

EECS 369 – Introduction to Sensor Networks

Winter 2011

Peter Scheuermann and Goce Trajcevski

peters@eecs.northwestern.edu, goce@eecs.northwestern.edu

Staff, Course Overview: - Positioning of the WSN

Teaching staff

Instructors:

- Peter Scheuermann
 - peters@eecs.northwestern.edu
 - Office hours: TBA
- Goce Trajcevski
 - goce@eecs.northwestern.edu
 - Office hours: M/W 2:00-3:00PM (or by appointment), L360

Class location/time

Lecture: MW 3:30-4:50, Tech M152

Textbooks

Required:

 F. Zhao and L. Guibas, "Wireless Sensor Networks: An Information Processing Approach", Morgan Kaufman, 2004

Recommended:

- W. Stallings, *Wireless Communications and Networks*, 2nd Edition, Prentice Hall, 2005.
- I. Stojmenovic (editor) *Handbook of Sensor Networks: Algorithms and Architectures*, John Wiley and Sons, 2005.
- + Many Reading Assignments (References from Conference Proceedings and Journals)

Homeworks, Labs, and Exams

• "~3" projects, 1 exams, 1 presentation, participation...

Grading:

- Project #1 (12%)
- Project #2 (15%)
- Project #3 (15%)
 - Project #3.5 (possibly)
- Midterm (30%)
- Presentation (20%)
- **#** Late Policy
 - After 1 day, maximum score is 90%
 - After 2 days, maximum score is 80%,

NORTHWESTERN UNIVERSITY

- Programming Assignments are due at 11:59PM on the specified date (unless otherwise announced)
- **#** Announcements:
 - Individual responsibility to keep up-to-date:
 - In-class, Email; Blackboard;
- **#** Incomplete Grades
- **#** Cheating

Lectures:

NORTHWESTERN

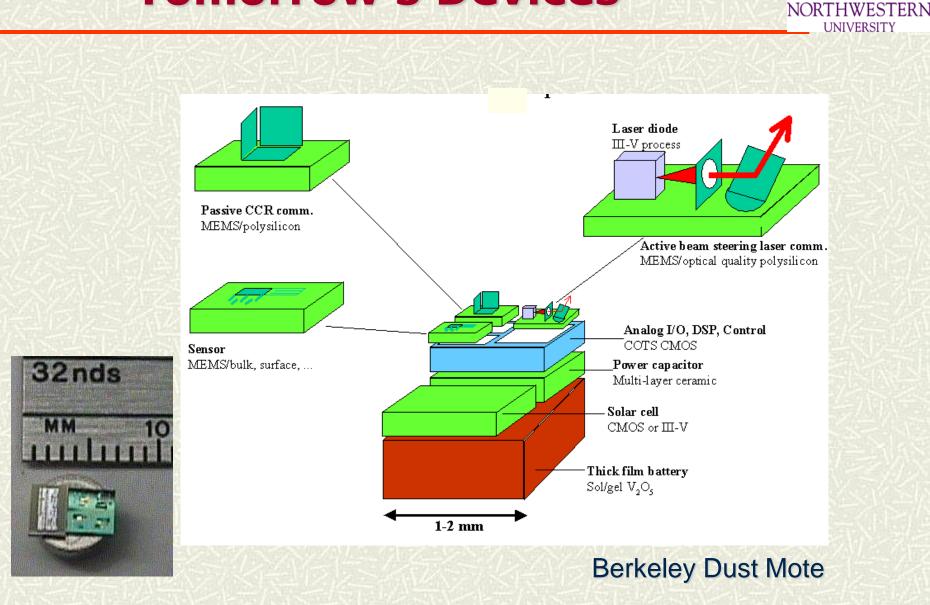
- **#** Introducing Abstractions:
 - Issues in WSN context per se'
 - Applications
 - Motivation
- **#** Resources:
 - TelosB motes (TinyOS 2.x)
 - Freely available: www.tinyos.org
- **#** NOTE:
 - It is students personal responsibility to ensure that the submitted assignments will run in the environments specified in the handouts

