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Abstract

This paper describes a class of optimization methods that interlace iterations of the
limited memory BFGS method (L-BFGS) and a Hessian-free Newton method (HFN)
in such a way that the information collected by one type of iteration improves the
performance of the other. Curvature information about the objective function is stored
in the form of a limited memory matrix, and plays the dual role of preconditioning
the inner conjugate gradient iteration in the HFN method and of providing a warm
start for L-BFGS iterations. The lengths of the L-BFGS and HFN cycles are adjusted
dynamically during the course of the optimization. Numerical experiments indicate that
the the new algorithms is very effective and is not sensitive to the choice of parameters.
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1 Introduction

In optimization, as in other areas of scientific computing, much effort is expended in de-
signing algorithms that do not require the setting of parameters. This is a desirable goal,
for it frees the user from having to perform trial tests to attempt to discover a good setting
of parameters for each application. Hessian-free Newton (HFN) methods for unconstrained
optimization are notorious for their sensitivity on the termination rule used in the inner
conjugate gradient (CG) iteration. There is a delicate trade-off between the quality of the
step and the cost of computing it, and finding termination rules that are efficient in a variety
of settings has proved to be very difficult.

In this paper we describe a method for unconstrained optimization that retains some of
the key features of Newton-type iterations, and that is both fairly insensitive to the choice
of parameters and efficient over a wide range of problems. The method interlaces iterations
of the limited memory BFGS method (L-BFGS) and HFN iterations in such a way that
the information gathered by one type of iteration improves the performance of the other.
Because of this property we call it “enriched method”, and the goal of this paper is to show
that it constitutes a promising new approach for large-scale optimization. One of the salient
features of the enriched method is the use of limited memory matrices to provide both a
preconditioner for the CG iteration in the HFN step and warm-start information for the
L-BFGS iterations.

2 Motivation and Outline of the New Method

The problem addressed in this paper consists of the unconstrained minimization of a func-
tion of a large number of variables,

minimize f(z), f:R" = R. (2.1)

We will assume that the gradient g of f is available but that computing second derivatives
is not possible. Two of the most effective algorithms for these types of problems are: (i)
Hessian-free inexact Newton methods (HFN) [13, 10, 3], which are often called “truncated
Newton methods”; and (ii) limited memory quasi-Newton methods, such as L-BFGS [11,
5, 7].

Inexact Newton methods that use the exact Hessian matrix and employ a preconditioned
CG iteration to compute the step have proved to be very effective in the solution of large
problems; see, for example, Lin and Moré [6] and Conn, Gould and Toint [4]. Hessian-free
methods cannot make use of the best preconditioning techniques since these require direct
access to the Hessian matrix, but they can benefit from the limited memory quasi-Newton
preconditioners described in [§].

In this paper we take the use of limited memory matrices one step further. We argue
that it is not economical to compute HFN steps at every iteration, and that it can be
advantageous to interlace them with L-BFGS steps. The key is to save, in the form of a
limited memory matrix, some of the information generated by the inner CG iteration of
the HFN method, and use this matrix to improve the quality of the L-BFGS iterations. In



this manner we will be able to often bypass the expensive HFN steps and reuse some of the
valuable information they have collected.

Another way of motivating our approach is to note that the strengths and weaknesses
of the HFN and L-BFGS methods are complementary. The HFN method normally requires
much fewer iterations to approach the solution, but the effort invested in one iteration can
be very high and the curvature information gathered in the process is lost after the iteration
is completed. The L-BFGS method, on the other hand, performs inexpensive iterations,
but the quality of the curvature information it gathers can be poor, and as a result it can
be very inefficient on ill-conditioned problems. Enriched methods aim to combine the best
features of both methods in an dynamic manner.

In the enriched method that will be tested below, [ steps of the L-BFGS method are
alternated with ¢ steps of the HFN method, where the choice of I and ¢ will be discussed
below. We illustrate this as

I+ (L-BFGS) ) ¢« (HFN(PCQ)) ) repeat | .

