
1

 Querying the Sensor Network

 TinyDB/TAG

2

TAG: Tiny Aggregation

Query Distribution: aggregate queries are pushed down the network to

construct a spanning tree.

 Root broadcasts the query and specifies its level l

 Each node that hears message assigns its own level to be l+1 and chooses as parent

 a node with smallest level.

 Each node rebroadcasts message until all nodes have received it

 Resulting structure is a spanning tree rooted at the query node.

Data Collection: aggregate values are routed up the tree.

 Internal node aggregates the partial data received from its subtree.

3

Tree-based Routing

Tree-based routing

 Used in:

 Query delivery

 Data collection

 In-network aggregation

A

B C

D

F
E

Q:SELECT …

Q Q

Q

Q Q

Q

Q

Q

Q

Q Q Q

R:{…}

R:{…}

R:{…}

R:{…} R:{…}

http://webs.cs.berkeley.edu/tinyos

4

TAG example

Query distribution Query collection

1

2 3

4

5 6

1

2 3

4

5 6

5

Data Model

Entire sensor network as one single, infinitely-long logical table: sensors

Columns consist of all the attributes defined in the network

Typical attributes:

 Sensor readings

 Meta-data: node id, location, etc.

 Internal states: routing tree parent, timestamp, queue length, etc.

Nodes return NULL for unknown attributes

On server, all attributes are defined in catalog.xml

Discussion: other alternative data models?

6

Query Language (TinySQL)

SELECT <aggregates>, <attributes>

[FROM {sensors | <buffer>}]

[WHERE <predicates>]

[GROUP BY <attributes>]

[SAMPLE PERIOD <const> | ONCE]

[INTO <buffer>]

7

Comparison with SQL

Single table in FROM clause (exception: storage points…)

Only conjunctive comparison predicates in WHERE and
HAVING

No subqueries

No column alias in SELECT clause

Arithmetic expressions limited to column op constant

Only fundamental difference: SAMPLE PERIOD clause

8

TinySQL Examples

SELECT nodeid, nestNo, light

FROM sensors

WHERE light > 400

EPOCH DURATION 1s

1
Epoch Nodeid nestNo Light

0 1 17 455

0 2 25 389

1 1 17 422

1 2 25 405

Sensors

“Find the sensors in bright nests.”

9

TinySQL Examples (cont.)

Epoch region CNT(…) AVG(…)

0 North 3 360

0 South 3 520

1 North 3 370

1 South 3 520

“Count the number of occupied
nests in each loud region of the
island.”

SELECT region, CNT(occupied)
AVG(sound)

FROM sensors

GROUP BY region

HAVING AVG(sound) > 200

EPOCH DURATION 10s

3

Regions w/ AVG(sound) > 200

SELECT AVG(sound)

FROM sensors

EPOCH DURATION 10s

2

10

Basic Aggregation

In each epoch:

 Each node samples local sensors once

 Generates partial state record (PSR)

 local readings

 readings from children

 Outputs PSR during assigned comm. interval

At end of epoch, PSR for whole network output at root

New result on each successive epoch

Extras:

 Predicate-based partitioning via GROUP BY

1

2

4

5

3

11

Illustration: Aggregation

1 2 3 4 5

4 1

3

2

1

4

1

2 3

4

5

1

Sensor #

In
te

rv
al

 #

Interval 4
SELECT COUNT(*) FROM
sensors

Epoch

12

Illustration: Aggregation

1 2 3 4 5

4 1

3 2

2

1

4

1

2 3

4

5

2

Sensor #

Interval 3
SELECT COUNT(*) FROM
sensors

In
te

rv
al

 #

13

Illustration: Aggregation

1 2 3 4 5

4 1

3 2

2 1 3

1

4

1

2 3

4

5

3 1

Sensor #

Interval 2
SELECT COUNT(*) FROM
sensors

In
te

rv
al

 #

14

Illustration: Aggregation

1 2 3 4 5

4 1

3 2

2 1 3

1 5

4

1

2 3

4

5

5

Sensor #

SELECT COUNT(*) FROM
sensors Interval 1

In
te

rv
al

 #

15

TAG Algorithm w/ GROUP-ing

Temp: 10

Light : 5

Temp: 10

Light : 15

Temp: 30

Light : 25

Temp: 20

Light : 50

Temp: 20

Light : 10
1

23

4

5

6

1

23

4

5

6

Group # | AVG

 1 | 5

Group # | AVG

 1 | 10

Group # | AVG

 1 | 10

 3 | 25

Group # | AVG

 1 | 10

 2 | 50

 3 | 25

Group # | AVG

 1 | 10

 2 | 30

 3 | 25

Temp: 10

Light : 10

Group # | AVG

 1 | 10

Sensor measurements within one epoch
Aggregation state progress during one epoch

SELECT

AVG(light)

