A STARTING-POINT STRATEGY FOR NONLINEAR INTERIOR
METHODS

MICHAEL GERTZ*, JORGE NOCEDAL', AND ANNICK SARTENAER?

Abstract. This paper presents a strategy for choosing the initial point, slacks and multipliers
in interior methods for nonlinear programming. It consists of first computing a Newton-like step to
estimate the magnitude of these three variables and then shifting the slacks and multipliers so that
they are sufficiently positive. The new strategy has the option of respecting the initial estimate of
the solution given by the user, and attempts to avoid the introduction of artificial non-convexities.
Numerical experiments on a large test set illustrate the performance of the strategy.

1. Introduction. It is well known that interior methods for linear and quadratic
programming perform poorly (and can even fail) if the starting point is unfavorable.
To overcome this problem, it is common to employ heuristics for choosing an initial
value for the variables, slacks and multipliers (see e.g. [8, 1, 9]). These heuristics have
proved to be generally successful in practice and have been incorporated into com-
mercial linear programming packages. In this paper we study initial point strategies
for nonlinear programming. This topic has not received much attention in spite of the
fact that nonlinear interior methods can be as sensitive as their linear counterparts
to a poor initial guess.

The heuristics developed for linear and quadratic programming cannot be ex-
tended directly to nonlinear problems. First of all, in linear programming an initial
estimate of the solution is typically not provided by the user. Moreover, since the
objective function and constraints are defined everywhere, there is great freedom in
selecting initial values, and some of the most popular strategies often choose very large
values for the variables, slacks and (possibly) multipliers; see [11] and the references
therein.

In contrast, nonlinear programming algorithms compute only local minimizers
and accept user-supplied initial estimates that often lie in the vicinity of a minimizer
of interest. Therefore initial point strategies should either respect the user-supplied
estimate or compute one that is not too distant from it. Even large initial values of the
multipliers should be avoided since they may introduce unnecessary non-convexities
in the problem, as we discuss later on. The initial point heuristics presented in this
paper aim to preserve user-supplied information, are readily computable, and allow
interior methods to perform efficiently on a wide range of problems.

2. Interior Point Framework. We will consider the solution of nonlinear pro-
gramming problems of the form

minimize f(z)
(2.1) subject to h(x)
9(x)

0
0,

v

*Computer Science Department, University of Wisconsin at Madison, Madison, Wisconsin 53706.

fDepartment of Electrical and Computer Engineering, Northwestern University, Evanston, IL,
60208-3118, USA. This author was supported by National Science Foundation grants CCR-9987818,
ATM-0086579 and CCR-021943 and Department of Energy grant DE-FG02-87ER25047-A004.

iDepartment of Mathematics, Facultés Universitaires Notre-Dame de la Paix, 61, rue de Bruxelles,
B-5000 Namur, Belgium. This author was supported by the Belgian National Fund for Scientific
Research.

where f : R™ — IR, h : R® — IR? and g : R™ — IR™ are twice continuously
differentiable. Introducing a vector of slack variables, s, we can restate (2.1) as

minimize f(@)
subject to h(z) = 0
22 o@)—s = 0
s > 0.

The first-order optimality conditions of (2.2) can be written as
r(x,y,z,s,A):O, ST)\ZO, S,)\ZO,

where r is a vector function whose components are

(2.3a) ro(2,y,2) = Vf(z) — A(2)"y — C(2)"2
(2.3b) ry(x) = h(z)

(2.3¢) ry(xz,s) =g(z) —s

(2.3d) re(z,\) =2z — A

Here A(z) and C(x) denote the Jacobian matrices of h and g, respectively. Rather
than using the equation (2.3d) to eliminate), as is often done, we will keep this
equation and maintain separate values of z and A so as to have more flexibility in
choosing an initial value for z. In section 3 we describe how to apply the initial point
strategy to interior methods that do not use this formulation.

A primal-dual interior method computes a displacement by applying Newton’s
method to the system

(2-4&) T(:L.’y’z’ sﬂ)\) = 05
(2.4b) SA = pe,
where the scalar p > 0 is the barrier parameter, S is a diagonal matrix whose diag-
onal entries are given by the components of s, and e is the vector of all ones. The
displacement produced by this Newton iteration solves the system
H(z,y,2)Az — A(z)TAy — C(x)TAz = =V f(2) + A(2)Ty + C(z) T2
A(z)Az = —h(z)
(2.5) C(z)Ax — As = —g(z) + s
Az—AN=—z+ A

AAs + SAX = —As + pe.
Here H(z,y,2) = V2L(z,y,2), where L(z,y,2) = f(z) — yTh(z) — 2T g(z), and A is
a diagonal matrix whose diagonal entries are given by the components of A\. The new
iterate is given by

(2.6) (zF,yt, 2T, st A1) = (2,9, 2,5,0) + a(Az, Ay, Az, As, AN),

where a > 0 is a steplength that ensures decrease of a merit function and positivity
of the variables s, A.