During the cycle of L-BFGS iterations, a limited memory matrix H(m) is updated, where m
denotes the number of correction pairs stored. The matrix obtained at the end of this cycle
is used to precondition the first of the ¢t HFN iterations. During each of the remaining ¢ — 1
HFN iterations, the limited memory matrix H(m) is updated using information generated
by the inner preconditioned conjugate gradient (PCQG) iteration, and is used to precondition
the next HFN iteration; see [8] for a detailed description of the preconditioning process.
Once the ¢ HFN steps have been executed, the most current matrix H(m) is used as the
initial limited memory matrix in the new cycle of L-BFGS steps. The process continues in
this manner, alternating cycles of L-BFGS and HFN iterations, and transmitting curvature
information from one cycle to the next.

Clearly, the L-BFGS and HFN methods are particular cases of the enriched method,
since they are obtained by setting ¢ = 0 and [ = 0, respectively. In our implementation
of the enriched method, the lengths of the cycles, [ and ¢, are chosen dynamically as the
optimization process takes place. A detailed description of the algorithm will be given in
section 3.

An earlier attempt to develop an enriched method is described in [2]. The results
presented in that paper indicate that it is beneficial to transmit curvature information from
the HFN iteration to the L-BFGS iteration, and they hint at the potential of enriched
methods. The algorithm used in [2] was, however, quite rigid:

(a) 20 L-BFGS iterations were followed by one HFN iteration (I = 20, ¢t = 1);
(b) the HFN steps were computed using an unpreconditioned CG iteration;

(c) to avoid the difficulties of choosing a good stopping test for the CG iteration, the
algorithm performed always 5 CG iterations to compute the HFN step; the only ex-
ception was when negative curvature was encountered, in which case the CG iteration
terminated immediately.



That simple algorithm was useful for testing some of the features of enriched methods, but
was not versatile enough to perform well over a large set of test problems, such as the CUTE
[1] collection.

In this paper we present a sophisticated implementation of an enriched method which
includes preconditioning of the CG iteration, a dynamic strategy for determining the lengths
of the L-BFGS and HFN cycles, and a standard stopping test for the CG iteration. Depend-
ing on the characteristics of the optimization problem, the enriched method may resemble
the L-BFGS or HFN methods, or it may be a hybrid that combines the features of each
method to a degree that varies during the optimization process.

An important advantage of our implementation is that the enriched method is not very
sensitive to the choice of termination test in the CG iteration. The only parameter that
must be selected is the number m of correction pairs stored in the limited memory matrices
H(m). Our tests indicate that, as in the L-BFGS method, the performance of the enriched
method varies gradually with the choice of m.

3 Description of the Algorithm

We first show that the L-BFGS and enriched iterations can formally be viewed as a HFN
iteration. This framework will facilitate the description and implementation of enriched
methods.

Let us consider an inexact Newton-type iteration for solving problem (2.1) given by

T4 =z + ap, (3.2)

where « is a steplength and the search direction p is an approximate minimizer of the
quadratic model

alp) = f(z) +p"g(a) + 2" Bp. (33)

Here ¢ denotes the gradient of the objective function f, and B is some symmetric and
positive definite matrix. The approximate minimization of the quadratic ¢ is performed by
the CG method. In this paper we assume that, if negative curvature is encountered, the
CG iteration terminates immediately without exploring this negative curvature direction.

A Hessian-free inexact Newton method is a particular instance of this method in which
B is intended to be the Hessian V2 f(z), but is not computed explicitly. All products of the
form Bv are either approximated by finite differences,

9w + ) = g(x)

Bv = ,
-

where 7 is a small parameter, or are computed by automatic differentiation techniques.
There is no consensus on the best termination test for the CG iteration, and various rules are
used in practice [10, 14]. Preconditioning can be performed using (limited memory) quasi-
Newton matrices, as described in [8]. This HFN method with quasi-Newton preconditioning
will be central to the derivation that follows.



