� which can have the values �L�BFGS� or �HFN�� and maxcg� which determines the
maximum number of CG iterations allowed� This procedure returns a search direction p�
and the value of status� which will be used to modify the lengths l and t of the L�BFGS and
HFN cycles� The procedure LNSRCH is a standard backtracking line search routine enforcing
the Wolfe conditions �cf� ��
���

The procedure ADJUST is invoked at every iteration of the enriched algorithm� regardless
of the value of method� When method� �L�BFGS�� the procedure simply increases a variable
k that counts the number of L�BFGS steps performed in the current cycle� and if k � l� it
also sets method � �HFN�� If method � �HFN�� ADJUST takes various actions based on the
quality of the current and previous Newton steps� A Newton step is considered 
pro�table�
if the step size � associated with the direction p lies in the interval ����� ��� We distinguish
two cases of unpro�table iterations� a� the step size is relatively small �� � ����� b� the CG
iteration detected an inde�nite Hessian� ADJUST keeps a record of the number of consecutive
pro�table Newton steps in the variable profit� and uses this number to update the lengths
l and t of the L�BFGS and HFN cycles�

We now list the situations in which ADJUST modi�es the lengths of these cycles�

�� Inde�nite Hessian� If the CG iteration generates a direction of negative curvature we
judge that we are in a region where L�BFGS steps are to be preferred over HFN steps�
We therefore reset t� �� increase l by �� and set method��L�BFGS��
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� Small steps in HFN iteration� If � � ��� in a HFN iteration� the iterates do not appear
to have reached the region where a Newton�type iteration is rapidly convergent� In
this case we set t � maxf
� t� �g� and de�ne method��L�BFGS��

�� A full cycle of t successful Newton steps was completed� Our experience indicates
that once the algorithm has reached the region where Newton�s method is rapidly
convergent� it is advisable to take as many HFN as is economically possible� Therefore
in this case we increase t by one�

�� At least � successful Newton iterations were performed in the cycle� We use the
variable force� to ensure that at least two HFN iterations are computed in succession�
regardless of the outcome of the �rst iteration� This variable is introduced because
the full bene�t of limited memory preconditioning is obtained only if more than one
HFN iteration is performed in succession�

If the cycle of HFN steps is at least moderately successful� in that 
 or more Newton
iterations were pro�table� then we set force� to the value �true�

During the very �rst HFN iteration in the algorithm� our CG stopping test may not be
appropriate� and we adopt the cautious strategy of allowing a maximum of � CG iterations�
Also� t is initially set to two� and force� is set to �false� Subsequent calls to ADJUST reset
maxcg to its default value�

We can now provide a description of the procedure ADJUST�
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PROCEDURE ADJUST �l� t� �� method� status� first� maxcg �

k � k � �

if method � �L�BFGS� then

if k � l then � Reset counters� switch to HFN and leave

if first � �true� then maxcg � �� t� 
� force� � �false�

method � �HFN�� k � �� profit � ��

end if

else � Examine quality indicators of the Newton step

if status � �Inde�nite Hessian� then

t� �� force� � �false�� l� min f���
�l� ��g�

method � �L�BFGS�� k � �� return

end if

if � � ��� then profit � profit � �

else

if force� � �true� and k � � then return

else

t� max f
� k � �g

method � �L�BFGS�� k � �� return

end if

end if

if k � t then � Check if the cycle is complete

if profit � k then t� t� �

if profit � 
 then force� � �true� else force� � �false� end if

method � �L�BFGS�� k � �� return

end if

end if

return

� Numerical Experiments

We tested the enriched method on all the large unconstrained problems in the CUTE
collection ���� We set the initial values m � 
� and l � ��� The CG inner iteration was
stopped when one of the following conditions was satis�ed�
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�a� �� iterations were performed �in the very �rst iteration only � CG iterations were
allowed��

�b� jjbrjj � �jjbgjj� where � � ����� and br and bg are de�ned as follows

br � H�m�r� bg � H�m�g�

The vector r stands for the CG residual� r � �g�r�f�x�p� and H�m� is the precon�
ditioner�

We also tested two HFN methods that di�er only in their stopping rule for the inner
CG iteration� HFN� uses the rule described by Nash ����� whereas HFN
 terminates when
the CG residual at the j�th iteration of the optimization algorithm satis�es

jjrjj � �j jjgj jj� � � min�����j� jjgj jj��

which is one of the rules discussed in ���� The inner CG iteration of methods HFN� and
HFN
 is preconditioned using the same quasi�Newton preconditioner as in the enriched
method�

All tests were performed on a DEC Personal Workstation with ��
 Mb of main memory�
using double precision FORTRAN� The optimization calculation was terminated for the
three methods �Enriched� HFN� and HFN
� when

jjgj jj��max��� jjxj jj�� � �����

The results are given in Tables � and 
�
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PROBLEM n Enriched HFN� HFN


ARWHEAD ���� �� �� �
BDQRTIC ��� �
 ��� ���
BROYDN�D ���� ��� �
� ���
BROWNAL �� �� �� ��
BRYBND ���� �� ��� ��
CRAGGLVY ���� �� ��� ���
CHAINWOO ���� ���� ���� ����
COSINE ���� �� 
� 


DIXMAANA ���� �� 

 ��
DIXMAANB ���� �
 
� ��
DIXMAANC ���� �� 

 
�
DIXMAAND ���� �� 
� 
�
DIXMAANE ���� ��
 ��� ���
DIXMAANF ���� ��
 
�� 
��
DIXMAANG ���� ��� 
�� 
��
DIXMAANH ���� ��� 
�� 
��
DIXMAANI ���� 
��
 ���� ����
DIXMAANK ���� ���� 
��
 
���
DIXMAANL ���� ���� 
��
 
���
DQDRTIC ���� �� �� ��
DQRTIC ��� �� �� ��
EDENSCH 
��� �� �� ��
EIGENALS ��� �
� ���� ��

EIGENBLS ��� ��� ��� �
�
EIGENCLS ��
 ���� ��
� ����
ENGVAL� ���� �� �� ��
FLETCBV� ���� �� � 


FLETCHCR ��� ��� 
��� 
��

FMINSRF
 ��
� ��� �
� ���
FMINSURF ��
� 
�� ��� ���

Table �� Number of function�gradient evaluations for three optimization methods�
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Our results indicate that the enriched method is signi�cantly more e	cient than the two
HFN methods� We tried several other variants of the HFN method� using di�erent stopping
rules for the CG iteration and other strategies for handling negative curvature� but their
performance was not better than that of methods HFN� and HFN
� As pointed above� we
observed that the the enriched method is not very sensitive to the stopping test of the CG
iteration� we experimented with several variants and obtained similar results�

In conclusion the numerical results suggest that the enriched method should be consid�
ered as a serious competitor to Hessian�free Newton methods
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