This simple formulation provides the conceptual framework for many nonlinear
interior algorithms, but modifications or reformulation are required to deal with non-
convexity and singularities; see e.g. [5]. Since we wish to present the new strategies in
the most general framework, we will initially assume that the iterates are computed
by an algorithm of the form (2.5)-(2.6).

3. An Initial-point Strategy for Nonlinear Optimization. Interior meth-
ods can be very sensitive to the initial choice of the variables because, in unfavorable
circumstances, the primal-dual direction (2.5) is drastically shortened by the non-
negativity requirement s, A > 0 and produces negligible progress toward the solution.
This behavior can be sustained for many iterations, rendering the solution process
inefficient. In this section, we present a heuristic that we have found often produces
a good starting point for both nonlinear programming and for the simpler classes of
linear and quadratic programming problems.

We assume that preliminary values zo,yo, 20, S0, Ao are assigned to all the vari-
ables. The initial estimate of the solution, g, is either provided by the user or is set
to a default value (such as ¢y = 0), and we assume that the interior method computes
the multiplier estimates yg, 20. The vectors sg and A\g will be set to a constant value
é > 0 in our tests.

Using these preliminary values, we compute an affine-scaling step, Av 4, by setting
= 0 in the primal-dual system (2.5). Once Avg = (Az 4, Aya, Azg, Asa, AN 4) has
been computed, we define the vectors

u=(s0+As4)", w= (Ao +ANa)",

where z— = max{0, —z}. The vectors 4 and w represent the violations of the primal
and dual non-negativity constraints caused by the full affine scaling step. Then, given
scalars #1 > 0 and B2 > 1 we compute initial values, s; and A\q, by one of the following
two rules:

Rule 1: s{) = max(8,|sS” + AsP)), AP = max(8, |AY + Ax{));
Rule2: s7 = sog+Asa+B1+Pu, M = A+ Alg+ b1+ Bow.

Whichever of these rules is chosen, we define (x1,¥1,21) = (%o,¥0,20) and set the
initial value of the barrier parameter to p1 = sf A1 /m.

As a practical matter, many interior point implementations do not maintain sep-
arate values of z and A, i.e. they do not include the equation (2.3d) in the statement
of the optimality conditions, and A is not defined. We recommend that these codes
compute 2z; by one of the rules mentioned above, with z playing the role of A. We
also recommend that the Hessian for the primal-dual step (2.5) at the initial point v;
be defined using 2z and not 21, i.e.,

Hy = H (0, Yo, 20)-

There are three reasons for making this choice. An examination of the primal-dual
system (2.3) reveals that if H; does not depend on 21, then neither does the step
(A1, Ayr, Az, Asy, A)Ny). Thus, with the choice Hy = Hy, all algorithms will com-
pute the same steps in the primal and dual slacks, whether or not they maintain z
and A as separate variables. The second reason is that z; could be very large and
introduce an undesirable distortion in the quadratic model used by Newton’s method.
In particular if one of the components, say zi, is large and the corresponding Hessian
term VZ2c;(z;) is indefinite, the Hessian H; can become indefinite, slowing down the
iteration (we have often observed this phenomenon in practice.) Finally, the cost of
evaluating H(z,y, z) is saved.
We summarize our interior point strategy in the following pseudocode.

Algorithm 3.1. Start strategy
Choose constants § > 0, 81 > 0 and 35 > 1.
xo is provided by the user; otherwise it is set to a default value such as zg = 0.
Compute initial values of the multipliers yo and zp.
Evaluate the functions f, h, g and their derivatives at xo.
Let s(()i) + 6 and /\[()i) 4.
Compute the affine scaling step Avy by solving the system (2.5) with g = 0.
Let (x1,y1) + (zo,Y0)-
Choose s; and \; by one of the two rules given above. Define yu; = s A1 /m.
if the algorithm maintains separate values for z and A then

Let 21 zp. Start the interior algorithm from vy = (21, y1, 21, 51, A\1)-
else

Let z; < \;. Start the interior algorithm from v; = (x1,y1, 21, 51).
end if
Define the initial Hessian matrix H; = H(zo, Yo, 20)-

Note that, when the algorithm maintains both z and A, we can partition the
variables of the problem into two classes. The first consists of the variables z, y and z
which are unrestricted in sign and which are needed to evaluate the problem functions,
including the Lagrangian L(z,y,z). The second class consists of the variables s and
A which are subject to non-negativity constraints; these are the only variables reset
by the initial point strategy.