The L-BFGS iteration is a special case of the preconditioned HFN iteration, in which
only one CG iteration is allowed in the minimization of the model (3.3). The enriched
method will also be viewed as a special case of the preconditioned HFN method in which the
number of CG iterations varies during the course of the optimization calculation. Following
is a broad outline of the new algorithm.

ENRICHED ALGORITHM

Choose a starting point z, the memory parameter m, and an initial choice of the
length [ of the L-BFGS cycle; set method < ‘L-BFGS’; first < .true.

While a convergence test is not satisfied:

Repeat

compute p: call PCG ( p, method, status, maxcg );

compute a: call LNSRCH ( « );

compute z4 =z + ap;

store s =z, —z and y = g4 — g;

call ADJUST ( [, ¢, a, method, status, first, maxcg );
End repeat

End while.

The procedure PCG implements the preconditioned CG iteration. Its input parameters are
method, which can have the values ‘L-BFGS’ or ‘HFN’, and maxcg, which determines the
maximum number of CG iterations allowed. This procedure returns a search direction p,
and the value of status, which will be used to modify the lengths [ and ¢ of the L-BFGS and
HFN cycles. The procedure LNSRCH is a standard backtracking line search routine enforcing
the Wolfe conditions (cf. [12]).

The procedure ADJUST is invoked at every iteration of the enriched algorithm, regardless
of the value of method. When method = ‘L.-BFGS’, the procedure simply increases a variable
k that counts the number of L-BFGS steps performed in the current cycle, and if & > [, it
also sets method = ‘HFN’. If method = ‘HFN’, ADJUST takes various actions based on the
quality of the current and previous Newton steps. A Newton step is considered “profitable”
if the step size « associated with the direction p lies in the interval [0.8, 1]. We distinguish
two cases of unprofitable iterations: a) the step size is relatively small (o < 0.8); b) the CG
iteration detected an indefinite Hessian. ADJUST keeps a record of the number of consecutive
profitable Newton steps in the variable profit, and uses this number to update the lengths
[ and t of the L-BFGS and HFN cycles.

We now list the situations in which ADJUST modifies the lengths of these cycles.

1. Indefinite Hessian. If the CG iteration generates a direction of negative curvature we
judge that we are in a region where L-BFGS steps are to be preferred over HFN steps.
We therefore reset ¢ <— 1, increase [ by 1, and set method='L-BFGS’.



2. Small steps in HFN iteration. If & < 0.8 in a HFN iteration, the iterates do not appear
to have reached the region where a Newton-type iteration is rapidly convergent. In
this case we set ¢ = max{2,¢ — 1}, and define method=‘L-BFGS’.

3. A full cycle of t successful Newton steps was completed. Our experience indicates
that once the algorithm has reached the region where Newton’s method is rapidly
convergent, it is advisable to take as many HFN as is economically possible. Therefore
in this case we increase ¢t by one.

4. At least 2 successful Newton iterations were performed in the cycle. We use the
variable force?2 to ensure that at least two HFN iterations are computed in succession,
regardless of the outcome of the first iteration. This variable is introduced because
the full benefit of limited memory preconditioning is obtained only if more than one
HFN iteration is performed in succession.

If the cycle of HFN steps is at least moderately successful, in that 2 or more Newton
iterations were profitable, then we set force2 to the value .true.

During the very first HFN iteration in the algorithm, our CG stopping test may not be
appropriate, and we adopt the cautious strategy of allowing a maximum of 5 CG iterations.
Also, t is initially set to two, and force?2 is set to .false. Subsequent calls to ADJUST reset
maxcg to its default value.

We can now provide a description of the procedure ADJUST.