FROM

 Sensors

GROUP BY

 temp/10

EPOCH DURATION

....

16

Aggregation Framework

• As in extensible databases, TAG supports any aggregation function
conforming to:

Agg
n
={f

init
, f

merge
, f

evaluate
}

F
init

{a
0
} <a

0
>

F
merge

{<a
1
>,<a

2
>} <a

12
>

F
evaluate

{<a
1
>} aggregate value

Example: Average

AVGinit {v} <v,1>

AVGmerge {<S1, C1>, <S2, C2>} < S1 + S2 , C1 + C2>

AVGevaluate{<S, C>} S/C

Partial State Record (PSR)

Restriction: Merge associative, commutative

17

Considerations about aggregations

Packet loss?

 Acknowledgement and re-transmit?

 Robust routing?

Packets arriving out of order or in duplicates?

 Double count?

Size of the aggregates?

 Message size growth?

18

Classes of aggregations

Exemplary aggregates return one or more representative

values from the set of all values; summary aggregates

compute some properties over all values.

 MAX, MIN: exemplary; SUM, AVERAGE: summary.

 Exemplary aggregates are prone to packet loss and not

amendable to sampling.

 Summary aggregates of random samples can be treated as a

robust estimation.

19

Classes of aggregations

Duplicate insensitive aggregates are unaffected by

duplicate readings.

 Examples: MAX, MIN.

 Independent of routing topology.

 Combine with robust routing (multi-path).

20

Classes of aggregations

Monotonic aggregates: when two partial records s1

and s2 are combined to s, either e(s) max{e(s1), e(s2)}

or e(s) min{e(s1), e(s2)}.

 Examples: MAX, MIN.

 Certain predicates (such as HAVING) can be applied early

in the network to reduce the communication cost.

21

Classes of aggregations

Partial state of the aggregates:

 Distributive: the partial state is simply the aggregate for the partial
data. The size is the same with the size of the final aggregate.
Example: MAX, MIN, SUM

 Algebraic: partial records are of constant size. Example: AVERAGE.

 Holistic: the partial state records are proportional in size to the partial
data. Example: MEDIAN.

 Unique: partial state is proportional to the number of distinct values.
Example: COUNT DISTINCT.

 Content-sensitive: partial state is proportional to some (statistical)
properties of the data. Example: fixed-size bucket histogram, wavelet,
etc.

Good

bad

worst

22

Classes of aggregates

Duplicate

sensitive

Exemplary,

Summary

Monotonic Partial State

MAX, MIN No E Yes Distributive

COUNT, SUM Yes S Yes Distributive

AVERAGE Yes S No Algebraic

MEDIAN Yes E No Holistic

COUNT

DISTINCT

No S Yes Unique

HISTOGRAM Yes S No Content-

sensitive

23

Use Multiple Parents

Use graph structure

 Increase delivery probability with no communication overhead

For duplicate insensitive aggregates, or

Aggs expressible as sum of parts

 Send (part of) aggregate to all parents

 In just one message, via multicast

 Assuming independence, decreases variance

SELECT COUNT(*)

A

B C

R

A

B C

c

R

P(link xmit successful) = p

P(success from A->R) = p2

E(cnt) = c * p2

Var(cnt) = c2 * p2 * (1 – p2) V

of parents = n

E(cnt) = n * (c/n * p2)

Var(cnt) = n * (c/n)2 * p2 * (1
– p2) = V/n A

B C

c/n c/n

R

n = 2

24

Multiple Parents Results

Better than previous analysis
expected!

Losses aren’t independent!