4. Motivation. The interior point method forms a quadratic model of the non-
linear program at the preliminary point (xo,yo,20). Because this quadratic model
represents all the information available at the start, it makes sense to consider what
values of v1 = (z1,y1, 21, 81, A1) would constitute a good initial point for minimizing
the quadratic model. Thus, our initial point strategy is motivated by the theory and
practice of interior methods for convex quadratic programming.

Many interior methods for quadratic programming can be seen as path following
methods. One way of characterizing the central path is by means of the neighborhood

Nooo(8,6) = {o | Ir@)lI/7 < Blllr(wi)ll/m], (5,2) >0, sPAD > 5y},

where 8 > 1, § € (0,1) and v = sTA\/m. It has been shown [11] that for certain
primal-dual methods, if the step oy is restricted at each iteration so that vgy; €
N_x(B,0), then there is the sequence of steplengths {ay} that is bounded away from
zero. Moreover for a fairly wide range of initial points the sequence {||r(vg)||/vx } will
remain bounded, the sequences s,(;))\,(;) /& will remain bounded away from zero for
every ¢ and k and the iteration will converge. Thus, for a good choice of initial point,
the iteration stays in N_(8,d), for some 3 and §.

Typical start strategies for linear and quadratic programming [1, 6, 8] attempt to
choose a point which is close to the central path, in the metric suggested by the defi-
nition of N (8,d). Thus, they attempt to find a point for which ||r(vy)||/71 is small
and for which none of the products s§i),\§"’ is much smaller than ~;. Although these
start strategies are heuristic, they are effective in practice. They tend to prevent the
steplength a; from being small and tend to bound {||r(vg)||/vk} by a small number,
which is often ||r(v1)]|/71-

Rules 1-2 place a non-negative lower bound on A and s, which in turn places a
lower bound on each of their pairwise products. Rule 1 is based on the observation

4

that the affine scaling step often captures the scale of the variables and so chooses a
perturbed point with the same scale. Rules 2 is based on the observation that ||r(v)]|
grows linearly in ||(s, A)|| but vy grows quadratically, and so shifting all the variables
will tend to increase v faster than it increases 7(v;). In Rule 2 the scale of the affine
scaling step is incorporated into the shift.

However, it is important to observe that for the primal-dual system (2.5), neither
As nor A\ depends on the value of z, y or 2. Moreover, the maximum step « for
which s+ aAs and A+ aA\ are nonnegative does not depend on z, y and z. It is not
difficult to see that for most quadratic programming algorithms, the entire sequence
of iterates {(sg, A\x)} does not depend at all on (z1,y1,21). Thus the size of ||r(v1)||/71
is not important in an absolute sense. It is only important that for the chosen (s1, A1),
there exists a choice of (z1,y1,21) that makes the ratio ||r(vy)]|/y1 small.

In nonlinear programming it is wise to choose (z1,y1,21) = (%o, Yo, 20), rather
than using the affine scaling values, for the following reasons. First, we preserve the
user-supplied starting point xg, and we avoid the risk that the problem functions may
not be defined at the value given by the affine scaling step. Moreover, our heuristics
are based on a particular quadratic model of the problem. Changing (z,y, 2) alters
this quadratic model, which puts into question the usefulness of these heuristics.

5. Practical Implementation. We will test our initial point strategies using
KNITRO [3, 10], a software package that implements a nonlinear interior method.
We will use KNITRODIRECT, the version that computes the step using direct linear
algebra.

To demonstrate the general applicability of our approach, we also test it using a
simple interior algorithm designed specifically for this study. Algorithm 5.1 outlines
this primal-dual iteration. To measure progress, we employ the merit function

(5.1) $p(@,5) = f(x) =Y logs + pl|[ry(2), 7= (2, 9)] |2,

where p > 0 is the penalty parameter.

Algorithm 5.1. Damped short-step path-following method
Choose tolerances Yio1, Ttols 7-
Set k < 1 and initialize p.
Compute vy = (21,91, 21,51, A1) and py using Algorithm 3.1
Compute v; = sTA;/m and r; = r(v;), where 7 is defined in (2.3).
while v > o1 or [|r(Vk)|lco > o1 dO
Solve the primal-dual system (2.5) for Auwy,.
Compute ay, + max{a € (0,1] | sp + aAsy > s and A\ + aAXg > 7A }.
Update the penalty parameter p if necessary.
Use a line-search procedure to choose vg41.
Compute Ye41 = Sf Aet1/m and req1 = r(Vg41).
if |7k+1lloo < pr and Yg41 < 10p; then
pr1 max{yey1/11,107% X o1}
else
Br1 < M-
end if
E+—Fk+1.
end do

The algorithm omits several keys steps needed to ensure global convergence. In
particular, it can only be applied to convex problems since it does not include a feature
for handling negative curvature. Nonetheless, we find that this simple algorithm
is useful for illustrating the effectiveness of the initial point heuristics; non-convex
problems will be tested with KNITRO.