Tentative Outline

2		UNIVERSITY
	1.Introduction/Applications	 Application domains of sensor networks. Enabling technologies: hardware/software platforms. Performance metrics.
	2. Communication Model	 Wireless sensor architecture and protocol stack. Basics of RF communication and the role of MAC. Popular protocols (802.11, 802.15, Bluetooth).
	3. Localization and Coverage	 Global location (GPS-based) and relative location (Beacon-based). Localization methods: anchor-free, anchor-based, range-free, range-based. Timing/synchronization Coverage and connectivity: properties and quality aspects.
	4. Routing	 Data centric-protocols: gossiping, rumor routing, directed diffusion. Hierarchical protocols: LEACH. Location-based (Geographical) protocols and energy-aware routing: GPSR, geometric spanners, distributed topology routing (PRADA). Multipath-routing
	5. Query Processing in Sensor Networks	 Fundamentals of query approaches: push vs. pull based processing. Review of SQL. In-network processing and aggregation: TinyDB and TAG. Statistical approaches to computing aggregates: quantile-digest. Robust aggregation: ODI synopses.
	6. Mobility and Tracking	Tracking with Binary Sensors Distributed trajectory tracking and data reduction Selection of tracking principals.
	7. RFID Systems	Tag identification protocols Reader anti-collision algorithms In-door localization with RFIDs
	8. Advanced Topics	 Security in WSN. Real-time query scheduling Integrating event-streams with signal processing operations

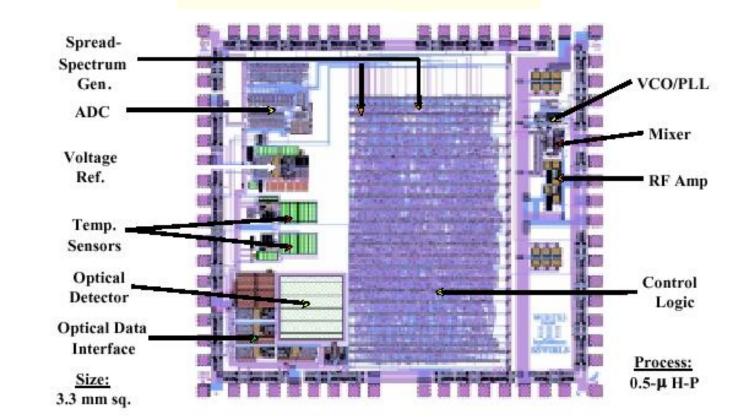
Sensor Networks: The Vision

- The "many tiny" principle: wireless networks of thousands of inexpensive miniature devices capable of computation, communication and sensing
- **#** For smart spaces, environmental monitoring, battlefield applications...



From Pister et al., Berkeley Smart Dust Project

PC104 Sensor


Tomorrow's Devices

From Pister et al., Berkeley Smart Dust Project

Tomorrow's Devices

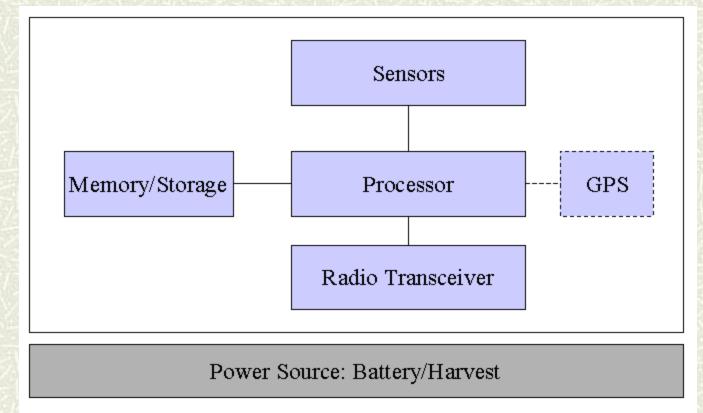
ORNL Telesensor Chip

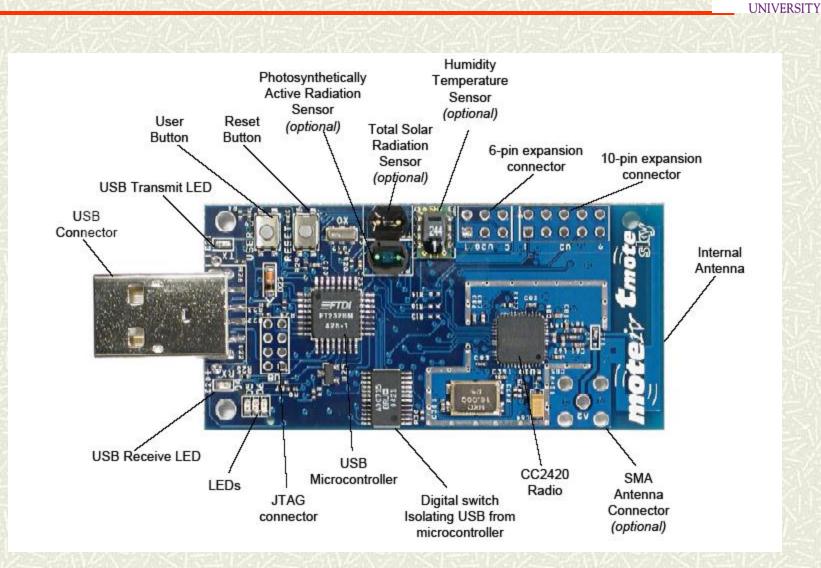
From Manges et al., Oak Ridge National Laboratory, Instrumentation and Controls Division

