
1

 Querying the Sensor Network

 TinyDb

2

Acquisitional Query Processing

How does the user control acquisition?

 Rates or lifetimes

 Event-based triggers

How should the query be processed?

 Sampling as an operator, Power-optimal ordering

 Frequent events as joins

Which nodes have relevant data?

 Semantic Routing Tree for effective pruning
 Nodes that are queried together route together

Which samples should be transmitted?

 Pick most “valuable”?

 Adaptive transmission & sampling rates

3

• E(sampling mag) >> E(sampling light)
1500 uJ vs. 90 uJ

Operator Ordering: Interleave Sampling + Selection

SELECT light, mag

FROM sensors

WHERE pred1(mag)

AND pred2(light)

EPOCH DURATION 1s

(pred1)

(pred2)

mag

light

(pred1)

(pred2)

mag

light

(pred1)

(pred2)

mag light

Traditional DBMS

ACQP

At 1 sample / sec, total power savings could be as

much as 3.5mW Comparable to processor!

Correct ordering

(unless pred1 is very selective and

pred2 is not):

Cheap

Costly

4

Exemplary Aggregate Pushdown

SELECT WINMAX(light,30s,8s)

FROM sensors

WHERE mag > x

EPOCH DURATION 1s • Novel, general
pushdown technique

• Mag sampling is the
most expensive
operation!

WINMAX

(mag>x)

mag light

Traditional DBMS

light

mag

(mag>x)

WINMAX

(light > MAX)

ACQP

5

Event Query Batching

ON EVENT E(nodeid)
SELECT a
FROM sensors AS s
WHERE s.nodeid = e.nodeid
SAMPLE INTERVAL d FOR k

Problem: Multiple outstanding queries (lots of samples)

SELECT s.a

FROM sensors AS s, events AS e

WHERE s.nodeid = e.nodeid

AND e.type = E AND s.time – e.time <= k AND s.time > e.time

SAMPLE INTERVAL d

Solution: Rewrite as a sliding window join between
sensors and the last k seconds of detected events:

If events are frequent, use join approach…

6

Timing issues

When batching, what if instances of different queries start at

different times?

If we order sampling and predicates sequentially, we can no

longer take readings synchronously

When joining a storage point and a stream, what if their

sampling points don’t align?

Tension between continuous signals and discrete events

7

Acquisitional Query Processing

How does the user control acquisition?

 Rates or lifetimes

 Event-based triggers

How should the query be processed?

 Sampling as an operator, Power-optimal ordering

 Frequent events as joins

Which nodes have relevant data?

 Semantic Routing Tree for effective pruning

 Nodes that are queried together route together

Which samples should be transmitted?

 Pick most “valuable”?

 Adaptive transmission & sampling rates

8

Attribute Driven Topology Selection

Observation: internal queries often over local area

 Or some other subset of the network

 E.g. regions with light value in [10,20]

Idea: build topology for those queries based on values of

range-selected attributes

 For range queries

 Relatively static trees

 Maintenance Cost

9

Attribute Driven Query Propagation

1 2 3

4

[1,10]

[7,15]

[20,40]

SELECT …

WHERE a > 5 AND a < 12

Precomputed
intervals =
Semantic Routing
Tree (SRT)

Early pruning

10

An “index”: semantic routing tree

SELECT … FROM Sensors WHERE A in range…
 Not sure which sensors have these A values?

 Need to probe the entire network

Use an index
 Search tree =

routing tree

 Intermediate nodes
store bounding
boxes for subtrees

What’s different from
DB search trees?

11

Attribute Driven Parent Selection

1 2 3

4

[1,10] [7,15] [20,40]

[3,6]

[3,6] [1,10] = [3,6]

[3,6] [7,15] = ø

[3,6] [20,40] = ø

Even without
known intervals,
expect that
choosing the
parent with
closest value will
help

12

Simulation Result

Nodes Visited vs. Query Range

0

50

100

150

200

250

300

350

400

450

0.001 0.05 0.1 0.2 0.5 1

Query Size as % of Value Range

(Random value distribution, 20x20 grid, ideal connectivity to (8)

neighbors)

#
 o

f
N

od
es

 V
is

it
ed

 (4
00

 =
 M

ax
)

Best Case (Expected)

Closest Parent

Nearest Value

Snooping

Random Parent

13

Acquisitional Query Processing

How does the user control acquisition?

 Rates or lifetimes

 Event-based triggers

How should the query be processed?

 Sampling as an operator, Power-optimal ordering

 Frequent events as joins

Which nodes have relevant data?

 Semantic Routing Tree for effective pruning

 Nodes that are queried together route together

Which samples should be transmitted?

 Pick most “valuable”?

 Adaptive transmission & sampling rates

14

Sample Rate vs. Delivery Rate

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16
Samples Per Second (Per Mote)

A
g

g
re

g
a
te

 D
e
li
v
e
ry

 R
a
te

(P
a
c
k
e
ts

/S
e
c
o

n
d

)

1 mote

4 motes

4 motes, adaptive

Adaptive Transmission Rates

Adaptive = 2x %
Successful
Xmissions

TinyDB monitors channel contention & backs-off as needed

15

Prioritizing Data Delivery

Score each item

Send largest score

 Out of order -> Priority Queue

Discard or aggregate when buffer is full

[1,2]

16

Choosing Data To Send

Delta encoding

[1,2]

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e(time, value)

17

Choosing Data To Send

[2,6] [3,15] [4,1]

[1,2]

|2-6| = 4

| 2-15| = 13

|2-1| = 1

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e

Delta encoding

Select which of
the 3 to send

18

Choosing Data To Send

[2,6]

[3,15]

[4,1]

[1,2]

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e

|15-6| = 9 |15-1| = 14

Delta encoding

Keep selecting
until hit max
delivery rate

19

Choosing Data To Send

[2,6]

[3,15] [4,1] [1,2]

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e

Delta encoding

20

Choosing Data To Send

[2,6] [3,15] [4,1] [1,2]

Time vs. Value

0

2

4

6

8

10

12

14

16

1 2 3 4

Time

V
a
lu

e

Delta encoding

If manage
to send all

21

Delta + Adaptivity

8 element queue

4 motes transmitting

different signals

8 samples /sec / mote