PROCEDURE ADJUST (I, t, «, method, status, first, maxcg )

k+k+1
if method = ‘L-BFGS’ then

if £k>1 then % Reset counters, switch to HFN and leave

if first = .true. then maxcg < 5;t < 2; force2 + .false.
method < ‘HFN’; k < 0; profit < 0;

end if
else % Examine quality indicators of the Newton step

if status = ‘Indefinite Hessian’ then

t + 1; force2 < .false.; [ < min {(3/2)l, 30};
method < ‘L-BFGS’; k£ < 0; return

end if
if a>0.8 then profit < profit + 1
else
if force2 = .true. and k =1 then return
else
t < max{2, k—1}
method < ‘L-BFGS’; k <+ 0; return
end if
end if
if k>t then % Check if the cycle is complete
if profit =k thent<«+¢t+1
if profit > 2 then force2 ¢ .true. else force2 < .false. end if
method < ‘L-BFGS’; k£ < 0; return
end if

end if

return

4 Numerical Experiments

We tested the enriched method on all the large unconstrained problems in the CUTE
collection [1]. We set the initial values m = 20 and [ = 15. The CG inner iteration was
stopped when one of the following conditions was satisfied:



(a) 30 iterations were performed (in the very first iteration only 5 CG iterations were
allowed).

(b) |17l < nl|gll, where n = 1/10, and 7 and g are defined as follows
r=H(m)r, g=H(m)g.

The vector 7 stands for the CG residual, r = —g — V2 f(x)p, and H(m) is the precon-
ditioner.

We also tested two HFN methods that differ only in their stopping rule for the inner
CG iteration. HFN1 uses the rule described by Nash [10], whereas HFN2 terminates when
the CG residual at the j-th iteration of the optimization algorithm satisfies

IrIl < mjllgsll,  m = min(0.5/3, [lg;1]),

which is one of the rules discussed in [3]. The inner CG iteration of methods HFN1 and
HFN2 is preconditioned using the same quasi-Newton preconditioner as in the enriched
method.

All tests were performed on a DEC Personal Workstation with 512 Mb of main memory,
using double precision FORTRAN. The optimization calculation was terminated for the
three methods (Enriched, HFN1 and HFN2) when

19112/ max(1, ||z;]l2) < 107°.

The results are given in Tables 1 and 2.



PROBLEM n | Enriched HFN1 HFN2
ARWHEAD | 1000 11 11 8
BDQRTIC 100 42 330 304
BROYDN7D | 1000 416 723 741
BROWNAL 10 18 48 18
BRYBND 1000 47 101 o4
CRAGGLVY | 1000 86 136 158
CHAINWOO | 1000 9056 8368 9089
COSINE 1000 16 21 22
DIXMAANA | 1500 13 22 19
DIXMAANB | 1500 12 20 19
DIXMAANC | 1500 13 22 21
DIXMAAND | 1500 16 24 23
DIXMAANE | 1500 192 338 337
DIXMAANF | 1500 162 250 249
DIXMAANG | 1500 165 248 247
DIXMAANH | 1500 166 246 245
DIXMAANI | 1500 2602 4754 4753
DIXMAANK | 1500 1437 2672 2687
DIXMAANL | 1500 1771 2612 2613
DQDRTIC 1000 18 17 18
DQRTIC 500 36 53 50
EDENSCH 2000 34 49 48
EIGENALS 110 121 1317 792
EIGENBLS 110 885 700 626
EIGENCLS 462 1458 3521 3519
ENGVAL1 1000 18 38 35
FLETCBV3 | 1000 18 4 22
FLETCHCR 100 679 2133 2112
FMINSRF2 1024 190 526 066
FMINSURF | 1024 297 691 640

Table 1: Number of function/gradient evaluations for three optimization methods.




Our results indicate that the enriched method is significantly more efficient than the two
HFN methods. We tried several other variants of the HFN method, using different stopping
rules for the CG iteration and other strategies for handling negative curvature, but their
performance was not better than that of methods HFN1 and HFN2. As pointed above, we
observed that the the enriched method is not very sensitive to the stopping test of the CG
iteration; we experimented with several variants and obtained similar results.

In conclusion the numerical results suggest that the enriched method should be consid-
ered as a serious competitor to Hessian-free Newton methods
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