Insight: spreads data over many
links

Benefit of Result Splitting

(COUNT query)

0

200

400

600

800

1000

1200

1400

(2500 nodes, lossy radio model, 6 parents per

node)

A
v
g

.
C

O
U

N
T Splitting

No Splitting

25

Multiple Parents Results

Critical Link!

No Splitting With Splitting

26

27

TinyDB GUI

TinyDB Client API
DBMS

Sensor network

TinyDB query

processor

0

4

0

1

5

2

6

3

7

JDBC

Mote side

PC side

8

TinyDB Architecture

27

Multihop Networking

 Revised implementation of ―tree based routing‖

A

B C

D

F
E

B B

B

B B

B

B

B

B

B B B

R:{…}

R:{…}

R:{…}

R:{…} R:{…}

Parent Selection:
Use parent with best
Quality link

Node D

Neigh Qual

B .75

C .66

E .45

F .82

Node C

Neigh Qual

A .5

B .44

D .53

F .35

28

Data model—revisited

A single, append-only table
Sensors (nodeid, time, light, temp, …)

Just a conceptual view for posing queries; in reality:

 Data is not already there at query time

 Traditional database: queries independent of acquisition

 Here: queries drive acquisition

 Didn’t ask for light? Then it won’t be sampled!

 Data may not be at one place

 Like a distributed database, but here nodes/network are much less
powerful/reliable

 Data won’t be around forever

 Similar to stream data processing

29

Acquisitional Query Processing

What’s really new & different about databases on (mote-based)
sensor networks?

TinyDB’s answer:

 Long running queries on physically embedded devices that
control when and where and with what frequency data is
collected

 Versus traditional DBMS where data is provided a priori

For a distributed, embedded sensing environment, ACQP
provides a framework for addressing issues of

 When, where, and how often data is sensed/sampled

 Which data is delivered

30

Acquisitional Query Processing

How does the user control acquisition?

 Rates or lifetimes

 Event-based triggers

How should the query be processed?

 Sampling as an operator, Power-optimal ordering

 Frequent events as joins

Which nodes have relevant data?

 Semantic Routing Tree for effective pruning

 Nodes that are queried together route together

Which samples should be transmitted?

 Pick most ―valuable‖?

 Adaptive transmission & sampling rates

31

Rate & Lifetime Queries

Rate query

SELECT nodeid, light, temp

FROM sensors

SAMPLE INTERVAL 1s FOR 10s

Lifetime query

SELECT …

LIFETIME 30 days

 May not be able to

transmit all the data

Estimate sampling rate that

achieves this

SELECT …

LIFETIME 10 days

MIN SAMPLE INTERVAL 1s

A

32

Processing Lifetimes: Issues

Provide formulas for estimating power consumption: set

maximum per-node sampling rates

What makes this difficult?

• estimating the selectivity of predicates

• amount transmitted by a node varies widely

• root is a bottleneck: all nodes rates must correspond to it

• aggregation vs. sending individual values

• multiple sensing types (temp, accel) with different drain

• conditions change: multiple queries, burstiness, message losses

• What to do when can’t transmit all the data

33

Storage points

CREATE STORAGE POINT recentLight SIZE 8 AS

(SELECT nodeid, light FROM Sensors

 SAMPLE PERIOD 10s);

 A sliding window of recent readings, materialized locally

Joining with the Sensors stream
 SELECT COUNT(*)

FROM Sensors s, recentLight rl

WHERE rl.nodeid = s.nodeid AND s.light <

rl.light

SAMPLE PERIOD 10s;

TinyDB only allows joining a stream with a storage point !

B

C

34

Event-based Queries

ON event SELECT …

Run query only when interesting events happens

Event examples

 Button pushed

 Message arrival

 Bird enters nest

Analogous to triggers but events are user-defined

35

Reports the average light and temperature level at sensors near a bird nest
where a bird has been detected

Event Based Processing

ACQP – want to initiate queries in response to events

ON EVENT bird-detect(loc):

 SELECT AVG(s.light), AVG(s.temp), event.loc

 FROM sensors AS s

 WHERE dist(s.loc, event.loc) < 10m

 SAMPLE PERIOD 2s FOR 30s

E.g., New query instance generated for as long as bird is there

36

Event Based Processing

Single external interrupt