WSN Devices

WINS (Rockwell)

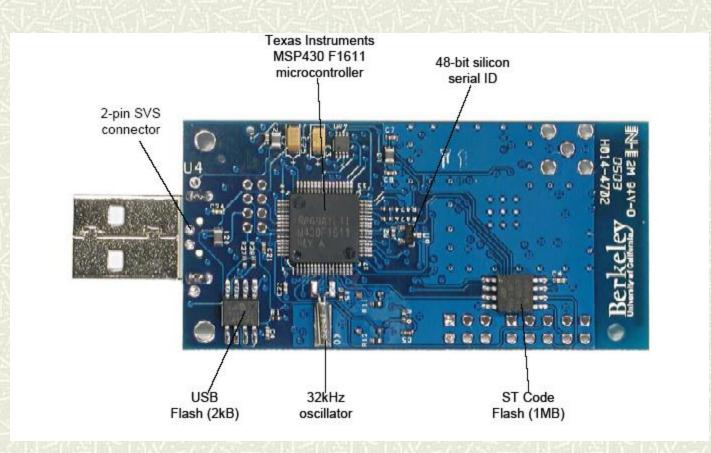
MICA 2 Mote (Berkeley)


GNOMES (Rice)


MANTIS Nymph (Colorade)

ΓERN

Basic WSN Hardware



Moteiv Tmote Sky

NORTHWESTERN

Moteiv Tmote Sky

NORTHWESTERN UNIVERSITY

- 2.4GHz, 250 kbps IEEE 802.15.4 CC2420 radio, range: tens of meters
- **#** MSP430 microcontroller, 10k RAM, 48k flash
- **#** USB programming
- **#** On-board Humidity, Temperature and Light Sensors
- Power consumption @ 3V: mcu+radio: ~20mA, mcu alone: ~2mA, standby: 20μA
- **#** To be programmed using NesC/TinyOS 2.x

WSN History

- 1998 Compsys wireless sensor device
- 1999-2002: Large DARPA projects with funding for multiple university and industry teams: SensIT, PAC/C
 - WINS (successor to LWIM at UCLA)
 - uAMPS (MIT)
 - Smart Dust / Motes / TinyOS (UCB, Berkeley Intel Lab)
 - PicoRadio (UCB)
 - SCADDS (USC), PASTA (USC)
 - Cornell, U. Wisconsin, PSU, ORNL, NIST, Rutgers
 - PARC, Ember Corp., Sensoria
- 2002 NSF Funding: CENS (at UCLA, USC is a partner)
- **#** 2003 IEEE 802.15.4 standard for low-data rate wireless

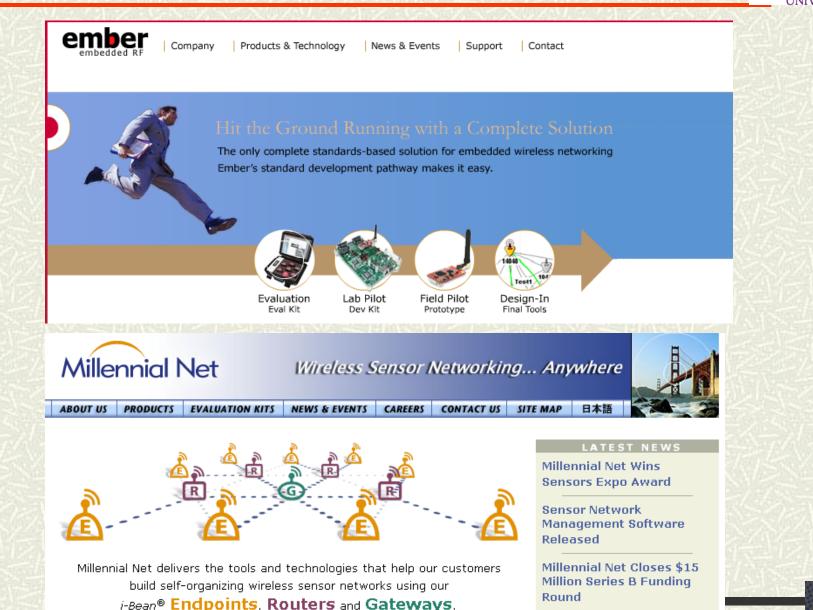
Seismic Sensing and ActuationStructural Condition Monitoring