6. Numerical Experiments. All the results in this section will be presented
using the logarithmic performance profiles described in [4]. In the figures, the y-axis
plots m4(t) which is defined as

no. of problems wherelog, (rps) <t

(6.1) s (t) =

where r,, ; is the ratio between the time to solve problem p by solver s over the lowest
time required by any of the solvers. The x-axis plots ¢.

We first test Algorithm 5.1 on the Maros-Mezaros set of quadratic programs;
see http://cuter.rl.ac.uk/cuter-www/Problems/marmes.html. In Figure 6.1 we
compare the number of iterations required by Algorithm 5.1 using Rules 1 and 2,
and using no initial point strategy (Nolnit). Algorithm 5.1 has been implemented
in MATLAB and uses the HSL routine MA27 [7] to solve the primal-dual system. If
negative curvature is detected, the algorithm stops. The parameters of Algorithm 5.1
were set as [Yiol, Ttol, 7] = [107%,107¢,0.005].

t>0
total no. of problems ’ =7

log2-scaled no of iterations
1 T T T

02 | B

Rulel

Nolnit
O 1 1 1
1 2 4 8

F1G. 6.1. Number of iterations for Algorithm 5.1 on quadratic programs.

Next we test Algorithm 5.1 on 58 problems from the CUTEr collection [2] that
were selected as follows. We identified all problems with inequality constraints that
could be run in less than 30 minutes. Then we removed all problems that could be
solved by all strategies in less than 10 iterations, as well as problems for which the
number of variables plus constraints is less than 50. We also removed all problems
in which negative curvature was detected. The performance of Algorithm 5.1 on this
test set are presented in Figure 6.2. Even though this test set contains many problems
that can be solved quickly using the default starting point, we note that the initial
point strategies yield a slight improvement in robustness and efficiency.

6

log2-scaled no of iterations
1 T T

02| B

Rulel
Rule2
Nolnit

F1G. 6.2. Number of iterations for Algorithm 5.1 on CUTETr problems.

Finally we test KNITRO 3.0 on 66 challenging problems selected specifically for
this study. The set consists of most of the Brunel problems, various difficult problems
we have identified, and some problems from the CUTER test set.

In Figure 6.3 we report results for Rule 1 (which gives the best results for KNITRO)
and for the default that uses no initial point strategy (Nolnit). We set 8; = 1 in
Rule 1. Note the dramatic improvement in performance provided by the initial point
strategy. As a result of this testing, we recommend this as an option in nonlinear
interior methods.

log2-scaled no of iterations
1 T T T T

02 4

Rulel
Nolnit I

1 2 4 8 16

F1G. 6.3. Number of iterations for Knitro.

7

Acknowledgements. We would like to thank José Luis Morales for providing the
MATLAB code IPM which served as the basis for Algorithm 5.1, and Richard Waltz
for implementing the initial point strategy in KNITRO 3.0.

REFERENCES

[1] E. D. Andersen, J. Gondzio, C. Mészdros, and X. Xu. Implementation of interior point meth-
ods for large scale linear programming. In T. Terlaky, editor, Interior Point Methods in
Mathematical Programming, pages 189-252, Dordrecht, The Netherlands, 1996. Kluwer
Academic Publishers.

[2] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and Uncon-
strained Testing Environment. ACM Transactions on Mathematical Software, 21(1):123—
160, 1995.

[3] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale nonlinear
programming. SIAM Journal on Optimization, 9(4):877-900, 1999.

[4] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, Series A, 91:201-213, 2002.

[5] A. Forsgren, P. E. Gill, and M.H. Wright. Interior methods for nonlinear optimization. SIAM
Review, 44(4):525-598, 2002.

[6] E. Michael Gertz and S. J. Wright. Object-oriented software for quadratic programming.
Technical report, Computer Sciences Department, University of Wisconsin, 2001.

[7] Harwell Subroutine Library. A catalogue of subroutines (HSL 2000). AEA Technology, Harwell,
Oxfordshire, England, 2002.

[8] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal
on Optimization, 2(4):575-601, 1992.

[9] R.J. Vanderbei and D. F. Shanno. An interior point algorithm for nonconvex nonlinear pro-
gramming. Computational Optimization and Applications, 13:231-252, 1999.

[10] R. A. Waltz and J. Nocedal. KNITRO user’s manual. Technical Report OTC 2003/05, Opti-
mization Technology Center, Northwestern University, Evanston, IL, USA, April 2003.
[11] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1997.