From CENS

• Monitoring ecosystems and species habitats

- Contaminant Flow
- Chemical Leaks
- Forest Fires
- Emergency Response

Images from Google


• Target Tracking

From 29 Palms Demo, UC Berkley and others

WSN Companies



WSN Companies

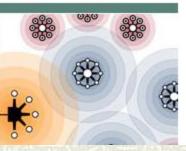
	Nerywhere ⁻ Search	
Home About Motorola	Products and Services Shop	
Overview	WLAN/WPAN	
About Motorola Labs	Motorola Labs is developing Wireless Local Area Network (WLAN) technology to deliver untethered information access in the home, busi	
Research Programs	vehicle and for "hot spot" areas (relatively distinct, highly concentrated areas such as business and university campuses).	

Accelerate Product Development by Six Months or More

Wireless Networking Solutions FOR REMOTE MONITORING & CONTROL

NORTHWESTERN UNIVERSITY

WSN Companies



Products & Services | News & Events | About Us | Contact Us || ART

Featured Solution: Introducing Sensicast ART as the first application of the H900 Wireless Sensor Networking Platform.

NORTHWESTERN UNIVERSITY

- Unattended, ad-hoc deployment
- Energy scarcity
 - Radio communication is 100 to 10000 times more expensive than computational processing
- Large Scale: thousands of nodes (millions?!)
- **H** Distributed data
- **H**eterogeneous capabilities
- **#** Faulty/failed nodes, noisy measurements
- **Dynamic**, uncertain environment
- Potentially demanding real-time constraints

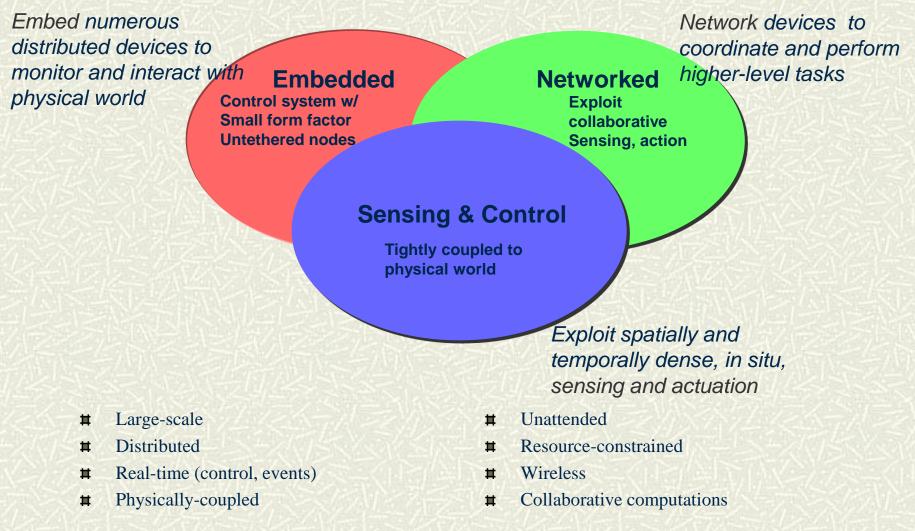
DIFFERENCES FROM AD-HOC NETWORKS

- **H** Number of sensor nodes can be several orders of magnitude higher
- **#** Sensor nodes are densely deployed and are prone to failures
- The topology of a sensor network may change frequently due to node failure and node mobility
- **±** Sensor nodes are limited in power, computational capacities, and memory
- **#** May not have global ID like IP address
- **#** Need tight integration with sensing tasks

Tiered Architectures for Increased Lifetime: Mote Herds with Microserver Shepherds

Dense resource constrained Micro-nodes (Tripwires or Sentries) Low duty cycle tasks. Mostly vigilant.

Z


Sparse powerful Macro-nodes (Microservers) Bulky computations. Triggered wakeup

11

Exploit spatial locality of algorithms Fine grained coverage, higher performance and lower power **Z** i 🔆

Multidisciplinary Challenges

Combines the hard problems of the Internet, Embedded Systems, Wireless Networks, and Distributed Computing!